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1. Introduction
In the field of homotopy theory, the spherical Freudenthal suspension theorem is the fundamental result leading to 

the concept of stabilization of homotopy groups and ultimately to stable homotopy theory. As it is shown in [1, Chapter 
4], it explains the behavior of simultaneously taking suspensions and increasing the index of the homotopy groups of 
the space in question. More precisely, the suspension homomorphism Σ : π2n+k(S

n) → π2n+k+1(S
n+1) was introduced by 

Freudenthal [2], who proved that Σ is an epimorphism if k ≤ −1 and an isomorphism if k < −1. These bounds are sharp 

in general, i.e., the suspension map Σ : π2n(S
n) → π2n+1(S

n+1) need not be surjective. The following theorem proved 
by Freudenthal in [2] says that the image of Σ is exactly the set of elements whose Hopf invariant h2 : π2n+1(S

n+1) → 
π2n+1(S

2n+1) ≈ Z is zero.
Theorem. (Freudenthal) The image of the suspension homomorphism

Σ : π2n(S
n) → π2n+1(S

n+1)

is {α ∈ π2n+1(S
n+1); h2(α) = 0}.

Freudenthal also obtained some results on the kernel of Σ for k = −1. Namely, the kernel of the epimorphism Σ : 
π2n-1(S

n) → π2n(S
n+1) is the cyclic group generated by the Whitehead product [ιn, ιn] for the homotopy class ιn of the 

identity map idSn. The latter results on the suspension homomorphism were completed by Whitehead, G.W. [3].
Putman [4] has written up a modern account of Pontryagin’s approach [5] to calculating the homotopy groups 
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πn+1(S
n) and πn+2(S

n) of the n-th sphere Sn using techniques from low-dimensional. In particular, [4, Section 9] contains 
a detailed account of Pontryagin’s proof of the theorem of Freudenthal above. It is shown how to use the Hopf invariant 
to sharpen the Freudenthal suspension theorem.

It is a fundamental theorem of Adams [6] that a map S2n-1 → Sn of Hopf invariant one exists only when n = 2, 4, 8. 
This has a number of very interesting consequences, for example:

• Rn is a division algebra only for n = 1, 2, 4, 8.
• Sn is an H-space only for n = 0, 1, 3, 7.
• Sn has n linearly independent tangent vector fields only for n = 0, 1, 3, 7.
• The only fiber bundles Sp → Sq → Sr occur when (p, q, r) = (0, 1, 1), (1, 3, 2), (3, 7, 4), and (7, 15, 8).
• If Sn-1, with its usual differentiable structure, is parallelizable then n = 2, 4, or 8.
James [7] constructs a functorial homotopy decomposition ΣΩΣ(X) 1m

∞
=∨ Σ(X 

∧m) for path-connected, pointed 
CW-complexes X. The paper [8] generalizes this to a p-local functorial decomposition of ΣΩ(Y) for a co-H-space Y 
and shows that the wedge summands of ΣΩ(Y) functorially decompose by using an action of an appropriate symmetric 
group. This is used to construct James-Hopf invariants, being generalizations of Hopf invariants, in a more general 
context. As a valuable example, an application to the theory of quasi-symmetric functions is presented. Furthermore, 
results stated in [9, Chapter XI] emphasize a significant role of James-Hopf invariants in homotopy theory.

It seems to be no other approach for this Freudenthal suspension theorem and James-Hopf invariants of spheres 
being a generalization of Hopf invariant. The main objective of this paper is to generalize the Freudenthal theorem 
above and relate more precisely the image of Σ : π2n+k(S

n) → π2n+k+1(Sn+1) with the kernel of h2 : π2n+k+1(Sn+1) → 
π2n+k+1(S

2n+1) of James-Hopf invariant for k ≤ 9.
In Section 1, we set stages for developments to come. This introductory section is devoted to a general discussion 

and establishes notations used in the rest of the paper.
Section 2 reviews some basic results on maps of co-H-spaces needed in the next section.
Section 3 is devoted to the main result on the image of Σ and the kernel of h2.
Theorem 3.4 (1) If k < 0 then the suspension homomorphism Σ : π2n+k(S

n) → π2n+k+1(S
n+1) is surjective,

(2) If k = 0, 2, 3 then Im(Σ : π2n+k(S
n) → π2n+k+1(S

n+1)) = Ker(h2 : π2n+k+1(S
n+1) → π2n+k+1(S

2n+1)) for n ≥ 1,
(3) If k = 1 then Im(Σ : π2n+1(S

n) → π2n+2(S
n+1)) = Ker(h2 : π2n+2(S

n+1) → π2n+2(S
2n+1)) for n ≠ 2.

The image Im(Σ : π5(S
2) → π6(S

3)) = Z2{2ν'}  Ker(h2 : π6(S
3) → π6(S

5)) = Z6{2ν' +}.
Furthermore, the image of Σ : π2n+k(S

n) → π2n+k+1(S
n+1) and the kernel of h2 : π2n+k+1(S

n+1) → π2n+k+1(S
2n+1) for 4 ≤ 

k ≤ 9 are investigated as well.
To make techniques used in this paper more plausible, we refer to [10] and [11].

2. Prerequisites
Throughout this paper, all spaces are assumed to be connected, based and of the homotopy type of CW-complexes, 

and all maps are based maps unless stated otherwise. We write Ω(X) (resp. Σ(X)) for the (based) loop (resp. suspension) 
space of a space X and [Y, X] for the set of (based) homotopy classes of maps Y → X. We do not distinguish notationally 
between a continuous map and its homotopy class and we use freely notations from the books [12] and [13].

Let X be a pointed connected topological space. For any prime p, we write πk(X; p) for the p-primary component of 
the k-th homotopy group πk(X) for k ≥ 1. For a nilpotent space X, we write X( p) for its p-localization.

Given a space X, James [7] has shown that the extension J(X) →  ΩΣ(X) of the counit map ηX : X → ΩΣ(X) to the 
infinite reduced product (the James construction [7] of X) J(X) = colimn≥1Jn(X) is a homotopy equivalence and Σ(J(X)) 

1m
∞

=∨ Σ(X 
∧m), where X 

∧m denotes the m-fold smash power of X. This means that J(Sn)  Ω(Sn+1) for the n-th sphere Sn 
and the splitting map above leads to the projection maps ΣΩ(Sn+1) → Skn+1 for k ≥ 0 which are adjoint to the maps
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1 1: ( ) ( )n kn
kH + +Ω → Ω

known as James-Hopf maps. Those induce James-Hopf invariants

1 1:[ ,  ( )] [ ,  ( )]n kn
kh Y Y+ +Ω → Ω

or equivalently

1 1:[ ( ),  )] [ ( ),  ]n kn
kh Y Y+ +Σ → Σ

for any space Y.
Now, recall the fibration

1 2 1
(2) (2) (2)( ) ( )

E Hn n n+ +→Ω →Ω 

found by James [14] and the fibrations



2 2 12 1
( ) ( ) ( )( ) ( ),

n npn
p p p

++→ Ω → Ω 



2 2 12 1
( )( ) ( )( ) ( )

n npn
pp p

-- → Ω → Ω 

found by Toda [13] for p > 2, where 
2n

  is the (2np − 1)-skeleton of the loop space Ω(S2n+1). Here, E = Σ stands for 
Einfängung (suspension), H = H2 for James-Hopf map, and P for Whitehead product. Thus, the fibrations above and the 
Serre result [15] lead to:

Theorem 1.1 (1) The fibre of James-Hopf map H2 : Ω(S2n) → Ω(S4n−1) is S2n−1 and there is an odd primary 
equivalence (due to Serre)

2 2 1 4 1( ) ( ),n n n- -Ω × Ω 

(2) the p-local fibre of Hp : Ω(S2n+1) → Ω(S2pn+1) is Jp−1(S
2n) for any prime p (due to James for p = 2 and Toda for 

p > 2).
The EHP-sequences are the long exact sequences of homotopy groups associated with fibrations considered above. 

Hence, we get the long exact sequence

1 2 1
( ) 1 ( ) 1 ( ) 1 ( )( ) ( ) ( ) ( ) .

H Pn n n n
n k p n k p n k p n k pπ π π π

Σ
+ +

+ + + + + + -→ → → → →   

Thus, we may state: 
Proposition 1.2 (1) If p = 2 and n ≥ 1 or p > 2 and n odd then there is a fibration

1 2 1
( ) ( ) ( )( ) ( )n n n

p p p
+ +→ Ω → Ω 
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which yields the long exact sequence

1 2 1
( ) 1 ( ) 1 ( ) 1 ( )( ) ( ) ( ) ( ) ,

H Pn n n n
n k p n k p n k p n k pπ π π π

Σ
+ +

+ + + + + + -→ → → → →   

(2) if p > 2 and n = 2m − 1 then

2 2 1 4 1
2 ( ) 2 1 ( ) 2 ( )( ) ( ) ( ).m m m

m k p m k p m k pπ π π- -
+ + - +≈ ⊕ 

The spherical Freudenthal suspension theorem [2] is the fundamental result leading to the concept of stabilization 
of homotopy groups and ultimately to stable homotopy theory. It explains the behavior of simultaneously taking 
suspensions and increasing the index of the homotopy groups of the space in question. For its general formulation we 
need:

Lemma 1.3 ([16, Proposition 3.2]) Let X be an n-connected topological space. Then, the adjunction unit of the 
adjunction X → ΩΣ(X) is (2n + 1)-connected.

The Freudenthal suspension theorem is about homotopy groups of n-spheres but, applying Lemma 1.3, we may 
state:

Proposition 1.4 The suspension homomorphism on homotopy groups of spheres π2n+k(S
n) → π2n+k+1(S

n+1) is an 
epimorphism for k ≤ −1 and an isomorphism for k < −1.

More generally, for X an n-connected CW-complex, then the suspension homomorphism on homotopy groups πk(X) 
→ πk+1(ΣX) is an epimorphism for k ≤ 2n+1 and an isomorphism for k < 2n + 1.

Next, since the sphere Sk ≈ Σ(Sk−1) and Sk−1 is a co-H-space for k > 1, results stated in [17, Chapter III, (1.8) and (1.9) 
Corollaries] yield the following proved by Hilton [18].

Proposition 1.5 Let α ∈ πk(S
m) and β, γ ∈ πm(Sn) with k, m, n > 1. Then

2( ) [ ,  ] ( ).hβ γ α βα γα β γ α+ = + + 

In particular, by induction on t ∈ Z, it follows:

2
( 1)( ) [ ,  ] ( ).

2m m m
t tt t hι α α ι ι α- = +  

 


3. Maps of co-H-spaces
To move to the main objective of the paper and generalize Freudenthal theorem announced in Introduction, some 

prerequisites are required.
Given co-H-spaces (X, ν) and (X', ν'), we say that α : X → X' is a co-H-map (or primitive) with respect to ν and ν' if 

the diagram

X X
v

X X X X

α

α α

ν

∨

′→
′↓ ↓

′ ′∨ → ∨

commutes up to homotopy.
Remark 2.1 Let α : X → X' be a map of co-H-spaces. Then, the following are equivalent:
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(1) α : X → X' is a co-H-map,
(2) (i1 + i2)α = i1α + i2α in [X, X' ∨ X'], where i1, i2 : X' ⤥  X' ∨ X' are first and second inclusion maps, respectively.
Certainly, the suspension Σ(β) : Σ(X) → Σ(X') of a map β : X → X' is a co-H-map with respect to the suspension 

structures on Σ(X) and Σ(X'). It is easily seen that hk(Σ(β)) = 0 for k ≥ 2.
We say that a map α : X → X' of co-H-spaces is a weak co-H-map if the induced map α* : [X', Y] → [X, Y] is a 

homomorphism for any space Y. Certainly, any co-H-map α : X → X' of co-H-spaces is a weak co-H-map.
In particular, a map of spheres α : Sk → Sm is a weak co-H-map if the induced map α* : πm(Sn) → πk(S

n) is a 
homomorphism for n ≥ 0. For maps of spheres we have:

Proposition 2.2 Let α : Sk → Sm. Then:
(1) (β + γ)α = βα + γα provided [β, γ] = 0 for β, γ ∈ πn(S

n),
(2) if h2(α) = 0 then α : Sk → Sm is a weak co-H-map,
(3) (t[β, γ])α = t([β, γ]α) for t ∈ Z,
(4) if h2(α) = 0 and m is even then α : Sm → Sn is a suspension map,
(5) if the order |α| = t and m are odd then α : Sk → Sm is a weak co-H-map.
Proof. (1) and (2): Those follow from Proposition 1.5.
(3): We proceed by induction on t. 
First, by (2[β, γ])α = ([β, γ] + [β, γ])α and [[β, γ], [β, γ]] = 0, the property (1) yields (2[β, γ])α = 2([β, γ]α).
Next, let (t[β, γ])α = t([β, γ]α) for some integer t. Then, again (1) yields ((t + 1)[β, γ])α = ([tβ, γ] + [β, γ])α = (t[β, γ])

α + [β, γ])α. Hence, ((t + 1)[β, γ])α = (t + 1)([β, γ]α).
(4): It follows from EHP-sequence properties.
(5): If β, γ ∈ πm(Sn) then, in view of Proposition 1.5,

2( ) [ ,  ] ( ).hβ γ α βα γα β γ α+ = + + 

But for |α| = t, in view of (3), we have (t[β, γ]) ◦ h2(α) = [β, γ]) ◦ (th2(α)) = 0. Since |α| = t and m are odd, we deduce 
that t[β, γ] = [β, γ]. Consequently, [β, γ] ◦ h2(α) = 0 implies (β + γ) ◦ α = βα + γα and the proof is complete.

                                                                                                                                                                                      □
Example 2.3 Given an odd prime p, by [13, Lemma 13.5] there are αk(p) ∈ π2k(p−1)+2(S

3; p) with pαk(p) = 0 for k ≥ 1. 
Furthermore, in view of [13, (13.9)], we have h2(αk(p)) = tαk−1(p) for 1 < k < p and t /≡ 0 (mod p). Then, by Proposition 
2.2(5), the map αk(p) : S2k(p−1)+2 → S3 is a weak co-H-map, but it is not a co-H-map provided k > 1.

Co-H-maps α : Σ(Y) → Σ(Y) need not be suspensions. But, in view of [17, (2.7) Proposition], we have:
Proposition 2.4 Let X be finite dimensional CW-complex. Then a map α : Σ(X) → Σ(X') is a co-H-map with respect 

to the suspension structures on Σ(X) and Σ(X') if and only if James-Hopf invariants hk(α) are trivial for k ≥ 2.
Furthermore, by [19, Theorem 2], we have:
Proposition 2.5 Let p be an odd prime and X a space. Then α : Σ2(X) → S(p)

2n+1 is a co-H-map with respect to the 
suspension structures on Σ2(X) and S(p)

2n+1 only if hp(α) is trivial.
We point out that Proposition 2.5 might be easily extended to maps α : Σ(X) → S(p)

2n+1 provided X is a co-H-space.
The question as to whether co-H-spaces are suspensions leads naturally to the related question for maps: if co-H-

map Σ(X) → Σ(X') with respect to the suspension structures, is a suspension? Examples have been given in [20] to show 
that the answer is in general negative.

Example 2.6 Let p be an odd prime and α1(3) ∈ π2p(S
3; p) be an element of order p. Then, α1(3) is not a suspension 

since π2p−1(S
2) ≈ π2p−1(S

3) contains no element of order p ([13, (13.6)’]). Furthermore, the group π2p(S
k+1) with k > 1 

contains no element of order p. Therefore, hk(α1(3)) = 0 with k ≥ 2 and, by Proposition 2.4, the map α1(3) : S2p → S3 is a 
co-H-map.

Recall that by Section 1 the fibration
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1 2 1
( ) ( ) ( )( )n n n

p p p
+ +Ω →→ 

for p = 2 and n ≥ 1 or p > 2 and n odd yields the EHP-sequence

1 2 1
( ) 1 ( ) 1 ( ) 1 ( )( ) ( ) ( ) ( ) .

H Pn n n n
n k p n k p n k p n k pπ π π π

Σ
+ +

+ + + + + + -→ → → → →   

Here, H = h2 for Hopf invariant, and P for Whitehead product. If n = 2m − 1 is odd then the fibration is valid for all 
primes p and it splits at odd primes, so for p > 2 we have

2 2 1 4 1
2 ( ) 2 1 ( ) 2 ( )( ) ( ) ( ).m m m

m k p m k p m k pπ π π- -
+ + - +≈ ⊕ 

4. The main result
It is well-known that the spherical Freudenthal suspension theorem says that the suspension map Σ : π2n+k(S

n) 
→ π2n+k+1(S

n+1) is surjective for k ≥ −1 and an isomorphism for k < −1. These bounds are sharp in general, i.e., the 
suspension map Σ : π2n+k(S

n) → π2n+k+1(S
n+1) need not be surjective for k ≥ 0.

Certainly, the image of Σ : π2n+k(S
n) → π2n+k+1(S

n+1) is contained in the kernel of h2 : π2n+k+1(S
n+1) → π2n+k+1(S

2n+1). 
The result proved by Freudenthal in [4] (the same paper that contains the usual Freudenthal suspension theorem) says 
that the image of Σ : π2n(S

n) → π2n+1(S
n) is exactly the kernel of James-Hopf invariant h2 : π2n+1(S

n+1) → π2n+1(S
2n+1) ≈ Z.

In the sequel, we need the results stated in [20, Theorem B]:
Theorem 3.1 If dim X ≤ 3n − 2 and X' is (n − 1)-connected with n ≥ 1, with locally finite generated homology, then 

every homomorphism Σ(X) → Σ(X') is a suspension.
Thus, we may state:
Theorem 3.2 (1) If p = 2 and n ≥ 1 or p > 2 and n odd then there is a fibration

1 2 1
( ) ( ) ( )
n n n
p p p

+ +→ Ω → 

which gives the long exact sequence

1 2 1
( ) 1 ( ) 1 ( ) 1 ( )( ) ( ) ( ) ( ) ,

H Pn n n n
n k p n k p n k p n k pπ π π π

Σ
+ +

+ + + + + + -→ → → → →   

(2) if p > 2 and n = 2m − 1 then

2 2 1 4 1
2 ( ) 2 1 ( ) 2 ( )( ) ( ) ( ).m m m

m k p m k p m k pπ π π- -
+ + - +≈ ⊕ 

Now, we show:
Lemma 3.3 If n ≥ 1 then:
(1) Im(Σ : π2n+k(S

n) → π2n+k+1(S
n+1)) = Ker(h2 : π2n+k+1(S

n+1) → π2n+k+1(S
2n+1)) provided:

(i) k < 0,
(ii) n is odd;
(2) Im(Σ : π2n+k(S

n; 2) → π2n+k+1(S
n+1; 2)) = Ker(h2 : π2n+k+1(S

n+1; 2) → π2n+k+1(S
2n+1; 2)).
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Proof. (1)(i): Certainly, Im(Σ : π2n+k(S
n) → π2n+k+1(S

n+1)) ⊆ Ker(h2 : πn+k+1(S
n+1) → πn+k+1(S

2n+1)). On the other 
hand, by Freudenthal suspension theorem [2], the sus-pension map Σ : π2n+k(S

n) → π2n+k+1(S
n+1) is an epimorphism 

provided k < 0. Consequently, h2(α) = 0 for any α ∈ Im(Σ) = π2n+k+1(S
2n+1).

(1)(ii) and (2) follow from Theorem 3.2(1) and the proof is complete.
                                                                                                                                                                                      □
Next, we recall from [9, Exercises 5-6] the formulae:
(1) if α ∈ πn+1(S

r+1) and β ∈ πk(S
n) then

( ( )) ( ) ( ),m mh hα β α βΣ = Σ 

(2) if α ∈ πn(S
r) and β ∈ πk+1(S

n+1) then

(( ( ) ) ( ) ( ),m m
l

h hα β α α βΣ = Σ ∧ ∧  



where l is the weight of the basic product wm+1.
Applying upshots and formulae above, we state the main result:
Theorem 3.4 (1) If k < 0 then the suspension homomorphism Σ : π2n+k(S

n) → π2n+k+1(S
n+1) is surjective,

(2) if k = 0, 2, 3 then Im(Σ : π2n+k(S
n) → π2n+k+1(S

n+1)) = Ker(h2 : π2n+k+1(S
n+1) → π2n+k+1(S

2n+1)) for n ≥ 1,
(3) if k = 1 then Im(Σ : π2n+1(S

n) → π2n+2(S
n+1)) = Ker(h2 : π2n+2(S

n+1) → π2n+2(S
2n+1)) for n  /= 2.

The image Im(Σ : π5(S
2) → π6(S

3) = Z2{2ν'}  Ker(h2 : π6(S
3) → π6(S

5)) = Z6{2ν' +},
(4) if k = 4 then Im(Σ : π2n+4(S

n) → π2n+5(S
n+1)) = Ker(h2 : π2n+5(S

n+1) → π2n+5(S
2n+1)) for n  /= 2.

The image Im(Σ : π8(S
2) → π9(S

3)) = {0}  Ker(h2 : π9(S
3) → π9(S

5)) = π9(S
3),

(5) if k = 5 then Im(Σ : π2n+5(S
n) → π2n+6(S

n+1)) = Ker(h2 : π2n+6(S
n+1) → π2n+6(S

2n+1)) for n  /= 2.
The image Im(Σ : π8(S

2) → π9(S
3)) = {0}  Ker(h2 : π9(S

3) → π9(S
5)) = π10(S

3),
(6) if k = 6 then Im(Σ : π2n+6(S

n) → π2n+7(S
n+1)) = Ker(h2 : π2n+7(S

n+1) → π2n+7(S
2n+1)) for n  /= 4.

The image Im(Σ : π14(S
4) → π15(S

5) = Z8{ν5σ8} ⊕ Z2{η5µ6} ⊕ Z3{3β1(5)}  Ker(h2 : π15(S
5) → π15(S

9)) = π15(S
5),

(7) if k = 7 then Im(Σ : π2n+7(S
n) → π2n+8(S

n+1)) = Ker(h2 : π2n+8(S
n+1) → π2n+8(S

2n+1)) for n  /= 4.
The image Im(Σ : π15(S

4) → π16(S
5)) = Z2{ν5ν̄8} ⊕ Z2{ν5ε8} ⊕ Z8{2ζ5} ⊕ Z7{α1(5)} ⊕ Z9{3α'3(5)}  Ker(h2 : 

π16(S
5) → π16(S

9)) = Z2{ν5ν̄8} ⊕ Z2{ν5ε8} ⊕ Z8{2ζ5} ⊕ Z7{α1(5)} ⊕ Z9{α'3(5)},
(8) if k = 8 then Im(Σ : π2n+8(S

n) → π2n+9(S
n+1)) = Ker(h2 : π2n+9(S

n+1) → π2n+9(S
n+1)) for n  /= 2.

The image Im(Σ : π12(S
2) → π13(S

3)) = Z2{2ε'} ⊕ Z2{η3µ4}  Ker(h2 : π13(S
3) → π13(S

5)) = Z2{2ε'} ⊕ Z2{η3µ4} ⊕ 
Z3{α1(3)α2(6)},

(9) if k = 9 then Im(Σ : π2n+9(S
n) → π2n+10(S

n+1)) = Ker(h2 : π2n+10(S
n+1) → π2n+10(S

2n+1)) for n  /= 2.
The image Im(Σ : π13(S

2) → π14(S
3)) = Z2{2µ'}  Ker(h2 : π14(S

3) → π14(S
5)) = Z2{2µ'} ⊕ Z2{η3µ4} ⊕ Z3{α1(3)

α2(6)}.
Proof. (1) If k < 0 then dim Sn+k = n + k ≤ 2n − 2. Thus, Lemma 3.3 implies that Σ : π2n+k(S

n) → π2n+k+1(S
n+1) is 

surjective.
Next, notice that Lemma 3.3 implies

1 1 2 1
2 2 1 2 2 1 2 1Im( : ( ) ( )) Ker( : ( ) ( )n n n n

n k n k n k n khπ π π π+ + +
+ + + + + + +Σ → = →  

for n > k + 1 with k ≥ 0 unless n is even.
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(2), k = 0: Then, in view of Lemma 3.3, the image

1 1 2 1
2 2 1 2 2 1 2 1Im( : ( ) ( ) Ker( : ( ) ( )n n n n

n n n nhπ π π π+ + +
+ + +Σ → = →  

for n ≥ 1.
k = 2: Then, in view of lemma 3.3, the image Im(Σ : π2n+2(S

n) → π2n+3(S
n+1)) = Ker(h2 : π2n+3(S

n+1) → π2n+3(S
2n+1) 

for n  /= 2.
Furthermore:
if n = 2 then π6(S

2) = Z2{η2ν'} and Σ(η2ν') = 0 imply that the map Im(Σ : π6(S
2) → π7(S

3)) is trivial. Since π7(S
3) = 

Z2{ν'η6}, h2(ν'η6) = η2
5 and π7(S

5) = Z2{η2
5}, the map h2 : π7(S

3) → π7(S
5) = Z2{η2

5} is an isomorphism.
k = 3: Then, in view of Lemma 3.3, the image of Im(Σ : π2n+3(S

n) → π2n+4(S
n+1) = {α ∈ π2n+4(S

n+1); h2(α) = 0} for n   
/= 2, 4.

Furthermore:
if n = 2 then π7(S

2) = Z2{η2ν' η6} and Σ(η2ν' ) = 0 imply that the map Σ : π7(S
2) → π8(S

3) is trivial. Since π8(S
3) = 

Z2{ν' η
2
6}, h2(ν' η

2
6) = η3

5 = 4ν5 and π8(S
5) = Z2{ν5

+}, the map h2 : π8(S
3) → π8(S

5) = Z2{ν5
+} is a monomorphism;

if n = 4 then π11(S
4) = Z{α2(4)} ⊕ Z3{[ι4; ι4]α1(7)} ⊕ Z5{α1(4)} and π12(S

5) = Z2{σ'''} ⊕ Z3{α2(5)} ⊕ Z5{α1(5)} 
imply that Im((Σ : π11(S

4) → π12(S
5)) = Z3{α2(5)} ⊕ Z5{α1(5)}. Next, for h2 : π12(S

5) → π12(S
9) = Z24{ν9

+} we have 
h2(σ''') = 4ν9  /= 0 and h2(α2(5)) = h2(Σ

2α2(3)) = h2(α1(5)) = h2(Σ
2α1(3)) = 0.

(3), k = 1: In view of Lemma 3.3, the image Im(Σ : π2n+1(S
n) → π2n+2(S

n+1)) is {α ∈ π2n+k+1(S
n+1); h2(α) = 0} for n  /= 2. 

Furthermore:
if n = 2 then π5(S

2) = Z2{η3
2}, π6(S

3) = Z12{ν' +} for ν' + = ν'  − α1(3), Ση3
2 = 2ν' and Im(Σ : π5(S

2) → π6(S
3)) = Z2{2ν' }. 

Next, for h2 : π6(S
3) = Z12{ν' +} → π6(S

5) = Z2{η5} we get h2(2ν' ) = 2η5 = h2(α1(3)) = 0. Hence, Im(Σ : π5(S
2) → π6(S

3)) 
 {α ∈ π5(S

3); h2(α) = 0} = Z6{2ν' +}.
(4), k = 4: Then, in view of Lemma 3.3, the image of Σ : π2n+4(S

n) → π2n+5(S
n+1) is {α ∈ π2n+5(S

n+1); h2(α) = 0} for  
n  /= 2, 4.

Furthermore:
if n = 2 then π8(S

2) = Z2{η2ν' η
2
6} and Σ : π8(S

2) → π9(S
3) is trivial. Next, π9(S

3) = Z3{α1(3)α1(6)} and h2(α1(3)α1(6)) 
= h2(α1(3))α1(6) = 0 show that h2 : π9(S

3) → π9(S
5) is trivial. Hence, Im(Σ : π8(S

2) → π9(S
3)) = {0}  {α ∈ π9(S

3; h2(α) 
= 0} = π9(S

3);
if n = 4 then π12(S

4) = Z2{ε4}, π13(S
5) = Z2{ε5} and Σ : π12(S

4) → π13(S
5) is an isomorphism. Next, h2 : π13(S

5) → 
π13(S

9) = 0 is trivial.
(5), k = 5: Then, in view of Lemma 3.3, the image of Σ : π2n+5(S

n) → π2n+6(S
n+1) is {α ∈ π2n+5(S

n+1); h2(α) = 0} for 
n  /= 2, 4, 6.

Furthermore:
if n = 2 then π9(S

2) = Z3{η2α1(3)α1(6)}, and η3α1(4)α1(7) = 0 imply that Σ : π9(S
2) → π10(S

3) is trivial. Next, π10(S
3) 

= Z3{α2(3)} ⊕ Z5{α1(3)} and h2(α2(3)α1(6)) = h2(α1(3)) = 0 show that h2 : π9(S
3) → π9(S

5) is trivial. Hence, Im(Σ : 
π8(S

2) → π9(S
3)) = {0}  {α ∈ π9(S

3; h2(α) = 0} = π10(S
3);

if n = 4 then π13(S
4) = Z2{ν4

3} ⊕ Z2{µ4} ⊕ Z2{η4ε5}, π14(S
5) = Z2{ν5

3} ⊕ Z2{µ5}⊕ Z2{η5ε6}, and Σ : π13(S
4) → 

π14(S
5) is an isomorphism. Next, h2 : π14(S

5) → π14(S
9) = 0 is trivial;

if n = 6 then π17(S6) = Z4{ν̄6ν14} ⊕ Z8{ζ6} ⊕ Z7{α1(4)α1(15)} ⊕ Z9{α'3(6)}, π18(S7) = Z2{ν̄6ν15} ⊕ Z8{ζ7} ⊕ 
Z7{α1(5)α1(16)} ⊕ Z9{α'3(7)} and Σ : π17(S

6) → π18(S
7) is a surjection. Next, h2 : π18(S

7) → π18(S
13) = 0 is trivial.

(6), k = 6: Then, in view of Lemma 3.3, the image of Im(Σ : π2n+6(S
n) → π2n+7(S

n+1) = {α ∈ π2n+7(S
n+1); h2(α) = 0} 

for n  /= 2, 4, 6.
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Furthermore:
if n = 2 then π10(S

2) = Z3{η2α2(5)} ⊕ Z5{η2α1(3)} and π11(S
3) = Z2{ε3} imply that Σ : π10(S

2) → π11(S
3) is trivial. 

Next, h2(ε3) = ν5
2 yields that h2 : π11(S

3) → π11(S
5) = Z2{ν5

2} is an isomorphism;
if n = 4 then π14(S

4) = Z8{ν4σ'} ⊕ Z4{Σε'} ⊕ Z2{η4µ5} ⊕ Z3{α1(4)α2(7)} ⊕ Z3{[ι4, ι4]α2(7)} ⊕ Z5{α1(7)}, π15(S
5) 

= Z8{ν5σ8} ⊕ Z2{η5µ6} ⊕ Z9{β1(5)}, Σ(ν4σ') = 0, Σ2ε' = ±2(ν5σ8) and α1(5)α2(8) = −3β1(5) imply that

4 5
14 15 8 5 8 2 5 6 3 1Im( : ( ) ( )) { } { } {3 (5)}.π π ν σ η µ βΣ → = ⊕ ⊕  

Next, h2(ν5σ8) = h2(η5µ6) = h2(β1(5)) = 0 yields that h2 : π15(S
5) → π15(S

9) is trivial. Hence,

4 5 5 5
14 15 15 2 15Im( : ( ) ( )) { ( ); ( ) 0} ( );hπ π α π α πΣ → ∈ = =   

if n = 6 then π19(S
7) = 0 imply that Σ : π18(S

6) → π19(S
7) = 0 and h2 : π19(S

7) = 0 → π19(S
13) are trivial.

(7), k = 7: Then, in view of Lemma 3.3, the image of Im(Σ : π2n+7(S
n) → π2n+8(S

n+1) = {α ∈ π2n+8(S
n+1); h2(α) = 0} 

for n  /= 2, 4, 6, 8.
Furthermore:
if n = 2 then π11(S

2) = Z2{η2ε3} π12(S
3) = Z2{µ3} ⊕ Z2{η3ε4} imply that imply that the map Σ : π11(S

2) → π12(S
3) is 

a monomorphism. Next, h2(η3ε4) = 0 and h2(µ3) = σ''';
if n = 4 then π15(S

4) = Z2{ν4σ'η14} ⊕ Z2{ν4ν̄7} ⊕ Z2{ν4ε7} ⊕ Z2{ε4ν12} ⊕ Z2{Σν'ε7} ⊕ Z3{α3(4)} ⊕ Z7{α1(4)} 
and π16(S

5) = Z2{ν5ν̄8} ⊕ Z2{ν5ε8} ⊕ Z8{ζ5} ⊕ Z7{α1(5)} ⊕ Z9{α'3(5)}. Then, Σ2µ' = ±2ζ5, 2µ' = η3.
2µ5, Σ

2ν' = 2ν5, 
ν5Σσ'η15 + xΣ2ν'ε8 + yη5

2µ7 = 0 for some integers x, y and α3(5) = 3α'3(5) imply that Im(Σ : π15(S
4) → π16(S

5)) = Z2{ν5ν̄8} 

⊕ Z2{ν5ε8} ⊕ Z8{2ζ5} ⊕ Z7{α1(5)} ⊕ Z9{3α'3(5)}. Certainly, h2(ν5ν̄8) = h2(ν5ε8) = h2(α1(5)) = h2(α'3(5)) = 0 and h2(ζ5) 
= 8σ9 implies h2(2ζ5) = 0. Consequently, {α ∈ π16(S

5); h2(α) = 0} = Z2{ν5ν̄8} ⊕ Z2{ν5ε8} ⊕ Z8{2ζ5} ⊕ Z7{α1(5)} ⊕ 
Z9{α'3(5)} and

4 5 5
15 16 16 2Im( : ( ) ( )) { ( ); ( ) 0};hπ π α π αΣ → ∈ =   

if n = 6 then π19(S
6) = Z2{ν6σ9ν16} ⊕ Z3{α1(6)β1(9)} and π20(S

7) = Z2{ν7σ10ν17} ⊕ Z3{α1(7)β1(10)}. Then, the map 
Σ : π19(S

6) → π20(S
7) is an isomorphism;

if n = 8 then π23(S
8) = Z2{σ8ν̄15} ⊕ Z2{σ8ε15} ⊕ Z2{Σσ'ε15} ⊕ Z2{ε̄8} ⊕ Z8{Σρ''} ⊕ Z3{α4(8)} ⊕ Z5{α2(8)} and 

π24(S
9) = Z2{

 fσ9ν̄16} ⊕ Z2{σ9ε16} ⊕ Z2{ε̄9} ⊕ Z8{ρ'} ⊕ Z3{α4(9)} ⊕ Z5{α2(9)}. Then, Σ2σ' = 2σ9 and Σ2ρ'' = 2ρ' imply 
that Im(Σ : π23(S

8) → π24(S
9)) = Z2{σ9ν̄16} ⊕ Z2{σ9ε16} ⊕ Z2{ε̄9} ⊕ Z4{2ρ'} ⊕ Z3{α4(9)} ⊕ Z5{α2(9)}. Next, h2(ρ') = 

8σ17  /= 0 and h2(2ρ') = 8σ17 = 0.
(8), k = 8: Then, in view of Lemma 3.3, the image of Im(Σ : π2n+8(S

n) → π2n+8(S
n+1) = {α ∈ π2n+9(S

n+1); h2(α) = 0} 
for n   /= 2, 4, 6, 8.

Furthermore:
if n = 2 then π12(S

2) = Z2{η2
2ε4} ⊕ Z2{η2µ3}, π13(S

3) = Z4{ε'} ⊕ Z2{η3µ4} ⊕ Z3{α1(3)α2(6)} and η3
2ε5 = 2ε' imply 

that imply that the map Im(Σ : π12(S2) → π13(S3)) = Z2{2ε'} ⊕ Z2{η3µ4}  {α ∈ π13(S3) : h2(α) = 0} = Z2{2ε'} ⊕ 

Z2{η3µ4} ⊕ Z3{α1(3)α2(6)};
if n = 4 then π16(S

4) = Z2{ν4σ'η2
14} ⊕ Z2{ν4

4} ⊕ Z2{ν4 µ7} ⊕ Z2{ν4η7ε8} ⊕ Z2{Σν'µ7} ⊕ Z2 ⊕ Z2{Σν'η7ε8}, π17(S
5) 

= Z2{ν5
4} ⊕ Z2{ν5 µ8} ⊕ Z2{ν5η8ε9}, ν5σσ'η15 = Σ2ν'ε8 and Σ2ν' = 2ν5 imply that the map Σ : π16(S

4) → π17(S
5) is an 

epimorphism;
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if n = 6 then π20(S
6) = Z4{σ''σ13} ⊕ Z2{ν̄6ν

2
14} ⊕ Z3{α} and π21(S

7) = Z8{σ'σ14ν17}⊕ Z4{κ7} ⊕ Z3{Σα}. But, Σσ'' 
= 2σ' and 2κ7 = ν̄7ν

2
15 + 2xΣσ''σ14 with x = 0 or 1. Hence, Im(Σ : π20(S

6) → π21(S
7)) = Z4{2σ'σ14} ⊕ Z2{2κ7} ⊕ Z3{Σα}. 

Next, h2(σ'σ14) = η13σ14 = nū13 + ε13  /= 0 and h2 : π21(S
7) → π21(S

13) = Z2{ν̄13} ⊕ Z2{ε13} is an epimorphism. Hence, 
h2(κ7) = ν̄13  /= 0 or ε13  /= 0 and so Im(Σ : π20(S

6) → π21(S
7)) = {α ∈ π21(S

7); h2(α) = 0};
if n = 8 then π24(S

8) = Z2{Σ8ν
3
15} ⊕ Z2{σ8 µ15} ⊕ Z2{σ8η15ε15} ⊕ Z2{Σσ'µ15} ⊕ Z2{Σ2ζ'} ⊕ Z2{µ8σ15} ⊕ Z2{η8ε̄9} 

= π8
24 and π25(S9) = Z2{σ9ν3

16} ⊕ Z2{σ9µ16} ⊕ Z2{σ9η16ε17} ⊕ Z2{µ9σ18} = π9
25. Then, by [13, (10.17)], the map Σ : 

π24(S
8) → π25(S

9) is an epimorphism.
(9), k = 9: Then, in view of Lemma 3.3, the image of Im(Σ : π2n+9(S

n) → π2n+10(S
n+1) = {α ∈ π2n+9(S

n+1); h2(α) = 0} 
for n  /= 2, 4, 6, 8, 10.

Furthermore:
if n = 2 then π13(S2) = Z4{η2ε'} ⊕ Z2{η2

2µ4} ⊕ Z3{η2α1(3)α2(6)}, π14(S3) = Z4{µ'} ⊕ Z2{ε3ν11} ⊕ Z2{ν'ε6} ⊕ 
Z3{α3(5)} ⊕ Z7{α1(5)}, η3α1(4)α2(7) = 0 and η3

2µ5 = 2µ' imply that imply that Im(Σ : π13(S
2) → π14(S

3)) = Z2{2µ'}.
Next, h2(µ') = µ5  /= 0, h2(ε3ν11) = h2(ε3)ν11 = ν3

5  /= 0, h2(ν'ε6) = h2(ν')ε6 = η5ε6  /= 0 and h2(α3(5)) = h2(α1(5)) = 0 lead 
to Im(Σ : π13(S

2) → π14(S
3)) = Z2{2µ'}  {α ∈ π14(S

3) : h2(α) = 0} = Z2{2µ'} ⊕ Z2{η3µ4} ⊕ Z3{α1(3)α2(6)};
if n = 4 then π17(S

4) = Z8{ν4
2σ10} ⊕ Z2{ν4η7µ8} ⊕ Z2{Σν'µ7µ8} ⊕ Z3{α1(4)β1(7)} ⊕ Z3{[ι4, ι4]β1(7)} and π18(S

5) 
= Z2{ν5σ8ν15} ⊕ Z2{ν5η8µ9} ⊕ Z3{α1(5)β1(8)}. But, by [13, (7.19)], we x(ν4

2σ10) = 2ν5σ8ν15 = 0 for an odd x so ν4
2σ10 = 

0. Next, h2(ν5σ8ν15) = Σν5♯ν5)h2(σ8ν15) = ν3
15  /= 0. Hence, Im(Σ : π17(S

4) → π18(S
5)) = Z2{ν5η8µ9} ⊕ Z3{α1(5)β1(8)}{α ∈ 

π18(S
5); h2(α) = 0};
if n = 6 then π21(S6) = Z4{ρ'''} ⊕ Z2{ε̄ 6} ⊕ Z3{α4(6)} ⊕ Z3{[ι6, ι6]β1(11)} ⊕ Z5{α2(6)}, π22(S7) = Z8{ρ''} ⊕ 

Z2{σ' ν̄14} ⊕ Z2{ε̄7} ⊕ Z3{α4(7)} ⊕ Z5{α2(7)} and Σρ''' = 2ρ''. Next, h2(ρ'') = µ13, h2(σ' ν̄14) = η13ν̄14  /= 0 and h2(σ'ε14) = 
η13ε14  /= 0.

if n = 8 then π25(S
8) = Z2{σ8η15µ16} ⊕ Z2{Σσ'η15µ16} ⊕ Z2{ν8κ11} ⊕ Z2{µ̄8} ⊕ Z2{η8µ9σ18} ⊕ Z2{µ8σ15} ⊕ Z3{[ι8, 

ι8]β1(15)} and π26(S
9) = Z2{σ9η16µ17} ⊕ Z2{ν9κ12}⊕ Z2{ν̄9} ⊕ Z2{η9µ10σ19}. This implies that the map Σ : π25(S

8) → 
π26(S

9) is an epimorphism;
if n = 10 then π29(S10) = Z8{ξ̄ 10} ⊕ Z2{σ̄10} ⊕ Z3{α5(10)} ⊕ Z3{[ι10, ι10]β1(9)} ⊕ Z11{α2(9)} and π30(S11) = 

Z2{λ'η29} ⊕ Z2{ξ'η29} ⊕ Z2{ξ̄ 11} ⊕ Z2{σ̄11}. Next, h2(λ'η29) ≡ ε21η29 (mod(ν̄21η29 + ε21η29) = (ν3
21 + η21ε29)) and h2(λ'η29) 

= ν̄21η29 + ε21η29 = ν3
21 + η21ε29. Hence, h2(λ'η29), h2(ξ'η29)  /= 0 and the proof is complete.

                                                                                                                                                                                      □
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