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Abstract: This paper presents a version of the Bartels-Stewart algorithm for solving the Sylvester and Lyapunov 
equations that utilizes the Jordan-Schur form of the equation matrices. The Jordan-Schur form is a type of Schur 
form which contains additional information about the Jordan structure of the corresponding matrix. This information 
can be used to solve more efficiently the Sylvester and Lyapunov equations in some cases. A two-level algorithm is 
implemented which allows us to find directly non-scalar blocks of the solution matrix. These blocks have sizes that are 
determined by the Weyr characteristics associated with the eigenvalues of the equation matrices. In the case of large 
elements of the Weyr characteristics associated with multiple eigenvalues, the determination of the solution blocks can 
be done more efficiency. Also, the blocks equations can be more appropriate in solving the Sylvester and Lyapunov 
equations in the case of parallel computations. Results obtained from numerical experiments confirm that the accuracy 
of the new algorithm is comparable with the accuracy of the Bartels-Stewart algorithm.
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1. Introduction
The Sylvester

, ,n n m mAX XB C A B× ×+ = ∈ ∈ 

and Lyapunov

,H n nA X XA C A ×+ = ∈

matrix equations arise frequently in the solution of many scientific problems. Several methods are proposed for the 
computational solution of these equations, see for an extensive bibliography of the surwey paper [1]. One of the best 
available algorithms for solving these equations is the Bartels-Stewart algorithm [2] which exploits the Schur form of 
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the matrices A and B. Using this algorithm the solution of the corresponding equation is reduced to the solution of scalar 
(in the complex case) equations which are easily solved recursively. The Schur form is obtained in a numerically stable 
way which ensures a robust numerical behavior of the Bartels-Stewart algorithm. Further development of the Bartels-
Stewart algorithm is the highly efficient recursive blocked algorithms for solving the Sylvester and Lyapunov equation 
proposed in [3].

This paper presents a new version of the Bartels-Stewart algorithm for solving the Sylvester and Lyapunov 
equations which instead of the Schur form utilizes the Jordan-Schur form of the matrices A and B. The Jordan-Schur 
form is a type of Schur form which contains additional information about the Jordan structure of the corresponding 
matrix. This information can be used to solve more efficiently (1) and (2) in some cases. A two-level algorithm is 
implemented which allows us to find directly non-scalar blocks of the solution matrix. These blocks have sizes that are 
determined by the Weyr characteristics associated with the eigenvalues of the matrices A and B. In the case of multiple 
eigenvalues with large elements of the Weyr characteristics this may improve the efficiency. Also, the blocks equations 
can be more appropriate for solving the Sylvester and Lyapunov equations in the case of parallel computations. Results 
from numerical experiments are presented which confirm that the accuracy of the new algorithm is comparable with the 
accuracy of the Bartels-Stewart algorithm.

The paper is organized as follows. The Jordan-Schur form of a matrix is introduced briefly in section 2. A new 
algorithm for solving the Sylvester equation is presented in section 3 and the modification of this algorithm for solving 
the Lyapunov equation is described in section 4. The numerical properties of the algorithm are discussed in section 5. 
Several numerical experiments illustrating the behavior of the proposed algorithm are presented in section 6 and some 
conclusions are drawn in section 7.

Notation will be the following. C is the set of complex numbers; AT is the transpose of A; AH = ĀT is the Hermitian 
transpose (the complex conjugate transpose) of A; 0n×m is the zero n × m matrix; In is the identity matrix of size n × n; 
λi(A) is the ith eigenvalue of A; ||A||2 and ||A||F are the spectral norm and the Frobenius norm of A, respectively; null(A) 
is the null space of A; dim(X ) is the dimension of the subspace X ; ∆A is a perturbation of A; cond(A) is the condition 
number of A in respect to the inversion; condsylv and condlyap are the condition numbers of the Sylvester and Lyapunov 
equations, respectively; f l(.) is an expression evaluated in floating point arithmetic; vec(A) is an n · m vector obtained 
by stacking the columns of the n × m matrix A = [a1, a2, ..., am], vec(A) = [aT

1, a2
T, ..., am

T ]T, A ⊗ B is the Kronecker 
product of A and B and =: denotes equal by definition. The lower case italics d, e, f, g, i, j, k, l, p, q are used to 
represent integer variables.

2. The Jordan-Schur form
Assume that the complex n × n matrix A has p distinct eigenvalues λ i, i = 1, 2, ..., p each with a multiplicity κi, i = 1, 

2, ..., p. Then the Jordan-Schur form JS of A [4, 5], [6, Sect. 2.5], is a block-triangular matrix that is unitarily similar to A,
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for some hi ≥ 1. The sequence of positive numbers wi1, wi2, ..., wi,hi is called the Weyr characteristic of A associated with 
λi which satisfy

1 2 ,
1

, ,
i

i

h

i i i h ij i
j

w w w w κ
=

≥ ≥ … ≥ =∑

for i = 1, 2, ..., p, for more details see [7, p. 170], [8]. Furthermore, we write wi = wi (A, λi) = (wi1, wi2, ..., wi,hi).
The Jordan-Schur form is actually a Schur form with an additional structure determined by the Weyr characteristics. 

The Weyr characteristics are closely connected with the Jordan structure of the matrix. In fact, the Weyr characteristic 
wi (A, λi) determines in a unique way the Segre characteristic

1 2 , 1 2 ,
1

: ( , ) ( , , , ), ,
i

i i

q

i i i i i q i i i q i ji i
j

s s A s s s s s s sλ κ
=

= = … ≥ ≥ … ≥ =∑

associated with λi whose elements are equal to the sizes of the blocks in the Jordan form of A having λi as an eigenvalue. 
The Weyr characteristic wi(A, λi) and the Segre characteristic si(A, λi) associated with λi are conjugate partitions of κi [7, p. 
170] and can be found from each other by the following rule:

The element sji of si(A, λi) is equal to the number of the elements of wi(A, λi) that are greater than j and vice versa.
Hence the largest element s1i (the size of the largest Jordan block) of the Segre characteristic is equal to the number 

hi of the elements of the Weyr characteristic. In turn, the first element wi1 of the Weyr characteristic (the geometric 
multiplicity of the eigenvalue λi) is equal to the number qi of the elements of Segre characteristic (the number of Jordan 
blocks) associated with λi. Note that the number hi is the smallest positive integer for which

dim(null(( ( , ) ) ))i
i

h
i i i iS w Iνλ λ κ− =

and thus is the index of nilpotence of S(wi, λi) − λiIκi.
The Jordan-Schur form is an intermediate step in the reduction of the matrix A to the numerical Jordan form. In 

particular, this form can be found by a slight modification of the algorithm of Kågström and Ruhe [9, 10] for reducing A 
to Jordan form using the following steps [11]:

1. Reduction of A to upper triangular (Schur) form T = QHAU using unitary similarity transformations. This is done 
by the well known QR algorithm [12, Ch. 7], [13, Ch. 2].

2. Grouping the close eigenvalues. At this step, the algorithm obtains an upper triangular form with eigenvalues, 
sorted such that close eigenvalues appear in adjacent positions. This is done by a sequence of unitary transformations 
(complex plane rotations), each of them exchanging two adjacent diagonal elements [14].

3. Clustering of multiple eigenvalues in blocks. At this step, the close eigenvalues are grouped in p clusters 
corresponding to numerically multiple eigenvalues. This is done by using Gershgorin heuristic to construct a diagonal 
similarity transformation which isolates groups of intersecting discs containing eigenvalues of the matrix T + ∆T, ||∆T || 
≤ ein where ein is an appropriate tolerance reflecting the uncertainty in A. A sophisticated algorithm for this aim is 
described in [4]. As a result, the upper triangular form of A takes the block-triangular form

11 12 1

22 2 ,

p
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pp

T T T
T T
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… 
 … 
 
 
  

 

where each diagonal block Tii ∈ Cκi×κi corresponds to a distinct numerically multiple eigenvalue λi with multiplicity κi.
4. Transforming the diagonal blocks to staircase form. At this step each block Tii − λi Iκi is reduced by using unitary 

similarity transformations into the so called staircase form

(5)

(6)
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where ( ) ik iw wi
kN ×∈ 



 , k = 1, 2, ... s1i − 1, l = 2, 3, ... s1i. The reduction of each upper triangular block Tii − λiIκi to staircase 
form is done in hi = s1i steps, where the index of nilpotency hi of the block is not known a priori and is found during the 
reduction process. The reduction to staircase form represents a consecutive deflation of null spaces done with the aid of 
the singular value decomposition. Determining the size of a null space requires a decision about the numerical rank of 
the corresponding matrix which is done by using a tolerance tol. A detailed description of the reduction can be found in [4, 
8].

As a result of this step, one obtains the matrix S (wi, λi) (4), so that the Jordan structure of the block Tii is 
determined.

In this paper we use only the complex Jordan-Schur forms of A and B.
Example 1 Consider an 8th order matrix A with a Jordan form

2

1 2
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λ λ
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λ

  
        =         
    

and eigenvalue multiplicities κ1 = 3 and κ2 = 5, respectively. The Weyr characteristic of A associated with λ1 is w1(A, λ1) 
= (2, 1) and the Weyr characteristic associated with λ2 is w2(A, λ2) = (2, 2, 1). Hence the Jordan-Schur form of A is

1 1 12
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The diagonal blocks of the Jordan-Schur form look as follows

 1  1  2  2

2

1 2

1 1 1 2 2 2

1 2

2

x x x
x x x x
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       = ∈ = ∈       
  

 

where (x) denotes a nonzero element. The 3 × 5 off-diagonal block T12 has non-zero elements.
The reduction to Jordan-Schur form by the modified algorithm of Kågström and Ruhe is more reliable than the 

reduction to Jordan form. This follows from the fact that the computation of the Weyr and Jordan forms at the final 
step of the full algorithm requires using of additional non-unitary transformations which can be ill-conditioned in 
some cases. The numerical reduction to Jordan-Schur form is backward stable in the sense that the computed form is 
exact for a slightly perturbed matrix A + δA. The weak point of this reduction is the determination of the Weyr (and 
consequently the Segre) characteristics which requires accurate rank determination in presence of rounding errors. This 
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may be a difficult task for matrices with ill-conditioned eigensystems and may lead to errors in the determination of the 
characteristics. The choice of the parameters ein and tol is discussed latter on in sect. 5.

In cases of distinct eigenvalues the Jordan-Schur form coincides with the Schur form and the Jordan-Schur 
algorithm do not have some advantages over the Schur algorithm for solving Sylvester and Lyapunov equations.

3 Solution of the Sylvester equation
3.1 Preliminary transformations

Let the matrix A have p distinct eigenvalues λ1, λ2, ..., λp with the respective multiplicities κ1, κ2, ..., κp and B has q 
distinct eigenvalues µ1, µ2, ..., µq with multiplicities ν1, ν2, ..., νq. Denote the Weyr characteristic of A associated with λi 
by
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and the Weyr characteristic of B associated with µj by
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Reduce the matrices A and B to the Jordan-Schur form
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where the diagonal blocks of JSA and JSB are given by
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Note that the matrices S(wai, λi) − λi Iκi and S(wbj, µj) − µj Iνj are in staircase form with indices of nilpotence hai and 
hbj, respectively.

As it is well known [15, Ch. VIII], the Sylvester equation (1) has a unique solution for X if and only if

0, 1, 2, , , 1, 2, , .i j i p j qλ µ+ ≠ = … = …

Setting

,H HC U CV X U XV= = 

one obtains the transformed Sylvester equation

.SA SBJ X X J C⋅ + ⋅ =  

Let the partition of the matrices  C̃ and X̃ be conformal to the partition of JSA and JSB,
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Then (11) can be written as a set of block Sylvester equations
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Due to the specific structure of the matrices S(wai, λi) and S(wbj, µj), equation (13) will be called staircase Sylvester 
equation. Note that the dimensions of S(wai, λi) and S(wbj, µj) can be arbitrary depending on the multiplicities of λi and 
µj.

Thus the solution of (1) is reduced to the solution of p · q staircase Sylvester equations (13). Since the matrices 
S(wai, λi) and S(wbj, λj) are in upper triangular form, these equations can be solved by the Bartels-Stewart algorithm. 
However, as shown in the next section, the solution of (13) can be done more efficiently if one uses the staircase 
structure of S(wai, λi) and S(wbj, λj).

(10)

(11)

(12)

(13)
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3.2 Solution of staircase Sylvester equations

Consider the staircase Sylvester equation

A BS Y Y S F⋅ + ⋅ =

where
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The solution of (14) can be done exploiting the structure of the matrices SA and SB revealed by (15). Partition the κ 
× ν matrices F and Y as
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one obtains from (14) the equation
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Note the similarity between equations (17) and (13).
It follows from (17) that
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Equation (18) allows to find directly the klth block of the solution matrix Y.
Equations (18) are evaluated recursively for

,1 1,1 11 ,2 12 , 1,, , , , , , , , , , .ha ha ha ha hb hbY Y Y Y Y Y Y− … … … …
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The staircase Sylvester equation (18) is solved by the Algorithm 1.
Algorithm 1 Solution of a staircase Sylvester equation
Solution of the Sylvester equation SA · Y + Y · SB = F where
SA = λI + M, SB = µI + N and the matrices M and N are
in staircase form with Weyr characteristics
wa(SA, λ) = (wa1, wa2, ..., waha) and
wb(SB, µ) = (wb1, wb2, ..., wbhb), respectively.
function Y = sylv_stairs(SA, SB, F)
Input: Matrices SA ∈ Cκ×κ and SB ∈ Cν×ν with strictly
            upper triangular parts in staircase form
            Matrix F ∈ Cκ×ν

Output: Y ∈ Cκ×ν

for l = 1 : hb
     for k = ha : −1 : 1
          Set W = 0wak ,wb

l

         if  k + 1 ≤ ha
             for f = k + 1 : ha
                 W = W + Mk fYf

l

            end
       end
        Set Z = 0wak ,wb

l

       if l > 1
           for g = 1 : l − 1
                Z = Z + YkgNg

l

          end
       end
       if λ + µ ≠ 0
            Yk

l

 = (Fk
l

 − W − Z ) /(λ + µ)
       else
           Error: The equation has no solution
      end
  end
end
Algorithm 2 Solution of the Sylvester equation by the Jordan-Schur method
Solution of the Sylvester equation AX + XB = C
function X = sylv_jsf(A, B, C)
Input: Matrices A ∈ Cn×n, B ∈ Cm×m and C ∈ Cn×m

Output: X ∈ Cn×m

Reduce A to the Jordan-Schur form JSA = U HAU with p blocks
on the diagonal each having eigenvalue λi with multiplicity κi,
i = 1, 2, ..., p
Reduce B to the Jordan-Schur form JSB = VHAV with q blocks
on the diagonal each having eigenvalue µj with multiplicity νj,
j = 1, 2, ..., q
Transform C → UHCV
for j = 1 : q
    for i = p : −1 : 1
         Set W = 0κi,νj
        if i < p
           for d = i + 1 : p
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W = W + Rid Xdj

           end
        end
         Set Z = 0κi,νj
        if  j > 1
           for e = 1 : j − 1

Z = Z + XieTej

           end
        end
        Solve the staircase Sylvester equation
               SAii Xij + XijSBjj = Cij − W − Z
        using Algorithm 1
   end
end
Transform back X → UXVH

Algorithm 1 resembles the back substitution in solving systems of linear systems of equations and can be 
considered as a version of the Bartels-Stewart algorithm [2] for solving the Sylvester equation. There is, however, 
one significant difference - the block Yk

l

 of the solution Y is of dimension wak × wb
l

. In case of multiple eigenvalues 
with large values of the elements wak and wb

l

 of the corresponding Weyr characteristics, the solution of the 
Sylvester equation by using the Jordan-Schur algorithm can be more efficient. If the elements of the Weyr 
characteristics are equal to one (this is the case of non-derogatory matrices), then the Jordan-Schur algorithm coincides 
with the Bartels-Stewart algorithm.

Equations (13) and (18) together constitute a two level algorithm for solving the Sylvester equation.
Using Algorithm 1, the equations (13) are solved recursively for

1 1,1 11 2 12 1, , , , , , , , , , .p p p pq qX X X X X X X− … … … …

The corresponding computations are carried out by Algorithm 2.
Example 2 Consider the solution of a Sylvester equation with the matrix A given in Example 1 and a 5th order 

matrix B with diagonal Jordan form

( )1 1 2 2 2diag , , , , , 0B i jJ µ µ µ µ µ λ µ= + ≠

whose eigenvalue multiplicities are ν1 = 2 and ν2 = 3, respectively. Since the Weyr characteristics of B associated with 
µ1 and µ2 are wb1(B, µ1) = (2) and wb2(B, µ2) = (3), respectively, the blocks of the solution matrix are obtained in the 
following order
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where the double lines correspond to the partition of blocks with sizes equal to the eigenvalue multiplicities, while 
the single lines correspond to the partition of blocks with sizes determined by the elements of the corresponding Weyr 
characteristics. Note that there are two blocks with dimension 1 × 2, two blocks with dimension 1 × 3 and three blocks 
with dimension 2 × 3. Thus, instead of solving 8 · 5 = 40 scalar equations as in the Bartels-Stewart algorithm, it is 
necessary to solve 7 block matrix equations.

It should be pointed out that the staircase Sylvester equations have independent application in solving problems 
involving the Jordan-Schur form, for instance in computing the matrix exponential [16].

4. Solution of the Lyapunov equation
The solution of the Lyapunov equation (2) is slightly more complicated than the solution of the Sylvester equation. 

In the given case
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 … = = ∈
 
 
  



 

B = A, JSB = JSA, V = U and (13) obtains the form
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H H
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S X X S C R X X R

−

= + =
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,H
ji ijX X=

1,2, , ,j p= …

, 1, , .i j j p= + …

In (19) one exploits the Hermitian property of the solution X. If i = j one obtains the staircase Lyapunov equation

1

1 1
,

p i
H H
Aii ii ii Aii ii di di ie ei

d i e
S X X S C R X X R

−

= + =

+ = − −∑ ∑

1,2, , .i p= …

Equation (20) has a Hermitian solution for Xii, i.e., Xii
H = Xii. In fact, since X H = X it follows that Xdi = Xid

H, Xei = Xie
H 

and since Cii
H = Cii, it is possible to show that the right hand side of (20) is Hermitian. This circumstance can be used to 

solve (20) more efficiently than the non-Hermitian (i ≠ j) equation (19).
Thus the solution of (19) should be done by two different algorithms for i = j and for i ≠ j.

4.1 Solution of Hermitian staircase Lyapunov equations

Consider the staircase Lyapunov equation

HS Y YS F+ =

(19)

(20)

(21)
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where
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and F H = F, Y H = Y.
Equation (21) has a unique solution for Y if and only if λ ≠ 0.
Representing the lower block-triangular parts of F and Y as
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For k = l it is fulfilled that Ykk
H = Ykk.

Algorithm 3 Solution of a staircase Lyapunov equation
Solution of the Lyapunov equation S HY + YS = F where
S = λI + M and the matrix M is in staircase form
with a Weyr characteristic w(S, λ) = (w1, w2, ..., wh).
function Y = lyap_stairs(S, F)
Input: Matrix S ∈ Cκ×κ with strictly
            upper triangular part in staircase form
            Matrix F ∈ Cκ×κ, F H = F
Output: Y ∈ Cκ×κ, Y H = Y
for l = 1 : h
     for k = l : h
          Set W = 0wk ,w

l

          if k > 1
             for f = 1 : k − 1
                 W = W + Mfk

HYf
l

             end
          end
           Set Z = 0wk ,w

l

(22)

(23)
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          if l > 1
             for g = 1 : l − 1
                  Z = Z + Ykg Mg

l

            end
       end
       if λ ≠ 0
           Yk

l

 = (Fk
l

 − W − Z)/(2λ)
          if k ≠ l
              Y

l
k = Y H

k
l

         end
    else
        Error: The equation has no solution
    end
  end
end
Algorithm 4 Solution of a staircase Sylvester equation with a transposed matrix
Solution of the Sylvester equation SA

H · Y + Y · SB = F where
SA = λI + M, SB = µI + N and the matrices M and N are
in staircase form with Weyr characteristics
wa(SA, λ) = (wa1, wa2, ..., waha) and
wb(SB, µ) = (wb1, wb2, ..., wbhb), respectively.
function Y = sylv_transp(SA, SB, F)
Input: Matrices SA ∈ Cκ×κ and SB ∈ Cν×ν with strictly
            upper triangular parts in staircase form
            Matrix F ∈ Cκ×ν

Output: Y ∈ Cκ×ν

for l = 1 : hb
    for k = 1 : ha
         Set W = 0wak,wb

l

        if k > 1
            for f = 1 : k − 1
                W = W + Mfk

HYf
l

            end
       end
        Set Z = 0wak,wb

l

       if l > 1
         for g = 1 : l − 1
              Z = Z + YkgNg

l

         end
    end
    if λ + µ ≠ 0
          Yk

l

 = (Fk
l

 − W − Z )/(λ + µ)
     else
          Error: The equation has no solution
     end
  end
end
Algorithm 5 Solution of the Lyapunov equation by the Jordan-Schur method
Solution of the Lyapunov equation AHX + XA = C
function X = lyap_jsf(A, C )
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Input: Matrices A ∈ Cn×n and C ∈ Cn×n, CH = C
Output: X ∈ Cn×n, X H = X
Reduce A to the Jordan-Schur form JSA = U HAU with p blocks
on the diagonal each having eigenvalue λi with multiplicity κi,
i = 1, 2, ..., p
Transform C → U HCU
for j = 1 : p
   for i = j : p
        Set W = 0κi,κj

       if i < p
          for d = i + 1 : p
              W = W + Rdi

HXdj

             end
        end
        Set Z = 0κi,κj

        if j > 1
            for e = 1 : j − 1
                  Z = Z + XieRej

             end
        end
        if i = j
           Solve the staircase Lyapunov equation 
                 Sii

HXii + XiiSii = Cii − W − Z
           using Algorithm 3
      else
          Solve the staircase Sylvester equation
                Sii

HXij + XijSjj = Cij − W − Z
          using Algorithm 4
          Xj i = Xij

H

     end
  end
end
Transform back X → UXU H

Equations (23) are evaluated consecutively for the subdiagonal blocks

11 21 1 22 2, , , , , , , ,h h hhY Y Y Y Y Y… … …

and the superdiagonal blocks are found by Hermitian transposition of the corresponding subdiagonal blocks.
The staircase Lyapunov equation (23) is solved by the Algorithm 3.

4.2 Solution of the equations for off-diagonal blocks

The off-diagonal (i ≠ j) equations (20) have the form of a Sylvester equation with a transposed matrix A,

H
A BS Y Y S F⋅ + ⋅ =

where SA and SB are the same as in (15). Partitioning F and Y as in (16), the equation (24) is represented as

(24)
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1 1

1 1
,

k
H

k k k fk f kg g
f g

Y Y F M Y Y Mλ µ
− −

= =

+ = − −∑ ∑


    

1,2, , ,k ha= …

1,2, , hb= …

Note that in the given case both λ and µ are eigenvalues of A.
As a result from (25) one obtains

1

1 1

1 ,
ha

H
kl k fk f kg g

f k g
Y F M Y Y N

λ µ

−

= + =

 
= − −  +  

∑ ∑


  

1, 2, ,k ha= …

1,2, , ,hb= …

Equations (26) are similar to equations (17) but are solved in the order

11 21 ,1 12 22 ,2 1, 2, ,, , , , , , , , , , , , .ha ha hb hb ha hbY Y Y Y Y Y Y Y Y… … … …

Equations (26) are solved by Algorithm 4.
Using Algorithms 3 and 4, the Lyapunov equation can be solved by the Algorithm 5.

5. Numerical considerations
The basic steps of the algorithm proposed are the reduction to Jordan-Schur form and the solution of the 

transformed Sylvester or Lyapunov equation.
Consider first the reduction to Jordan-Schur form by the algorithm of Kågström and Ruhe. As mentioned earlier, 

this reduction is numerically stable due to the implementation of unitary transformations. However, it should be 
emphasized that the numerical stability doesn’t guarantee that the clustering of the numerically multiple eigenvalues 
and the determination of the sizes of the Jordan blocks is always done in the best way. The extensive experiments 
with the algorithm of Kågström and Ruhe show that it works reliably except in case of very ill-conditioned system of 
eigenvectors and principal vectors when any clustering method will have serious difficulties in grouping the eigenvalues. 
Such difficulties manifest themselves by the large backward error ||UJSU

H − A||F / ||A||F and can be removed by adjusting 
properly the tolerances ein and tol. The tolerances ein and tol play the role of regularization parameters which allow 
for achieving a Jordan structure by the use of well-conditioned similarity transformation. The tolerance ein affects the 
clustering of the eigenvalues in groups of numerically multiple eigenvalues while the tolerance tol in its turn affects 
the determination of the dimensions of the null spaces and consequently the Weyr characteristics of the associated 
eigenvalues. The choice of appropriate tolerances can be done so that to minimize the distance between Âk = U ·JS ·U

H 
and A or to choose a specific Jordan structure.

The following example illustrates the influence of ein and tol on the numerical determination of the structure of 
Jordan-Schur form.

Example 3 Consider the matrix

(25)

(26)
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111 240 572 1752 4272
149 335 778 2340 5688
132 288 657 1980 4744

38 84 201 613 1504
22 48 112 340 823

A

− − − − 
 − − − − 
 = −
 

− − − − 
 − − − − 

which is obtained as A = QJQ−1, where

1 1 1 1
,1,

1 1
J

 −    
=     −    

and

56 187 64 8 6
109 261 90 16 6

.100 234 80 14 5
20 64 22 3 2
14 38 13 2 1

Q

− 
 − 
 = − − − −
 

− 
 − 

The matrix of the similarity transformation into Jordan form is relatively ill-conditioned with condition number 
cond(Q) = 1.34 · 105. The Segre characteristics associated with the eigenvalues λ1 = 1 and λ2 = −1 are s1 = (2, 1) and s2 = 
(2), respectively.

Table 1. Jordan-Schur forms of A computed for different tolerances

k ein, tol Computed Segre charactersitics dist (Âk, A)

1 10−9 (2, 1), (2) 7.37 · 10−16

2 10−8 (4, 1) 5.33 · 10−7

3 10−7 (3, 2) 5.29 · 10−7

4 10−6 (3, 1, 1) 3.07 · 10−5

5 10−5 (2, 1, 1, 1) 3.70 · 10−16

6 1 (1, 1, 1, 1, 1) 5.79 · 10−16

In Table 1 we give the Segre characteristics of the six matrices Âk = UĴ SU
H corresponding to the Jordan-Schur 

forms Ĵ Sk, k = 1, 2, ..., 6 computed for different tolerances ein and tol. The last column contains the relative distances

ˆ
ˆdist( , ) , 1, 2, ,6k F

k
F

A A
A A k

A
−

= = …
‖ ‖

‖‖

between the matrices Âk and the original matrix A in the space C25. The right Segre characteristics are determined for 
tolerances ein = tol = 10−9. In case of well-conditioned eigensystem one can use tolerances which are of order n2u||A ||F, 
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where u is the roundoff unit of the used floating point arithmetic.
It should be emphasized that the using of the algorithm of Kågström and Ruhe for reducing the equation matrices 

into Jordan-Schur form is not indispensable - for this purpose it is also possible to use other algorithms. For instance, 
an alternative method for reduction to JordanSchur form is to implement the function guptri from MCS Toolbox [17] 
which determines automatically appropriate tolerances ein and tol. This function is based on the Generalized UPper 
TRIangular (GUPTRI) algorithm of Demmel and Kågström [18, 19] intended for determining the Kronecker structure 
of matrix pencils. (The Kronecker structure represents a generalization of the Jordan structure of a matrix to the case of 
two matrices).

The accuracy of the solution of the transformed Sylvester and Lyapunov equations depends on two factors: the 
conditioning of the corresponding equation and the numerical properties of the method used to obtain the solution. 
Consider in brief the influence of these factors on the solution of Sylvester and Lyapunov equations obtained by the 
Jordan-Schur method.

The sensitivity of the solution of the Sylvester equation to perturbations in the data is analyzed in [20], see also [21, 
Ch. 16]. Let the Sylvester equation be

AX XB C+ =

where A ∈ Cn×n, B ∈ Cm×m, C ∈ Cn×m and let Ω = Im ⊗ A + BT ⊗ InCnm×nm. Then the relative change ||∆X ||F / ||X||F in the 
solution of this equation due to small relative perturbations ∆A/|| A||F, ∆B/||B||F and ∆C/||C||F, is given by [21, Ch. 16]

sylv/ 3condF FX X η∆ ≤‖ ‖ ‖ ‖

where

1
sylv 2cond ( ), ( ),  /T

F n F m F nm FA X I B I X C I X−  = Ω ⊗ ⊗ − ‖ ‖‖ ‖ ‖ ‖ ‖ ‖‖ ‖

is the relative condition number of the Sylvester equation and

max{ / , / , / }F F F F F FA A B B C Cη = ∆ ∆ ∆‖ ‖ ‖‖ ‖ ‖ ‖ ‖ ‖ ‖ ‖ ‖

is the maximum relative perturbation in the data. The size of the condition number is closely related to the separation of 
the matrices A and −B [22],

0sep( , ) min .F
X

F

AX XBA B
X≠
+

− =
‖ ‖

‖ ‖

If this separation is small, then the condition number of the Sylvester equation is large which follows from the fact 
that

1
2 1/ sep( , ).A B−Ω = −‖ ‖

In respect to the Lyapunov equation one has the similar bound

lyap/ 3cond ,F FX X η∆ ≤‖ ‖ ‖ ‖

where

(27)

(28)

(29)
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2
1

lyap 2cond (( ) ( ) ), /F n n F Fn
A I X X I C I X−  = Ω ⊗ + ⊗ Π − ‖ ‖‖ ‖ ‖ ‖‖ ‖

is the relative condition number of the Lyapunov equation,

,T T
m nI A A IΩ = ⊗ + ⊗

Π is the vec-permutation matrix defined by the property vec(AT) = Πvec(A) [23, p. 21] and

max{ / , / }.F F F FA A C Cη = ∆ ∆‖ ‖ ‖‖ ‖ ‖ ‖ ‖

The second factor influencing the solution accuracy of Sylvester and Lyapunov equations is the numerical behavior 
of the Jordan-Schur algorithm. Since the Jordan-Schur form is a type of Schur form and the equations solved are similar 
to the equations solved in the Bartels-Stewart algorithm, both methods have similar numerical properties. According to 
the analysis done in [20], [21, Ch. 16], the relative residual corresponding to the computed solution,

ˆ ˆ( )
ˆ( )

F

F F F

C AX XB
A B X

− +
+

‖ ‖

‖‖ ‖ ‖ ‖ ‖

is always small and is of order u. Nevertheless, from the analysis follows that the Jordan-Schur algorithm, like the 
Bartels-Stewart algorithm in its standard implementation, is only conditionally backward stable. This means that the 
backward error corresponding to the computed solution X̂ can be large in some cases determining a large forward error 
in the solution.

An estimate close to the forward error of the solution can be obtained by the practical error bound proposed in [21, 
Ch. 16]. Let the computed residual of a computed solution be represented as

ˆ ˆ ˆ( ( ( ( ))) ,R fl C fl AX fl XB R R= − + = + ∆

ˆ ˆ| | | | | || | | || | : ,A B uR C A X X B Rγ γ∆ ≤ + + =u

where

( 2) / (1 ( 2) ), ( 2) / (1 ( 2) )A Bn n m mγ γ= + − + = + − +u u u u

and u is the roundoff unit.
Then the relative error in the computed solution satisfies [21, Eq. (16.29)]

1 ˆˆ | | (| vec( ) | vec( ))
,ˆ ˆ

uR RX X
X X

−Ω +−
≤
‖ ‖‖ ‖

‖ ‖ ‖ ‖

where ||X || := max i, j |xij |.
To avoid the use of large matrices in computing the condition numbers condsylv, condlyap and the bound (30), one can 

use the technique described in [21, Sect. 16.4].
The numerical experiments presented in the next section confirm that the Jordan-Schur algorithm has an accuracy 

which is close to the accuracy of the Bartels-Stewart algorithm.
Consider now the computational work associated with the Jordan-Schur algorithm. Since in both Bartels-Stewart 

and Jordan-Schur algorithms the first step is the reduction of the matrices A and B to Schur form, it is appropriate to 

(30)
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consider only the volume of computational work done in addition to the reduction into Schur form. For the Bartels-
Stewart algorithm, the solution of the Sylvester equation with matrices in Schur form requires

[ ]1 ( 1) ( 1)
2

n n m m m n− + −

floating point multiplications and additions or flam as called in [24, Ch. 2], where 1 flam is 1 floating point 
multiplication and 1 floating point addition. For the Jordan-Schur algorithm, under the assumptions of matrices with 
one eigenvalue ( p = 1, κ1 = n; q = 1, ν1 = m) and equal elements of the Weyr characteristics (wai = n/ha, wbj = m/hb), the 
necessary computational work for solving the staircase Sylvester equation (14) is

2 21 ( 1) ( 1) flam.
2

n m nmha hb
ha hb

 
− + − 

 

For large indices of nilpotency (ha = n, hb = m) where the elements of the Weyr characteristics are equal to one (this 
is the case of non-derogatory but defective matrices with one Jordan block), this volume of work is exactly the same as 
for Bartels-Stewart algorithm. However, with the decreasing of the indices of nilpotency the necessary computational 
work tends to zero while for the Bartels-Stewart algorithm it remains the same. For the reduction to Jordan-Schur form 
one should take also into account the sorting of the eigenvalues, the clustering of multiple eigenvalues and the reduction 
of the diagonal blocks to staircase form of the matrices A and B which require at most

3 3 3 31 16 2 6 2 flam.
3 3

n n ha m m hb+ + +

For ha = n, hb = m this volume of work is of order

4 3 4 31 12 6 2 6 flam.
3 3

n n m m+ + +

and for ha = 1, hb = 1 (derogatory but non-defective matrices with scalar Jordan blocks) it is approximately

3 31 18 8 flam.
3 3

n m+

Thus the Jordan-Schur algorithm can be competitive with the Bartels-Stewart algorithm when the Jordan-Schur 
forms of A and B are already available from other computations and the indices of nilpotency (i.e., the sizes of the 
Jordan blocks) of these matrices are small. Also, the Jordan-Schur algorithm can be more efficient in the case when the 
Sylvester equation is solved for the same matrices A and B but for several right-hand sides.

The number of computational operations for the solution of the Hermitian staircase Lyapunov equation (21) under 
the same assumptions as above ( p = 1, κ1 = n, w = n/h), is

3
2

2
1 ( 1) flam.
2

nh
h

−

For large indices of nilpotency (h = n) this volume is approximately equal to 1
2

n3 flam.
The disadvantage in the computational complexity of the proposed algorithm could be overcome in the future by 

using alternative algorithms for finding the Jordan-Schur form which are more efficient than the algorithm of Kågström 
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and Ruhe.
To summarize, the Jordan-Schur algorithm for solving Sylvester and Lyapunov equations can be considered as a 

generalization of the Bartel-Stewart algorithm which in case of distinct eigenvalues performs exactly as the Bartels-
Stewart algorithm since in such case the JordanSchur form coincides with the Schur form. The Jordan-Schur algorithm 
has some advantage over the Bartels-Stewart algorithm in cases of matrices with multiple eigenvalues participating in 
Weyr blocks of large size.

6. Numerical experiments
The numerical experiments presented in this paper are done with MATLAB®Version 9.9 (R2020b) [25] 

using IEEE double precision arithmetic with roundoff unit u ≈ 1.11 · 10−16 on a machine equipped with an Intel i7-
2670QM CPU running at 2.20 GHz and with 8 GB of RAM. The first three experiments involve solution of the 
Sylvester equation, while the last three are devoted to the solution of Lyapunov equation. The algorithms proposed are 
implemented as M-files for MATLAB®. The reduction to Jordan-Schur form is done using a part of the algorithm of 
Kågström and Ruhe [9, 10] which is translated almost literally to the MATLAB® language. Note that the information 
about the Jordan structure of the matrices A and B which is known in advance of the experiments, is not use in the 
reduction into Jordan-Schur form. The Bartels-Stewart algorithm is used as implemented by the function sylvsol from 
the Matrix Function Toolbox [26] of N. J. Higham. In the experiments with the Sylvester equation the exact solution is 
chosen as a random matrix while in the experiments with Lyapunov equation it is chosen as a matrix with unit entries. 
(The solution of the Lyapunov equation should be a Hermitian matrix.) The right hand side matrix is obtained from C = 
AX + XB in the case of Sylvester equation or C = AHX + XA in the case of Lyapunov equation.

6.1 Solving the Sylvester equation

Experiment 1 The first experiment demonstrates the algorithm performance for Sylvester equations whose 
matrices A and B are defective but non-derogatory. The matrices A and B are taken as

1 1, ,A A A B B BA Q J Q B Q J Q− −= =

where

1 1 2 1
1 1 2 1

, .
1 1
1 2

A BJ J

−   
   −   
   = =
   
   
   −   

   

The transformation matrices QA and QB are constructed as described in [27],

2 1 2 1,  ,A A B BQ H Y H Q M Y M= =

1 12 / ,  2 / ,T T
n mH I uu n M I ww m= − = −

2 22 / ,  2 / ,T T
n mH I vv n M I zz m= − = −

[1,1,1, ,1] ,  [1,1,1, ,1] ,T Tu w= … = …
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1 1[1, 1,1, , ( 1) ] ,  [1, 1,1, , ( 1) ] ,n T m Tv z− −= − … − = − … −

2 1 2 1diag(1, , , , ),  diag(1, , , , )n m
A A A A B B B BY Yσ σ σ σ σ σ− −= … = …

where H1, H2, M1, M2 are orthogonal elementary reflections. The condition numbers of QA and QB with respect to 
inversion are controlled by the variables σA and σB, respectively. The increasing of these variables allows to increase the 
condition number of the Sylvester equation thus revealing the numerical properties of the solution method.

The experiment is performed for n = 2, 4, 6, ..., 100 and m = 10. The parameters σA and σB are chosen as 1.05 and 1.2, 
respectively, so that the relative error in the solution is less than 1. With the increasing of n the condition number of the 
Sylvester equation increases.

Figure 1. Relative errors for Experiment 1

In Figure 1 we show the relative error in the computed solution X̂,

ˆ
F

F

X Xrerr
X
−

=
‖ ‖

‖ ‖

as a function of n, obtained for three algorithms - the function lyap of MATLAB, the JordanSchur algorithm and the 
function sylvsol from the Matrix Function Toolbox. The three algorithms produce solutions of comparable accuracy.

Experiment 2 This experiment shows good numerical behavior of the function sylsol and the Jordan-Scur 
algorithm, and large errors in the solution of the Sylvester equation, produced by the function lyap. In the given case

1 1, ,A A B B BA Q J Q B Q J Q− −= =

where

MATLAB function lyap
Jordan-Schur method
MFT function sylvsol

100

10-2

10-4

10-6

10-8

10-10

10-12

re
rr

0 10 20 30 40 50 60 70 80 90 100

n
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2 1
diag( , ,3,3,3), 2 ,

2
A BJ Jλ λ

− 
 = = − 
 − 

1

1 1 1 2 10
1 1 1 2

( ) , ,1 1 1
1 1

1

T
A A A AQ Y Y Y−

− − 
 − 
 = ⋅ = − −
 
 
  

2 1,B BQ H Y H=

1 3 2 / 3,  [1,1,1] ,T TH I uu u= − =

2 3  2 / 3, [1, 1,1] ,T TH I vv v= − = −

2diag(1, , ),BY σ σ=

and the eigenvalue λ is a variable parameter.

Figure 2. Relative errors for Experiment 2

In Figure 2 we show the relative errors in the solution of the Sylvester equation AX + XB = C for 50 values of λ 
from 1.0 to 1.98 obtained for three methods (for τ = 2 the equation has no solution). The Bartels-Stewart algorithm 
as implemented by the function solvsyl and the Jordan-Schur algorithm have close numerical behavior while the 

MATLAB function lyap
Jordan-Schur method
MFT function sylvsol
condsylv . eps

10-2

10-4

10-6

10-8

10-10

10-12

re
rr
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λ
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MATLAB®  function lyap produces a solution with large errors.
Experiment 3 This experiment illustrates the properties of the algorithms proposed in case of matrices with 

multiple eigenvalues and large elements of the Weyr characteristic. The matrix A and B are of even order and are taken 
as

1 1, ,A A A B B BA Q J Q B Q J Q− −= =

where the Jordan forms

1 1

1 1
,  

1 1

A BJ J

λ µ
λ µ

λ µ
λ µ

λ µ
λ µ

   
   
   
   
   = =   
   
   
   
      

 

 

consist of 2 × 2 blocks with equal eigenvalues and the nonsingular transformation matrix QA and QB are chosen as in 
Experiment 1. In the given case we take λ = 3.0 and µ = −2. The parameters controlling the conditioning of QA and 
QB are chosen σA = 1.1 and σB = 1.5, respectively. Note that the Segre characteristic of A and B associated with the 
corresponding eigenvalues are equal to (2, 2, 2, ..., 2) and the Weyr characteristics are equal to (n/2, n/2) and (m/2, m/2), 
respectively.

Figure 3. Relative errors for Experiment 3

In Figure 3 we show the relative errors in the solution of the Sylvester equation for n = 10, 20, ..., 200 and m = 20 
obtained by the function lyap, the Jordan-Schur algorithm and the function sylvsol. The three methods produce close 
results with errors increasing with n.

MATLAB function lyap
Jordan-Schur method
MFT function sylvsol
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Table 2. Execution time for Experiment 3 (transformed equations)

n sylvsol Jordan-Schur n sylvsol Jordan-Schur

10 4.3 · 10−3 1.3 · 10−3 110 1.2 · 10−2 2.6 · 10−3

20 4.4 · 10−3 1.4 · 10−3 120 1.5 · 10−2 3.8 · 10−3

30 4.1 · 10−3 1.4 · 10−3 130 1.8 · 10−2 4.3 · 10−3

40 3.2 · 10−3 9.4 · 10−4 140 1.6 · 10−2 3.9 · 10−3

50 5.7 · 10−3 1.1 · 10−3 150 1.9 · 10−2 4.8 · 10−3

60 4.9 · 10−3 2.1 · 10−3 160 2.3 · 10−2 5.7 · 10−3

70 6.1 · 10−3 2.1 · 10−3 170 1.9 · 10−2 5.4 · 10−3

80 1.2 · 10−2 2.3 · 10−3 180 2.0 · 10−2 4.2 · 10−3

90 1.0 · 10−2 2.4 · 10−3 190 2.2 · 10−2 4.4 · 10−3

100 1.5 · 10−2 2.8 · 10−3 200 3.0 · 10−2 6.0 · 10−3

In Table 2 we present the computational time for solving the Sylvester equations with matrices A and B preliminary 
transformed to Schur form (in the case of using the function sylvsol) or to Jordan-Schur form (in the case of using 
the Jordan-Schur algorithm). The data presented in the table shows that the solution of the given Sylvester equations 
in which the matrices A and B are in Jordan-Schur form is done from 3 to 5 times faster than the solution of the same 
equations in which A and B are in the Schur form. These goods results for the Jordan-Schur algorithms are due to the 
simple structure of the Jordan-Schur forms

/2 12 /2 12

/2 /2
,  n m

SA SB
n m

I M I N
J J

I I
λ λ

λ λ
   

= =   
   

in the given case, which facilities very much the solution of the equations. Note that according to the estimates, given in 
sect. 5, the solution of the full (untransformed) Sylvester equations by the Jordan-Schur algorithms requires much more 
time than the Bartels-Stewart algorithm due to the reduction to Jordan-Schur form which is significantly slower than the 
reduction to Schur form.

6.2 Solving the Lyapunov equation

Experiment 4 In this experiment the matrix A is chosen in the same way as the one shown in Experiment 1. In the 
given case the parameter σA is chosen equal to 1.15.

In Figure 4 we show the relative errors in the solution of the Lyapunov equation AH + XA = C for n = 2, 4, 6, ..., 
100 for the three methods used in the previous experiments. The three methods produce solutions of nearly the same 
accuracy.

Experiment 5 In this experiment

1 1, ( )T
A A AA QJ Q Q Y Y− −= = ⋅

where
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2 1 1 1 1 2
2 1 1 1 2

, ,1 1 1 1 1
1 1 1 1

1 1

A AJ Y

τ− − −   
   − −   
   = =− − −
   

−   
   −   

and τ is a parameter. The increasing of τ leads to an increasing of the condition number in respect to the inversion of YA 
and hence of Q.

Figure 4. Relative errors for Experiment 4

In Figure 5 we show the relative errors for 51 values of τ from 0 to 5.25 for the three methods along with the 
forward accuracy estimate condlyap · eps. All methods produce solutions whose error is less than the accuracy estimate.

Experiment 6 In the last experiment we investigate the accuracy of the solution of Lyapunov equation when an 
eigenvalue of the matrix A is approaching 0. In this case one takes

1 1, ( ) ,T
A A AA QJ Q Q Y Y− −= = ⋅

where
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and λ = −10−p where p varies from 1.0 to 7.4. With the increasing of p the conditioning of Lyapunov equation worsens 
and the relative error of the solution increases. As one can see from Figure 6, all three methods produce solutions which 
are more accurate than it is predicted by the condition number based accuracy estimate.

Figure 5. Relative errors for Experiment 5

Figure 6. Relative errors for Experiment 6
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7. Conclusions
The Jordan-Schur algorithm possesses the same accuracy and can be more efficient than the Bartels-Stwerat 

algorithm in respect of the computational work in some cases. With the coming of more reliable numerical methods for 
the reduction to Jordan-Schur form, this method may become an efficient alternative to the Bartels-Stewart algorithm. 
The proposed algorithm can be extended to the solution of the Stein equation AXB − X = C and the discrete-time 
Lyapunov equation AHXA − X = C.
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