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Abstract: This paper presents a version of the Bartels-Stewart algorithm for solving the Sylvester and Lyapunov
equations that utilizes the Jordan-Schur form of the equation matrices. The Jordan-Schur form is a type of Schur
form which contains additional information about the Jordan structure of the corresponding matrix. This information
can be used to solve more efficiently the Sylvester and Lyapunov equations in some cases. A two-level algorithm is
implemented which allows us to find directly non-scalar blocks of the solution matrix. These blocks have sizes that are
determined by the Weyr characteristics associated with the eigenvalues of the equation matrices. In the case of large
elements of the Weyr characteristics associated with multiple eigenvalues, the determination of the solution blocks
can be done more efficiently. Also, the block equations can be more appropriate in solving the Sylvester and Lyapunov
equations in the case of parallel computations. Results obtained from numerical experiments confirm that the accuracy
of the new algorithm is comparable with the accuracy of the Bartels-Stewart algorithm.
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1. Introduction

The Sylvester
AX+XB=C,AeC"" BeC™™ 1)
and Lyapunov
A"X+XA=C,4eC™" @)

matrix equations arise frequently in the solution of many scientific problems. Several methods are proposed for the
computational solution of these equations, see for an extensive bibliography of the surwey paper [1]. One of the best
available algorithms for solving these equations is the Bartels-Stewart algorithm [2] which exploits the Schur form of
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the matrices 4 and B. Using this algorithm the solution of the corresponding equation is reduced to the solution of scalar
(in the complex case) equations which are easily solved recursively. The Schur form is obtained in a numerically stable
way which ensures a robust numerical behavior of the Bartels-Stewart algorithm. Further development of the Bartels-
Stewart algorithm is the highly efficient recursive blocked algorithms for solving the Sylvester and Lyapunov equation
proposed in [3].

This paper presents a new version of the Bartels-Stewart algorithm for solving the Sylvester and Lyapunov
equations which instead of the Schur form utilizes the Jordan-Schur form of the matrices 4 and B. The Jordan-Schur
form is a type of Schur form which contains additional information about the Jordan structure of the corresponding
matrix. This information can be used to solve more efficiently (1) and (2) in some cases. A two-level algorithm is
implemented which allows us to find directly non-scalar blocks of the solution matrix. These blocks have sizes that are
determined by the Weyr characteristics associated with the eigenvalues of the matrices 4 and B. In the case of multiple
eigenvalues with large elements of the Weyr characteristics this may improve the efficiency. Also, the blocks equations
can be more appropriate for solving the Sylvester and Lyapunov equations in the case of parallel computations. Results
from numerical experiments are presented which confirm that the accuracy of the new algorithm is comparable with the
accuracy of the Bartels-Stewart algorithm.

The paper is organized as follows. The Jordan-Schur form of a matrix is introduced briefly in section 2. A new
algorithm for solving the Sylvester equation is presented in section 3 and the modification of this algorithm for solving
the Lyapunov equation is described in section 4. The numerical properties of the algorithm are discussed in section 5.
Several numerical experiments illustrating the behavior of the proposed algorithm are presented in section 6 and some
conclusions are drawn in section 7.

Notation will be the following. C is the set of complex numbers; A" is the transpose of 4; 4” = A" is the Hermitian
transpose (the complex conjugate transpose) of 4; 0,.,, is the zero n x m matrix; In is the identity matrix of size n x n;
A(A) is the ith eigenvalue of 4; ||4||, and ||4]|- are the spectral norm and the Frobenius norm of A4, respectively; null(4)
is the null space of 4; dim(.X') is the dimension of the subspace X’; A4 is a perturbation of 4; cond(4) is the condition
number of 4 in respect to the inversion; cond,,, and cond,,, are the condition numbers of the Sylvester and Lyapunov
equations, respectively; fI(.) is an expression evaluated in floating point arithmetic; vec(4) is an n - m vector obtained
by stacking the columns of the n x m matrix 4 = [a,, a,, ..., a,], vec(4) = [a}, a;, ..., a, ]', A ® B is the Kronecker
product of 4 and B and =: denotes equal by definition. The lower case italics d, e, f, g, i, j, k, £, p, q are used to
represent integer variables.

2. The Jordan-Schur form

Assume that the complex n x n matrix 4 has p distinct eigenvalues 4,, i = 1, 2, ..., p each with a multiplicity «,, i = 1,
2, ..., p. Then the Jordan-Schur form Js of 4 [4, 5], [6, Sect. 2.5], is a block-triangular matrix that is unitarily similar to A4,

S(Wb)ﬂ) TIZ 7;17
S(w,, T,
Jo=U"AU = (2. 42) . o, 3)
S T, .
S(w,.4,)

where the diagonal blocks S(w;, 4,), i = 1, 2, ..., p have the form

AL, NP .. NO NG
My, N;f;,i_l N;{;i
S(w,, A,) = : P lecr, )
lilwi,h,-—l N}(’;)_l5hi
i Al |
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for some 4, > 1. The sequence of positive numbers w;;, w,, ..., w,, is called the Weyr characteristic of 4 associated with
A; which satisfy

Wi 2 Wy 2.2 W, Zw».=lc, (%)

fori=1, 2, ..., p, for more details see [7, p. 170], [8]. Furthermore, we write w, = w;,(4, 4,) = (W1, Wiy, ..., Wi ).

The Jordan-Schur form is actually a Schur form with an additional structure determined by the Weyr characteristics.
The Weyr characteristics are closely connected with the Jordan structure of the matrix. In fact, the Weyr characteristic
w;(4, 4;) determines in a unique way the Segre characteristic

§; =S (A &) = (S35 Sai0 000 Sy i )5 S1y 289 2028, 4, Zs.. =K, (6)

associated with 1, whose elements are equal to the sizes of the blocks in the Jordan form of 4 having 4; as an eigenvalue.
The Weyr characteristic w,(4, ;) and the Segre characteristic s,(4, ;) associated with A, are conjugate partitions of «; [7, p.
170] and can be found from each other by the following rule:

The element s;, of s,(4, ;) is equal to the number of the elements of w;(4, ;) that are greater than j and vice versa.

Hence the largest element sy, (the size of the largest Jordan block) of the Segre characteristic is equal to the number
h; of the elements of the Weyr characteristic. In turn, the first element w;, of the Weyr characteristic (the geometric
multiplicity of the eigenvalue /,) is equal to the number g, of the elements of Segre characteristic (the number of Jordan
blocks) associated with /.. Note that the number #, is the smallest positive integer for which

dim(null((S(w;. 4,) = 41,)")) =&,

and thus is the index of nilpotence of S(w,, 4,) — 4,1,

The Jordan-Schur form is an intermediate step in the reduction of the matrix 4 to the numerical Jordan form. In
particular, this form can be found by a slight modification of the algorithm of Kégstrom and Ruhe [9, 10] for reducing 4
to Jordan form using the following steps [11]:

1. Reduction of 4 to upper triangular (Schur) form 7= 0”4 U using unitary similarity transformations. This is done
by the well known QR algorithm [12, Ch. 7], [13, Ch. 2].

2. Grouping the close eigenvalues. At this step, the algorithm obtains an upper triangular form with eigenvalues,
sorted such that close eigenvalues appear in adjacent positions. This is done by a sequence of unitary transformations
(complex plane rotations), each of them exchanging two adjacent diagonal elements [14].

3. Clustering of multiple eigenvalues in blocks. At this step, the close eigenvalues are grouped in p clusters
corresponding to numerically multiple eigenvalues. This is done by using Gershgorin heuristic to construct a diagonal
similarity transformation which isolates groups of intersecting discs containing eigenvalues of the matrix 7'+ AT, ||AT||
< ein where ein is an appropriate tolerance reflecting the uncertainty in 4. A sophisticated algorithm for this aim is
described in [4]. As a result, the upper triangular form of 4 takes the block-triangular form

Tpp

where each diagonal block T, ¢ C""* corresponds to a distinct numerically multiple eigenvalue 4; with multiplicity ..
4. Transforming the diagonal blocks to staircase form. At this step each block T; — 4,1, is reduced by using unitary
similarity transformations into the so called staircase form
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0 Ny NS oo ND N
0 0 N .. NO . ND
0 0 0 : :
S(Wi,ﬂi)_ﬂvi[,(i = ) o s
0 0 0 st =2,51; =1 S1i =281
0 0 0 .. 0 N9 o
S1i—L:S1;
0o 0 0 0 0 |

where N e C"**"" f=1,2,..s,,— 1,£=2,3, ... s, The reduction of each upper triangular block 7}, — A, to staircase
form is done in 4, = s, steps, where the index of nilpotency #; of the block is not known a priori and is found during the
reduction process. The reduction to staircase form represents a consecutive deflation of null spaces done with the aid of
the singular value decomposition. Determining the size of a null space requires a decision about the numerical rank of
the corresponding matrix which is done by using a tolerance fol. A detailed description of the reduction can be found in [4,
8].

As a result of this step, one obtains the matrix S(w;, 4,) (4), so that the Jordan structure of the block T is
determined.

In this paper we use only the complex Jordan-Schur forms of 4 and B.

Example 1 Consider an 8th order matrix 4 with a Jordan form

J, =diag A4 , A

and eigenvalue multiplicities x, = 3 and x, = 5, respectively. The Weyr characteristic of 4 associated with 4, is w,(4, 4,)
= (2, 1) and the Weyr characteristic associated with 4, is w,(4, 4,) = (2, 2, 1). Hence the Jordan-Schur form of 4 is

S(w, T,
Jg, = U" AU :{ (w ﬂq) I S(wlziz)}.
2
The diagonal blocks of the Jordan-Schur form look as follows
(4, x x| x]
A X A | x X
Sw,4)= A | x |eCFL S(wy,A,) = A X |eCrr* 2,
A4 A | x
I A |

where (x) denotes a nonzero element. The 3 x 5 off-diagonal block 7', has non-zero elements.

The reduction to Jordan-Schur form by the modified algorithm of Kagstrom and Ruhe is more reliable than the
reduction to Jordan form. This follows from the fact that the computation of the Weyr and Jordan forms at the final
step of the full algorithm requires using of additional non-unitary transformations which can be ill-conditioned in
some cases. The numerical reduction to Jordan-Schur form is backward stable in the sense that the computed form is
exact for a slightly perturbed matrix 4 + d4. The weak point of this reduction is the determination of the Weyr (and
consequently the Segre) characteristics which requires accurate rank determination in presence of rounding errors. This
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may be a difficult task for matrices with ill-conditioned eigensystems and may lead to errors in the determination of the
characteristics. The choice of the parameters ein and fo/ is discussed latter on in sect. 5.

In cases of distinct eigenvalues the Jordan-Schur form coincides with the Schur form and the Jordan-Schur
algorithm do not have some advantages over the Schur algorithm for solving Sylvester and Lyapunov equations.

3 Solution of the Sylvester equation
3.1 Preliminary transformations

Let the matrix 4 have p distinct eigenvalues 4,, 4,, ..., 4, with the respective multiplicities x,, x,, ..., k, and B has ¢
distinct eigenvalues u,, u,, ..., #, with multiplicities v, v,, ..., v,. Denote the Weyr characteristic of 4 associated with 4,
by

ha;
wa(A4, ;) = (Way , Way, ..., Wa; . ), Wy 2 Way 2.2 Wa .., Zwaik =K;
k=1

and the Weyr characteristic of B associated with u; by

hb ;i

Wh(B, p1;) = (Whyy, Whys .., Wby ), Whyy 2 Whyy 22 why D wby, = v
Too=l

Reduce the matrices 4 and B to the Jordan-Schur form

S(way,, A) R, R,
S(wa,, R
JsA=U"AU = (waz, ) N o lecm, (7
S(wa,,4,)
S(why, ) T, T,
S(wb,, T,
Jgp =VBYV = (02, ) N oo jecmm, ®)
S(wb,.11,)
where the diagonal blocks of J;, and J; are given by
/Ii 1 waj;| M l(é) M Ml(,ih)a,-
Zilwa- M;’Z i KiXK;
S(wa;, 4,) = e e CFT L i=1,2,..,p 9)
Al
7 Wa; ha;

and
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wla, NP .. N
I, .. NV
SOub, 1) = I ey B M (10
i 'ujlwbj,hbj ]

Note that the matrices S(wa;, ;) — 4,1, and S(wb;, ;) — ,ujl‘,j are in staircase form with indices of nilpotence 4a, and
hb,, respectively.

As it is well known [15, Ch. VIII], the Sylvester equation (1) has a unique solution for X if and only if

A tu;# 0,i=L2,...,p,j=L2,...,q.
Setting
c=uv"cv, x=U"xv
one obtains the transformed Sylvester equation
Jo X+X-Jg=C. (11)

Let the partition of the matrices C and X be conformal to the partition of Jg, and Jg,

C12

C11 1q lg
- G Gy ... C .ol Xy Xy o X
c= 1 R M x=|TH TR TH (12)
C, C, ... C, X, X, o X,
Then (11) can be written as a set of block Sylvester equations
P i
S(wa;, 2) X, +X,;S(wh, 1) =C;— D Ry Xy —> X, T, (13)
d=i+1 e=1
1= 1527" > D>
J=12,....q

Due to the specific structure of the matrices S(wa,, 4,) and S(wb,, u;), equation (13) will be called staircase Sylvester
equation. Note that the dimensions of S(wa,, 4,) and S(wb,, u;) can be arbitrary depending on the multiplicities of 4, and
Hj-

Thus the solution of (1) is reduced to the solution of p - ¢ staircase Sylvester equations (13). Since the matrices
S(wa;, 4;) and S(wb;, A) are in upper triangular form, these equations can be solved by the Bartels-Stewart algorithm.
However, as shown in the next section, the solution of (13) can be done more efficiently if one uses the staircase
structure of S(wa,, 4,) and S(wb;, 4;).
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3.2 Solution of staircase Sylvester equations

Consider the staircase Sylvester equation
S, Y+Y-S,=F

where

/uwal M, ... My, ul,, Ny
Al . M 1
SA _ way . ?,ha c (CKXK, SB _ H why
llwaha

(14)
Nl,hb
N.
2 e, (15)
ﬂ]wbhb

The solution of (14) can be done exploiting the structure of the matrices S, and S, revealed by (15). Partition the x

x v matrices /" and Y as

Fil Piz cee Fi,hb Yll Y12

F F . E Y, Y,
F= :21 :22 N 2:,hb , Y = ?1 ?2

Fha,l F'ha,Z cee Fha,hb Yha,l Y;m,Z

one obtains from (14) the equation

AYy +uly, =F, - ZMk/ Z kg gf’

f=i+l
k=12,...,ha,
(=1,2,...,hb

Note the similarity between equations (17) and (13).
It follows from (17) that

YN A+ ( Z Mkf It Z kg ng’

f=k+1
k=12,...,ha,
(=12,....hb.

Equation (18) allows to find directly the k¢th block of the solution matrix Y.
Equations (18) are evaluated recursively for

Yha,l’Yha—l,l""’Yll’Yha,Z"'"YIZ""’Yha,hb""’Yl,hb'
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~

2;hb . (16)

Yha,hb

)

(18)
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The staircase Sylvester equation (18) is solved by the Algorithm 1.

Algorithm 1 Solution of a staircase Sylvester equation
Solution of the Sylvester equation S, - Y+ Y - S, = F where
S,=M+ M, S;=ul+ N and the matrices M and N are
in staircase form with Weyr characteristics
wa(S,, ) = (wa,, wa,, ..., wa,,) and
wb(Sy, 1) = (wh,, wh,, ..., wh,,), respectively.
function Y = sylv_stairs(S,, S;, F)
Input: Matrices S, € C*"*and S, € C" with strictly
upper triangular parts in staircase form
Matrix F € C**
Output: ¥ € C*
for (=1:hb
fork=ha:-1:1
Set W= 0,4, v
if k+1<ha
forf=k+1:ha
W=W+M,Y,
end
end
SetZ=0
if¢>1
forg=1:0-1
Z=Z+Y, N,
end
end
ifA+tu#0
Yo=Fy=W=2)/(+u)
else
Error: The equation has no solution
end
end
end

waj.,why

Algorithm 2 Solution of the Sylvester equation by the Jordan-Schur method

Solution of the Sylvester equation 4AX + XB=C
function X = sylv_jsf(4, B, C)
Input: Matrices 4 € C"", B e C""and C € C"™
Output: X € C"™"
Reduce 4 to the Jordan-Schur form J;, = U”AU with p blocks
on the diagonal each having eigenvalue 4, with multiplicity «;,
i=1,2,..,p
Reduce B to the Jordan-Schur form Jg, = VAV with g blocks
on the diagonal each having eigenvalue u; with multiplicity v;,
j=12,..,q
Transform C — U"CV
forj=1:q
fori=p:—-1:1
Set W=0,,,
ifi <p
ford=i+1:p
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W=W+R,X,
end
end
SetZ=0,,,,
if j>1
fore=1:j—-1
Z=7Z+X,T,
end
end
Solve the staircase Sylvester equation
SAii)(ij + ‘XvijSBjj = Cij -w-Z
using Algorithm 1
end
end
Transform back X — UXV"

Algorithm 1 resembles the back substitution in solving systems of linear systems of equations and can be
considered as a version of the Bartels-Stewart algorithm [2] for solving the Sylvester equation. There is, however,
one significant difference - the block Y,, of the solution Y is of dimension wa, x wb,. In case of multiple eigenvalues
with large values of the elements wa, and wb, of the corresponding Weyr characteristics, the solution of the Sylvester
equation by usingthe Jordan-Schur algorithm can be more efficient. If the elements of the Weyr characteristics are equal
to one (this is the case of non-derogatory matrices), then the Jordan-Schur algorithm coincides with the Bartels-Stewart
algorithm.

Equations (13) and (18) together constitute a two level algorithm for solving the Sylvester equation.

Using Algorithm 1, the equations (13) are solved recursively for

X

pl>

Xy s Xips X pyseees Xigseo s X s Xy
The corresponding computations are carried out by Algorithm 2.
Example 2 Consider the solution of a Sylvester equation with the matrix 4 given in Example 1 and a 5th order

matrix B with diagonal Jordan form

Sy =diag (s, ), by 5 115), A+ 4 # 0

whose eigenvalue multiplicities are v, = 2 and v, = 3, respectively. Since the Weyr characteristics of B associated with
u, and u, are wh,(B, u,) = (2) and wbh,(B, u,) = (3), respectively, the blocks of the solution matrix are obtained in the
following order

wby =2 wb,, =3
wa,, =2[ 5 10 ]
way, =1 4 9
U"xyv= wa, =2 3 8 ,
wa,, =2 2 7
way =1| 1 6 i
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where the double lines correspond to the partition of blocks with sizes equal to the eigenvalue multiplicities, while
the single lines correspond to the partition of blocks with sizes determined by the elements of the corresponding Weyr
characteristics. Note that there are two blocks with dimension 1 x 2, two blocks with dimension 1 x 3 and three blocks
with dimension 2 x 3. Thus, instead of solving 8 - 5 = 40 scalar equations as in the Bartels-Stewart algorithm, it is
necessary to solve 7 block matrix equations.

It should be pointed out that the staircase Sylvester equations have independent application in solving problems
involving the Jordan-Schur form, for instance in computing the matrix exponential [16].

4. Solution of the Lyapunov equation

The solution of the Lyapunov equation (2) is slightly more complicated than the solution of the Sylvester equation.
In the given case

Sy Ry . R,
S R
Jg =U"AU = 2 7 lecm,
SApp

B=A,Jy=J,, V= U and (13) obtains the form

P J-1
SuiXy+ XS, =Cy— Y RyX,—> X,.R,,
d=i+1 e=1
_ vH
X, =X, (19)
j:1925"’ﬂp’
i=j,j+1...,p.

In (19) one exploits the Hermitian property of the solution X. If i = j one obtains the staircase Lyapunov equation
4 i—1
SZiXii + XiiSAii = Cii - Z RZXdi _ZXieRei’ (20)
d=i+1 e=1

i=12,..,p.

Equation (20) has a Hermitian solution for X, i.e., X;' = X,. In fact, since X"’ = X it follows that X, = X/, X, = X/

and since C,' = C,, it is possible to show that the right hand side of (20) is Hermitian. This circumstance can be used to
solve (20) more efficiently than the non-Hermitian (i # /) equation (19).
Thus the solution of (19) should be done by two different algorithms for i = j and for i #;.

4.1 Solution of Hermitian staircase Lyapunov equations

Consider the staircase Lyapunov equation
S"Y+YS=F (1)
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where

A, M, .. M,
. Al M,,
al,

and F'=F,Y"=Y.
Equation (21) has a unique solution for Y if and only if 1 # 0.
Representing the lower block-triangular parts of /' and Y as

8 h
F21 F;2 Y21 Y22
By Fioooo Byl LY Y

one obtains from (21) that

For k= { it is fulfilled that Y = Y,,.
Algorithm 3 Solution of a staircase Lyapunov equation
Solution of the Lyapunov equation S”Y + ¥S = F where
S'= Al + M and the matrix M is in staircase form
with a Weyr characteristic w(S, 1) = (W, W, ..., w,).
function Y = lyap_stairs(S, F)
Input: Matrix S € C** with strictly

upper triangular part in staircase form

Matrix F € C**, F'=F
Output: Y € C**, Y=Y

for{=1:h
fork=10:h
Set W=0,, .,
ifk>1
forf=1:k—-1
W=Ww+M;Y,
end
end
SetZ=0

Wi, W(
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if(>1

forg=1:0-1
Z=7Z+Y M,
end
end
if1#0

Y=Y, k[Z
end
else
Error: The equation has no solution
end
end
end

Algorithm 4 Solution of a staircase Sylvester equation with a transposed matrix
Solution of the Sylvester equation S; - Y+ Y - S, = F where

S,=M+ M, S;=ul+ N and the matrices M and N are

in staircase form with Weyr characteristics

wa(S,, 1) = (wa,, wa,, ..., wa,,) and

wb(Sy, 1) = (Wb,, wh,, ..., wb,,), respectively.

function Y = sylv_transp(S,, S, F)

Input: Matrices S, € C** and SB € C"™" with strictly

upper triangular parts in staircase form

Y= Fy—W—=2)/(27)
ifk#¢

Matrix F € C*

Output: Y € C*

for (=1:hb
fork=1:ha
Set W= 0,400
ifk>1
for f=1:k—1

end
Set Z= 0,40
if(>1
forg=1:/0-1
Z=7Z+Y Ny
end
end
ifA+u#0
Y= = W—Z)/(h+ )
else
Error: The equation has no solution
end
end
end

Algorithm 5 Solution of the Lyapunov equation by the Jordan-Schur method
Solution of the Lyapunov equation 4”X + X4 = C

W=W+MY,
end

function X = lyap_jsf(4, C)

Contemporary Mathematics

484 | P. H. Petkov



Input: Matrices 4 € C""and C € C"",C"=C

Output: X € C"", X" =X

Reduce 4 to the Jordan-Schur form J;, = U”4AU with p blocks
on the diagonal each having eigenvalue A, with multiplicity «;,

i=1,2,..,p
Transform C — U"CU
forj=1:p
fori=j:p
Set W=0,,,
ifi<p
ford=i+1:p
W=W+RjX,
end
end
SetZ=0,,,
if j>1
fore=1:j—-1
Z=7Z+X.R,
end
end
ifi=j

Solve the staircase Lyapunov equation
Silii)(ii XS =Ci—W—Z
using Algorithm 3
else
Solve the staircase Sylvester equation
SiX;+X;8;,=C,—W—Z

g
using Algorithm 4
X = XUH
end
end
end

Transform back X — UXU"

Equations (23) are evaluated consecutively for the subdiagonal blocks
A AT 10 AN AN

and the superdiagonal blocks are found by Hermitian transposition of the corresponding subdiagonal blocks.
The staircase Lyapunov equation (23) is solved by the Algorithm 3.

4.2 Solution of the equations for off-diagonal blocks

The off-diagonal (i # ) equations (20) have the form of a Sylvester equation with a transposed matrix A4,
St Y+Y-S,=F (24)

where S, and Sj are the same as in (15). Partitioning F and Y as in (16), the equation (24) is represented as
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k-1

-1
AYy +uYy, :Fkﬂ_ZMfIszZ_ZYkgMgw (25)
= |

Note that in the given case both 4 and u are eigenvalues of 4.
As aresult from (25) one obtains

1 ha /-1
Yg=——|Fy~— Z M;Yﬂ_zYngg@ > (26)
A+ u =kt o=l
k=12,....,ha
{=1,2,....hb,

Equations (26) are similar to equations (17) but are solved in the order

Yll’Y21""’Yha,l’YIZ’YZZ""’Yha,Z""’Yl,hb’YZ,hb""’Yha,hb'

Equations (26) are solved by Algorithm 4.
Using Algorithms 3 and 4, the Lyapunov equation can be solved by the Algorithm 5.

5. Numerical considerations

The basic steps of the algorithm proposed are the reduction to Jordan-Schur form and the solution of the
transformed Sylvester or Lyapunov equation.

Consider first the reduction to Jordan-Schur form by the algorithm of Kagstrom and Ruhe. As mentioned earlier,
this reduction is numerically stable due to the implementation of unitary transformations. However, it should be
emphasized that the numerical stability doesn’t guarantee that the clustering of the numerically multiple eigenvalues
and the determination of the sizes of the Jordan blocks is always done in the best way. The extensive experiments
with the algorithm of Kagstrom and Ruhe show that it works reliably except in case of very ill-conditioned system of
eigenvectors and principal vectors when any clustering method will have serious difficulties in grouping the eigenvalues.
Such difficulties manifest themselves by the large backward error ||UJ,U" — A||/||4||, and can be removed by adjusting
properly the tolerances ein and tol. The tolerances ein and tol play the role of regularization parameters which allow
for achieving a Jordan structure by the use of well-conditioned similarity transformation. The tolerance ein affects the
clustering of the eigenvalues in groups of numerically multiple eigenvalues while the tolerance tol in its turn affects
the determination of the dimensions of the null spaces and consequently the Weyr characteristics of the associated
eigenvalues. The choice of appropriate tolerances can be done so that to minimize the distance between 4, = U -J, -U”
and 4 or to choose a specific Jordan structure.

The following example illustrates the influence of ein and to/ on the numerical determination of the structure of
Jordan-Schur form.

Example 3 Consider the matrix
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[—111 —240 -572 1752 -4272]
—-149 -335 —778 2340 -5688
A=| 132 288 657 —1980 4744
-38 -84 201 613 -1504
22 -48 -112 340 -823]

which is obtained as A = QJQ ', where

and

56 187 64 -8
109 261 90 -16
0=|-100 -234 -80 14 -5|.
20 64 22 -3 2
14 38 13 -2

The matrix of the similarity transformation into Jordan form is relatively ill-conditioned with condition number
cond(Q) = 1.34 - 10°. The Segre characteristics associated with the eigenvalues A, = 1 and 4, = —1 are s, = (2, 1) and s, =
(2), respectively.

Table 1. Jordan-Schur forms of 4 computed for different tolerances

k ein, tol Computed Segre charactersitics dist (/f wA)
1 107 @, 1,2 7.37-107"°
2 10°* @, 1) 533107
3 107 (3,2) 529107
4 10° G.L1D 3.07-10°
5 10° @2, 1,1,1) 3.70- 107"
6 1 (1,1,1,1,1) 579 107"

In Table 1 we give the Segre characteristics of the six matrices 4, = UJU" corresponding to the Jordan-Schur
forms Jg, k=1, 2, ..., 6 computed for different tolerances ein and tol. The last column contains the relative distances

14— Al

dist(4,, 4) = 7 E k=12,..6
F

between the matrices 4, and the original matrix 4 in the space C*. The right Segre characteristics are determined for
tolerances ein = tol = 10”°. In case of well-conditioned eigensystem one can use tolerances which are of order n’u|[4 |,
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where u is the roundoff unit of the used floating point arithmetic.

It should be emphasized that the using of the algorithm of Kégstrom and Ruhe for reducing the equation matrices
into Jordan-Schur form is not indispensable - for this purpose it is also possible to use other algorithms. For instance,
an alternative method for reduction to JordanSchur form is to implement the function guptri from MCS Toolbox [17]
which determines automatically appropriate tolerances ein and fol. This function is based on the Generalized UPper
TRIangular (GUPTRI) algorithm of Demmel and Kégstrom [18, 19] intended for determining the Kronecker structure
of matrix pencils. (The Kronecker structure represents a generalization of the Jordan structure of a matrix to the case of
two matrices).

The accuracy of the solution of the transformed Sylvester and Lyapunov equations depends on two factors: the
conditioning of the corresponding equation and the numerical properties of the method used to obtain the solution.
Consider in brief the influence of these factors on the solution of Sylvester and Lyapunov equations obtained by the
Jordan-Schur method.

The sensitivity of the solution of the Sylvester equation to perturbations in the data is analyzed in [20], see also [21,
Ch. 16]. Let the Sylvester equation be

AX+XB=C (27)

where 4 € C"", B e C"",Ce C"" and let Q =1, ® 4 + B" ® I,C""". Then the relative change ||[AX]||./|lX]|r in the
solution of this equation due to small relative perturbations AA4/|| 4||, AB/||B||» and AC/||C]|s, is given by [21, Ch. 16]

I AX1l,. /1 X1l < Beond, (28)
where

cond,,

=l [H Al (X" ®1),I Bll.(I,, ® X),~| CIIFIW}IWH Xl
is the relative condition number of the Sylvester equation and

n = max{ll Adll, /Il All Il ABIl- /Il Bll, Il ACI /N Cll}

is the maximum relative perturbation in the data. The size of the condition number is closely related to the separation of
the matrices 4 and —B [22],

| AX + XBIl,.

sep(4,—B) =min X
F

If this separation is small, then the condition number of the Sylvester equation is large which follows from the fact

that
1 Q7'll, =1/sep(4,-B).
In respect to the Lyapunov equation one has the similar bound
Il AXII A X < x/gcondlyapn, (29)
where
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cond,,,

=1 [I Al (1, ® X)+ (X @ 1)) €l T, I/ X,
is the relative condition number of the Lyapunov equation,
Q=1,04"+4"®1,
IT is the vec-permutation matrix defined by the property vec(4”) = TIvec(4) [23, p. 21] and
n = max{ll Adll /Il Al ACl. /Il Cll,.}.

The second factor influencing the solution accuracy of Sylvester and Lyapunov equations is the numerical behavior
of the Jordan-Schur algorithm. Since the Jordan-Schur form is a type of Schur form and the equations solved are similar
to the equations solved in the Bartels-Stewart algorithm, both methods have similar numerical properties. According to
the analysis done in [20], [21, Ch. 16], the relative residual corresponding to the computed solution,

| C—(4X + XB),
(Il Al +1 Bl X1,

is always small and is of order u. Nevertheless, from the analysis follows that the Jordan-Schur algorithm, like the
Bartels-Stewart algorithm in its standard implementation, is only conditionally backward stable. This means that the
backward error corresponding to the computed solution X can be large in some cases determining a large forward error
in the solution.

An estimate close to the forward error of the solution can be obtained by the practical error bound proposed in [21,
Ch. 16]. Let the computed residual of a computed solution be represented as

R=fI(C-(fI(AX + fI(XB))) = R+AR,

|AR|<u|C|+y,|A| X |+y; | X | BI=R,,
where
v, =m+2u/(1-(m+2u), y, =(m+2)u/(1-(m+2)u)

and u is the roundoff unit.
Then the relative error in the computed solution satisfies [21, Eq. (16.29)]

X —xi_lhe™( vec(R) | +vec(R,))
Xl | X1

) (30)

where ||.X|| := max, |x;|.

To avoid the use of large matrices in computing the condition numbers cond
use the technique described in [21, Sect. 16.4].

The numerical experiments presented in the next section confirm that the Jordan-Schur algorithm has an accuracy
which is close to the accuracy of the Bartels-Stewart algorithm.

Consider now the computational work associated with the Jordan-Schur algorithm. Since in both Bartels-Stewart

and Jordan-Schur algorithms the first step is the reduction of the matrices 4 and B to Schur form, it is appropriate to

cond,,,, and the bound (30), one can

sylvs
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consider only the volume of computational work done in addition to the reduction into Schur form. For the Bartels-
Stewart algorithm, the solution of the Sylvester equation with matrices in Schur form requires

%[n(n —Dm+m(m —l)n]

floating point multiplications and additions or flam as called in [24, Ch. 2], where 1 flam is 1 floating point
multiplication and 1 floating point addition. For the Jordan-Schur algorithm, under the assumptions of matrices with
one eigenvalue (p = 1, ¥, = n; ¢ = 1, v, = m) and equal elements of the Weyr characteristics (wa, = n/ha, wb, = m/hb), the
necessary computational work for solving the staircase Sylvester equation (14) is

2 2
l{(ha—l) n (kb 1) }ﬂam.
2 ha hb

For large indices of nilpotency (ha = n, hb = m) where the elements of the Weyr characteristics are equal to one (this
is the case of non-derogatory but defective matrices with one Jordan block), this volume of work is exactly the same as
for Bartels-Stewart algorithm. However, with the decreasing of the indices of nilpotency the necessary computational
work tends to zero while for the Bartels-Stewart algorithm it remains the same. For the reduction to Jordan-Schur form
one should take also into account the sorting of the eigenvalues, the clustering of multiple eigenvalues and the reduction
of the diagonal blocks to staircase form of the matrices 4 and B which require at most

1 1
6n° + 2§n3ha +6m’+ 2§m3hb flam.
For ha = n, hb = m this volume of work is of order
2%;14 +6n° + 2§m4 +6m® flam.

and for ha = 1, hb = 1 (derogatory but non-defective matrices with scalar Jordan blocks) it is approximately

81}13 + 81m3 flam.
3 3

Thus the Jordan-Schur algorithm can be competitive with the Bartels-Stewart algorithm when the Jordan-Schur
forms of 4 and B are already available from other computations and the indices of nilpotency (i.e., the sizes of the
Jordan blocks) of these matrices are small. Also, the Jordan-Schur algorithm can be more efficient in the case when the
Sylvester equation is solved for the same matrices 4 and B but for several right-hand sides.

The number of computational operations for the solution of the Hermitian staircase Lyapunov equation (21) under
the same assumptions as above (p = 1, k, = n, w=n/h), is

1 ., n’
—(h™ =1)— flam.
2( )h2

For large indices of nilpotency (4 = n) this volume is approximately equal to % ' flam.

The disadvantage in the computational complexity of the proposed algorithm could be overcome in the future by
using alternative algorithms for finding the Jordan-Schur form which are more efficient than the algorithm of Kagstrom

Contemporary Mathematics 490 | P. H. Petkov



and Ruhe.

To summarize, the Jordan-Schur algorithm for solving Sylvester and Lyapunov equations can be considered as a
generalization of the Bartel-Stewart algorithm which in case of distinct eigenvalues performs exactly as the Bartels-
Stewart algorithm since in such case the JordanSchur form coincides with the Schur form. The Jordan-Schur algorithm
has some advantage over the Bartels-Stewart algorithm in cases of matrices with multiple eigenvalues participating in
Weyr blocks of large size.

6. Numerical experiments

The numerical experiments presented in this paper are done with MATLAB® Version 9.9 (R2020b) [25]
using IEEE double precision arithmetic with roundoff unit u = 1.11 - 10 '° on a machine equipped with an Intel i7-
2670QM CPU running at 2.20 GHz and with 8 GB of RAM. The first three experiments involve solution of the
Sylvester equation, while the last three are devoted to the solution of Lyapunov equation. The algorithms proposed are
implemented as M-files for MATLAB®. The reduction to Jordan-Schur form is done using a part of the algorithm of
Kagstrom and Ruhe [9, 10] which is translated almost literally to the MATLAB® language. Note that the information
about the Jordan structure of the matrices 4 and B which is known in advance of the experiments, is not use in the
reduction into Jordan-Schur form. The Bartels-Stewart algorithm is used as implemented by the function sylvsol from
the Matrix Function Toolbox [26] of N. J. Higham. In the experiments with the Sylvester equation the exact solution is
chosen as a random matrix while in the experiments with Lyapunov equation it is chosen as a matrix with unit entries.
(The solution of the Lyapunov equation should be a Hermitian matrix.) The right hand side matrix is obtained from C =
AX + XB in the case of Sylvester equation or C = 4”X + X4 in the case of Lyapunov equation.

6.1 Solving the Sylvester equation

Experiment 1 The first experiment demonstrates the algorithm performance for Sylvester equations whose
matrices 4 and B are defective but non-derogatory. The matrices 4 and B are taken as

A:QAJA ZlﬁB:QBJB 1;1:

where

The transformation matrices O, and O, are constructed as described in [27],

0,=H,Y,H,, Op =M,V;M,,
H =1,-2uu’ /n, M, =1,-2ww" /m,
H,=1, 2w’ /n, M,=1, —2zz" I'm,

u=[LLL...1]", w=[L11L,...,1]",
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v=[L-LLo D)7 2= [L-L L, DT

Y, =diag(l,0,,02,...,6""), Y, =diag(,04,05,....,05 ")

where H,, H,, M,, M, are orthogonal elementary reflections. The condition numbers of O, and O, with respect to
inversion are controlled by the variables g, and g,, respectively. The increasing of these variables allows to increase the
condition number of the Sylvester equation thus revealing the numerical properties of the solution method.

The experiment is performed for n =2, 4, 6, ..., 100 and m = 10. The parameters o, and o, are chosen as 1.05 and 1.2,
respectively, so that the relative error in the solution is less than 1. With the increasing of » the condition number of the
Sylvester equation increases.

1()0 T T T T T T T T T
m—f—=MATLAB function lyap
= Jordan-Schur method [
102 £ |=====MFT function sylvsol A v g
o ‘\\ ¥
\Yi
4L ’ ]
10 / ’."
g 10°F 3
=1
10*F 3
‘
o
10—10 - -
1 0-] 2 1 1 1 1 1 1 1 1 1

0 10 20 30 40 50 60 70 80 90 100
n

Figure 1. Relative errors for Experiment 1

In Figure 1 we show the relative error in the computed solution X,

X xl,
I x1l,

as a function of n, obtained for three algorithms - the function lyap of MATLAB, the JordanSchur algorithm and the

function sylvsol from the Matrix Function Toolbox. The three algorithms produce solutions of comparable accuracy.
Experiment 2 This experiment shows good numerical behavior of the function sylsol and the Jordan-Scur

algorithm, and large errors in the solution of the Sylvester equation, produced by the function lyap. In the given case

A= QAJAQ7] , B= QBJBQ;,

where
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J,=diag(,4,3.33), Jy=| -2 |
)
1 -1 1 =2 10
-1 12
0, =Y, ()", ¥, = bob-n,
11
(- 1_
Op = H,Y3H,,

H =1,-2uu" /3, u=[1,1,1]",
H,=1-2w"/3, v=[1,-111",

Y, =diag(l, o, )

and the eigenvalue / is a variable parameter.

107 . . . . . . .
=== MATLAB function lyap
e Jordan-Schur method
=====MFT function sylvsol
10* F =—g=—=cond,y,, . eps

N
T

rerr

10°*

10—10 1

10—12 1 1 1 1

Figure 2. Relative errors for Experiment 2

In Figure 2 we show the relative errors in the solution of the Sylvester equation AX + XB = C for 50 values of 4
from 1.0 to 1.98 obtained for three methods (for 7 = 2 the equation has no solution). The Bartels-Stewart algorithm
as implemented by the function solvsyl and the Jordan-Schur algorithm have close numerical behavior while the
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MATLAB® function lyap produces a solution with large errors.

Experiment 3 This experiment illustrates the properties of the algorithms proposed in case of matrices with
multiple eigenvalues and large elements of the Weyr characteristic. The matrix 4 and B are of even order and are taken

as

where the Jordan forms

A= QAJAQ,?» B= QBJBQ;,

u o1
U

consist of 2 x 2 blocks with equal eigenvalues and the nonsingular transformation matrix Q, and Oy are chosen as in
Experiment 1. In the given case we take 4 = 3.0 and ¢ = —2. The parameters controlling the conditioning of O, and
Oy are chosen o, = 1.1 and o, = 1.5, respectively. Note that the Segre characteristic of 4 and B associated with the
corresponding eigenvalues are equal to (2, 2, 2, ..., 2) and the Weyr characteristics are equal to (n/2, n/2) and (m/2, m/2),

respectively.

rerr

10°

107

10*

107

10°*

10

10"

—f—

MATLAB function lyap
Jordan-Schur method
MFT function sylvsol

100

120 140 160 180 200

Figure 3. Relative errors for Experiment 3

In Figure 3 we show the relative errors in the solution of the Sylvester equation for n = 10, 20, ..., 200 and m = 20
obtained by the function lyap, the Jordan-Schur algorithm and the function sylvsol. The three methods produce close
results with errors increasing with .
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Table 2. Execution time for Experiment 3 (transformed equations)

n sylvsol Jordan-Schur n sylvsol Jordan-Schur
10 43-10° 1.3-10° 110 12-107 26-10°
20 44-10° 14-10° 120 1.5-107 3.8-10°
30 41-10° 14-10° 130 1.8-107 43-10°
40 32-107° 94-10" 140 1.6-107 39-10°
50 57-10° 1.1-10° 150 19-107 48-10°
60 49-10° 2.1-10° 160 23-107 57-10°
70 6.1-10° 2.1-10° 170 1.9-107 54-10°
80 12107 23-107° 180 20-10° 42107
90 1.0-107 24107 190 22107 44-10°
100 1.5-10° 2.8-10° 200 3.0-107 6.0-10°

In Table 2 we present the computational time for solving the Sylvester equations with matrices 4 and B preliminary
transformed to Schur form (in the case of using the function sylvsol) or to Jordan-Schur form (in the case of using
the Jordan-Schur algorithm). The data presented in the table shows that the solution of the given Sylvester equations
in which the matrices 4 and B are in Jordan-Schur form is done from 3 to 5 times faster than the solution of the same
equations in which 4 and B are in the Schur form. These goods results for the Jordan-Schur algorithms are due to the
simple structure of the Jordan-Schur forms

Jo = j’[n/Z M12 T = ﬂ’[m/Z N12
. ﬂ’[n/2 o ﬂ']m/Z

in the given case, which facilities very much the solution of the equations. Note that according to the estimates, given in
sect. 5, the solution of the full (untransformed) Sylvester equations by the Jordan-Schur algorithms requires much more
time than the Bartels-Stewart algorithm due to the reduction to Jordan-Schur form which is significantly slower than the
reduction to Schur form.

6.2 Solving the Lyapunov equation

Experiment 4 In this experiment the matrix 4 is chosen in the same way as the one shown in Experiment 1. In the
given case the parameter o, is chosen equal to 1.15.

In Figure 4 we show the relative errors in the solution of the Lyapunov equation A"+ X4=Cforn=2,46, ..,
100 for the three methods used in the previous experiments. The three methods produce solutions of nearly the same
accuracy.

Experiment 5 In this experiment

A4=0J,0", 0=Y,-(¥;)"

where
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(2 1 1 1 -1 1 =2 7]

-2 1 -1 1 2

J, = -1 1 , Y, = 1 -1 -1,
-1 1 11

| . _1_ | . 1_

and 7 is a parameter. The increasing of 7 leads to an increasing of the condition number in respect to the inversion of Y,

and hence of Q.

10° — . ‘ . .
s VATLAB function lyap
s JOrdan-Schur method
==m==MFT function sylvsol

107

rerr

10"

100

Figure 4. Relative errors for Experiment 4

In Figure 5 we show the relative errors for 51 values of 7 from 0 to 5.25 for the three methods along with the
forward accuracy estimate cond,,,, - eps. All methods produce solutions whose error is less than the accuracy estimate.
Experiment 6 In the last experiment we investigate the accuracy of the solution of Lyapunov equation when an

eigenvalue of the matrix 4 is approaching 0. In this case one takes
A = QJAQ%: Q = YA '(Y})il’

where
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and 2 = —10” where p varies from 1.0 to 7.4. With the increasing of p the conditioning of Lyapunov equation worsens
and the relative error of the solution increases. As one can see from Figure 6, all three methods produce solutions which
are more accurate than it is predicted by the condition number based accuracy estimate.

10" . : .
6 0
10 ) 1 i \l'.t b
. WY
P o
] |
10% ¢ [ 11 ]
T v
5 L]
: )
10" ¢ . i
\.I
10"k ; e MATLAB function lyap | ]
‘ s Jordan-Schur method
=====MFT function sylvsol
J =—@==cond,,, . eps
1 0—14 ! 1 1 1
0 5 10 15 20 25
T
Figure 5. Relative errors for Experiment 5
10° g . . . . .
" | e MATLAB function lyap d
f | Jordan-Schur method
[ |=====MFT function sylvsol
10° f | @ cond,y,, . €ps 1
10-4 ; -
=)
2
107 4
10%¢ E
1 0-]0 1 1 1 1 | 1
1 2 3 4 5 6 7
-log10 (}A])

Figure 6. Relative errors for Experiment 6
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7. Conclusions

The Jordan-Schur algorithm possesses the same accuracy and can be more efficient than the Bartels-Stwerat
algorithm in respect of the computational work in some cases. With the coming of more reliable numerical methods for
the reduction to Jordan-Schur form, this method may become an efficient alternative to the Bartels-Stewart algorithm.
The proposed algorithm can be extended to the solution of the Stein equation AXB — X = C and the discrete-time
Lyapunov equation A”"X4 — X = C.
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