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Abstract: Several new families have been introduced in the last two decades to extend well-known distributions, and 
at the same time provide great flexibility for modelling real data. We propose the Odd Pareto-G family with two extra 
shape parameters, and obtain some of its mathematical properties, which give important information about its structure 
and may be useful in future research. We construct a new regression model based on a special distribution of the new 
family. Maximum likelihood estimation and simulations are addressed, and these results show that the estimates are 
consistent for different percentages of censorship. Four applications to real data show the usefulness of the new models, 
reveal that they are suitable for the presented data, and can be considered interesting alternatives to model censored and 
uncensored lifetime data.
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1. Introduction
Although there were already hundreds of distributions before the 90’s decade, various families to generate 

new distributions by adding extra parameter(s) to a parent distribution have been published recently such as the 
Marshall-Olkin [1], exponentiated-G [2], beta-G [3], odd log-logistic-G [4], Kumaraswamy-G [5], McDonald-G [6], 
exponentiated generalized-G [7], transformer T-X [8], Weibull-G [9], Libby-Novick beta [10], exponentiated half-
logistic [11], logistic-X [12], Lomax-G [13], Generalized Odd Log-Logistic (GOLL) [14], modified power [15], and 
modified alpha power [16], generalized family of exponentiated composite distributions [17], exponentiated Teissier 
distribution [18], among others. The process of generating new distributions aims to create a more adequate model for 
explaining the data under investigation than other models.

The most common technique for generating a new family is by composing the cumulative distribution function (cdf), 
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say H(x), of a distribution with a function, Ψ(·), of a parent cdf G(x) to produce the cdf (or survival function) of the new 
distribution [8]. For example, if Ψ1[x] = G(x) and Ψ2[x] = −lnG(x), then

1( ) ( ( )) ( ( ))F x H x H G x= Ψ =

is a new cdf, and

2( ) ( ( )) ( ln ( ))F x H x H G x= Ψ = −

is a new survival function. For more details, see [19]. The odd Lindley-G family has been constructed in [20] by 
composing the Lindely cdf with Ψ(x) = G(x) /Ḡ(x).

The cdf of the Pareto (PA) random variable is

( ) 1 for 0,
acH x x

x c
 = − ≥ + 

where a > 0 is the shape parameter, and c > 0 is the scale parameter.
Consider a parent model with cdf G(x) and probability density function (pdf) g(x) = dG(x)/dx having a parameter 

vector η = (η1, ..., ηs)
┬. The cdf of the odd Pareto-G (for short “OPA-G”) family (with two extra shape parameters) 

follows by composing (1) with Ψ(x) = G(x) /Ḡ(x)

[ ] ( )( ) ( ; , ) ( ) 1 ,
( ) ( )

a
cG xF x F x a c H x

G x cG x
 

= = Ψ = −  + 

where  Ḡ(x) = 1 − G(x) . For a = c = 1, it becomes the parent G.
Note that the OPAG family is equal to the Lehmann type II alternative of the Marshall-Olkin class pioneered by 

[21], who did not work on its properties but addressed only the cases for the semiBurr and Burr baselines. Further, the 
OPAG family density is a special case of the Exponentiated Generalized Marshall-Olkin (EGMO) discussed by [22], but 
their linear combination depends on the exponentiated Marshall-Olkin density. The linear representation here, based on 
the exponentiated baseline density, is more simple and easier to develop some of its properties which are not addressed 
before.

The pdf corresponding to (2) has the form

1

2
( ) ( )( ) ( ; , ) .

( ) ( )( )

aaac g x G xf x f x a c
G x cG xG x

+
 

= =  + 

The support of X in Equations (2) and (3) is the same of the baseline G distribution. From now on, let X ∼OPAG(a, 
b, η) be a random variable with pdf (3).

By inverting (2), the quantile function (qf ) of X becomes

( )
( )( )

1/
1

1/

1
( ) ,

1 1

a

a

c c u
Q u G

c c u
−
 − −
 =
 + − − 

where G −1(·) = QG(·). So, we can easily generate OPAG variates from (4).
The sections follow as: Section 2 addressees two special models. Section 3 provides a linear representation in 

terms of exponentiated densities. The moments and qf are obtained in Section 4. Section 5 discusses inference based on 

(1)

(2)

(3)

(4)
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likelihood theory. Section 6 examines the adequacy of the parameter estimators. Section 7 introduces a new regression 
model for censored data. Four applications to real data sets prove the importance of our findings in Section 8. Section 9 
ends with some conclusions.

2. Special models
For illustrations, simulations, estimation and applications, we consider two special models of (2) by taking the 

Weibull and gamma as baseline distributions.

2.1 Odd Pareto Weibull (OPAW) model

The Weibull cdf with shape k > 0 and scale b > 0 is ( ) 1 e
kx

bG x
 − 
 = −  (for x ≥ 0). The pdf, cdf and hazard rate 

function (hrf) of the OPAW(a, c, b, k) random variable follow from (2) and (3) as

( )
1

1
e ,

1 e

k

k

xa
k a k b

a
x
b

ab kc xf x

c

 −  − −  

+
 − 
 

=
 
 −
 
 

( ) e1 ,

1 e e

k

k k

a
x
b

x x
b b

cF x

c

 − 
 

   − −   
   

 
 

= −  
 
− +  

( )
1

, 0.

1 e
k

k k

x
b

ab k xh x x

c

− −

 − 
 

= ≥

−

where c̄ = 1 − c.
The pdf and hrf of the OPAW model are displayed in Figures 1 and 2, respectively.

Figure 1. Plots of the OPAW density
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Figure 2. Plots of the OPAW hrf

Figures 1 and 2 illustrate some possible shapes of the pdf and hrf of the OPAW distribution, respectively. Its 
density can be unimodal, bimodal and left-right asymmetric. The hrf can be increasing and unimodal, which offers great 
capacity for real datasets.

Figure 3. Plots for the OPAGA distribution

2.2 Odd Pareto Gamma (OPAGA) model

The gamma cdf with shape b > 0 and rate k > 0 is G(x) = γ(b, kx)/Γ(b) (x ≥ 0), where Γ(b) = ∫ 0
∞
t b −1e− tdt and γ(b, z) 

= ∫ 0
z
t b −1e− tdt are the gamma and lower incomplete gamma functions, respectively.
The pdf, cdf and hrf of the OPAGA(a, c, b, k) random variable follow from (2) and (3) as

( ) [ ]
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( ) ( ) ( , )1 ,
( ) ( , )

a
a b b kxF x c

c b c b kx
γ
γ

 Γ −
= −  Γ + 

( ) [ ][ ]
1( ) e , 0.

( ) ( , ) ( ) ( , )

b b kxak b xh x x
c b c b kx b b kxγ γ

− −Γ
= ≥

Γ + Γ −

Figure 3 provides some shapes of the pdf and hrf of the OPAGA model, which can be unimodal in both cases. 
Further, the hrf has a large variety of shapes including increasing-decreasing-increasing shape.

We address the new OPAW and OPAGA models since they can be used in different areas, mainly in survival and 
reliability analysis.

3. Linear representation
A linear representation for the cdf (2) follows from two different manners. In the Marshall-Olkin way, we have

( )( ) 1
1 ( )

a
cG xF x

c G x
 

= −  − 

or

( )( ) 1 ,
1 ( )

a
G xF x
d G x

 
= −  + 

where d = c̄c.
The power series holds (for any real a)

0
(1 ) , | | 1,a k

k

a
z z z

k

∞

=

 
 +
 

= <∑

where 1,  and (for 1) ( 1) ( 1) / !.
0
a a

k a a a k k
k

= ≥ = − … − +
   
   
   

First, consider Equation (5) for c < 2 or, equivalently, |− c̄ | < 1. Then, |− c̄Ḡ(x)| < 1, and it follows from Equation (7)

0
1 ( ) ( , ) ( ) ,

a j
j

j
c G x A a c G x

∞

=

 − =  ∑

where ( , ) ( 1) .j k k
j k j

a k
A a c c

k j
∞ +
=

= −
  
  
  

∑
On the other hand,

0
( ) ( , ) ( ) ,a a j

j
j

c G x B a c G x
∞

=

= ∑

(5)

(6)

(7)

(8)

(9)
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where ( , ) ( 1) .j a
j

a
B a c c

j


−


 
 

=

Inserting (8) and (9) in Equation (5), and using the ratio of two power series

0
( ) 1 ( , ) ( ) ,j

j
j

F x U a c G x
∞

=

= −∑

where Uj = Uj(a, c) (for j ≥ 1) is determined recursively by

0
0

10 0

1 ,
j

j j r j r
r

B
U B A U U

A A−
=

 
= − = ⋅ 

 
∑

Second, consider Equation (6) for c > 12. Then, 0 < c−1 < 2, −1 < c−1 − 1 < 1, and d ∈ (0, 1). Hence, |dG(x)| < 1.
In particular, for c ≥ 2, the last inequality holds, and from (7),

0
[1 ( )] ( , ) ( ) ,a j

j
j

d G x C a c G x
∞

=

+ = ∑

where ( )( , ) .j
j

a
C a c cc

j
 
 
 

=  Further,

0
( ) ( ) ( ) ,a j

j
j

G x D a G x
∞

=

= ∑

where ( ) ( 1) .j
j

a
D a

j


−


 
 

=  Inserting (12) and (11) in Equation (6),

0
( ) 1 ( , ) ( ) ,j

j
j

F x V a c G x
∞

=

= −∑

where Vj = Vj(a, c) ( j ≥ 1) follows recursively

0
0

10 0

1 ,
j

k j r j r
r

D
V D C V V

C C−
=

 
= − = ⋅ 

 
∑

The pdf of the exponentiated-G (“EXP-G”) random variable Wα ∼EXP-G(α) with power parameter α > 0 is defined 
by πα(x) = αg(x)G(x)α−1. By differentiating (10) and (13), the pdf of X reduces to

1
0

( ) ( ),j j
j

f x s xπ
∞

+
=

= ∑

where

( , ), 2,
( , )

( , ), 2.
j

j j
j

U a c c
s s a c

V a c c
− <= = − ≥

(10)

(11)

(12)

(13)

(14)



Contemporary MathematicsVolume 4 Issue 1|2023| 55

Hence, some properties of X can be found from Equation (14) and those EXP-G properties in several references 
listed in Tahir and Nadarajah’s Table 1 [23].

4. Properties
4.1 Moments

Let Wj +1 denote the EXP-G( j + 1) random variable. The nth moment of X comes from (14) as

1 ,
0 0

( ) ( ) ( 1) ,n n
n j j j n j

j j
E X s E W j sµ τ

∞ ∞

+
= =

′ = = = +∑ ∑

where τn, j == ∫ 0
1
QG(u)n u j du.

In a similar manner, the nth incomplete moment of X is

( ) ( )

0
0

( ) ( 1) ( ) ,
G yn n j

n j G
j

m y E X X y j s Q u u du
∞

=

= < = +∑ ∫∣

where the integral can be calculated numerically.
Lorenz and Bonferroni curves, widely used as inequality measures ([24] and [25]), are given by L( p) = m1(q)/

µ'1 and B( p) = m1(q)/( pµ'1 ), respectively, where q = Q(p) follows from Equation (4). The Lorenz curve is a graphical 
representation of the distribution of wealth in an economy. It is used to measure the degree of inequality in a society 
by plotting the cumulative percentage of total income earned against the cumulative percentage of population. This 
curve can be interpreted as a measure of how evenly wealth is distributed among members of a society. A perfectly 
equal distribution would result in a straight line, while an unequal distribution would result in a curved line. The further 
away from the straight line, the greater the degree of inequality. The area between the Lorenz curve and the straight line 
represents the amount of wealth that is unequally distributed among members of society (unbalance degree). Figures 
4a and 4b display the Lorenz curves for the OPAW and OPAGA distributions and indicate that the OPAW parameters 
have more influence on the inequality than those of the OPAGA model. The Bonferroni curve is a slight alteration of 
the Lorenz curve. Figures 5a and 5b display plots of the Bonferroni curve for the OPAW and OPAGA distributions, 
respectively.

Figure 4. Lorenz curves for the OPAW and OPAGA distributions
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Figure 5. Bonferroni curves for the OPAW and OPAGA distributions

Figure 6. Bowley skewness for the OPAW and OPAGA models
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Figure 7. Moors’ kurtosis for the OPAW and OPAGA models

4.2 Quantile measures

The Bowley skewness [26] and Moors’ kurtosis [27] of X are functions of the octiles and they easily follow from (4). 
These quantile measures for the OPAW and OPAGA models are displayed in Figures 6 and 7.

The plots in Figure 6 reveal that the OPAW and OPAGA models could be asymmetric (positive or negative) or 
symmetric, whereas those in Figure 7 show moderate variations of these distributions.

5. Estimation
Let x1, ..., xn be independent observations from the OPAG family, and θ = (a, c1, η

┬)┬, where η = (η1, ..., ηs)
┬ and c1 

= 1/c. The total log-likelihood function for θ reduces to
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1 1
log ( ) 2 log ( ).

n n

i i
i i

g x G x
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The score components can be expressed as

1
1 1

ln ( ) ( ) ln ( ),
n n

i i i
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n G x c G x G x
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∂  = − + + ∂ ∑ ∑
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g x G x
k s

g x G x= =
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∂ ∂∑ ∑η η

Setting the score components to zero, the Maximum Likelihood Estimates (MLEs) of a, c1, ηk (k = 1, ... s) are the 
solution of a nonlinear system of equations, which has no explicit solution for these parameters. Otherwise, the MLEs 
of these parameters can be determined by maximizing (15) using the AdequacyModel library in R software [28]. We can 
also use the functions optim in R, MaxBFGS in Ox or PROC NLMIXED in SAS to find these estimates.

The inference on the parameters is based on standard likelihood theory. The observed information matrix is given 
in Appendix A.

6. Simulations
A simulation study is done for the OPAW distribution to assess the estimators performance. The Average Estimates 

(AEs), Absolute Biases (ABs), and Mean Square Errors (MSEs) of the MLEs are calculated from 1,000 samples for 
some scenarios reported in Tables 1, 2 and 3, respectively. These findings indicate that the AEs tend to the true values, 
and the ABs and MSEs decay when n increases, which ensures that the MLEs of the OPAW parameters are consistent.

7. OPAW regression model
Regression analysis of lifetime data involves specification of the lifetime distribution of X given a vector 

of covariates v = (v1, ..., vp)
┬. We introduce the OPAW regression model for censored data under two systematic 

components. The most important form of this model defines the parameters b and k depending on v by the logarithm link 
functions (i = 1, ...., n), bi = exp(vi

Tβ1) and ki = exp(vi
Tβ2), respectively, where β1 = (β11, ..., β1p)

┬ and β2 = (β21, ..., β2p)
┬ 

are the vectors of regression coefficients and v i
┬ = (vi1, ..., vip). The OPAW regression model, where both parameters b 

and k depend on v, is very useful in many practical situations.

(15)
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Table 1. Averages from simulations of the OPAW distribution

Parameters AEs

a c1 b k n â 1̂c b̂ k̂

0.5 0.5 0.5 0.5 20 0.5946 0.6012 0.6915 0.5916

50 0.4435 0.5828 0.6234 0.5567

100 0.4502 0.5686 0.5639 0.5410

200 0.5010 0.5023 0.5049 0.5387

0.5 0.5 2 2 20 0.3311 0.8719 1.6121 2.3676

50 0.6503 0.7241 1.7654 2.2237

100 0.5286 0.4626 1.8229 2.1369

200 0.4906 0.4912 1.9558 2.0979

2 2 2 2 20 2.1450 1.7785 1.6504 2.4716

50 2.0441 1.8830 1.8391 2.1087

100 2.0302 2.0211 1.9655 2.0875

200 2.0131 2.0065 1.9954 2.0118

2 2 0.5 0.5 20 1.7470 1.5797 0.2517 0.6164

50 1.8333 2.3947 0.2751 0.5924

100 2.0136 2.0858 0.3315 0.5901

200 2.0001 1.9524 0.4992 0.5334

5 4 5 2 20 4.3268 3.2155 4.7421 3.0411

50 4.7567 3.5559 5.1241 2.8656

100 4.8925 3.8862 4.8896 2.4445

200 5.0071 4.0107 4.9798 2.1269

0.5 3 3 3 20 0.2531 2.5056 1.8872 2.0006

50 0.4507 3.3043 3.9200 3.1656

100 0.4877 2.9041 3.3585 3.0072

200 0.5083 2.9504 2.9511 3.0035

3 0.5 3 3 20 2.1823 0.6893 2.4840 3.4025

50 2.7182 0.6575 3.3712 3.2159

100 2.7470 0.5255 3.0645 2.9877

200 3.0058 0.5001 3.2140 2.9921
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Table 2. ABs from simulations of the OPAW distribution

Parameters AEs

a c1 b k n â 1̂c b̂ k̂

0.5 0.5 0.5 0.5 20 0.0946 0.1012 0.1915 0.0916

50 0.0565 0.0828 0.1234 0.0567

100 0.0498 0.0686 0.0639 0.0410

200 0.0010 0.0023 0.0049 0.0387

0.5 0.5 2 2 20 0.1689 0.3719 0.3879 0.3676

50 0.1503 0.2241 0.2346 0.2237

100 0.0286 0.0374 0.1771 0.1369

200 0.0094 0.0088 0.0442 0.0979

2 2 2 2 20 0.1450 0.2215 0.3496 0.4716

50 0.0441 0.1170 0.1609 0.1087

100 0.0302 0.0211 0.0345 0.0875

200 0.0131 0.0065 0.0046 0.0118

2 2 0.5 0.5 20 0.2530 0.4203 0.2483 0.1164

50 0.1667 0.3947 0.2249 0.0924

100 0.0136 0.0858 0.1685 0.0901

200 0.0001 0.0476 0.0008 0.0334

5 4 5 2 20 0.6732 0.7845 0.2579 1.0411

50 0.2433 0.4442 0.1241 0.8656

100 0.1075 0.1138 0.1104 0.4445

200 0.0071 0.0107 0.0202 0.1269

0.5 3 3 3 20 0.2469 0.4944 1.1128 0.9994

50 0.0493 0.3043 0.9195 0.1656

100 0.0123 0.0959 0.3585 0.0072

200 0.0083 0.0496 0.0489 0.0035

3 0.5 3 3 20 0.8177 0.1893 0.5160 0.4025

50 0.2818 0.1575 0.3712 0.2159

100 0.2530 0.02547 0.0645 0.0123

200 0.0058 0.0001 0.2140 0.0079
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Table 3. MSEs from simulations of the OPAW distribution

Parameters MSEs

a c1 b k n â 1̂c b̂ k̂

0.5 0.5 0.5 0.5 20 0.2027 0.3851 0.3520 0.7408

50 0.1766 0.1707 0.2497 0.3183

100 0.0283 0.0566 0.1304 0.0960

200 0.0130 0.0331 0.0794 0.0540

0.5 0.5 2 2 20 0.4480 0.7213 0.6200 0.0612

50 0.1500 0.0955 0.2584 0.0349

100 0.0759 0.0641 0.0453 0.0187

200 0.0139 0.0490 0.0359 0.0115

2 2 2 2 20 2.0449 1.0364 0.1509 0.5079

50 0.2411 0.2614 0.1413 0.1844

100 0.0214 0.0619 0.1055 0.0924

200 0.0115 0.0103 0.0315 0.0685

2 2 0.5 0.5 20 0.7333 1.2086 0.3205 1.8455

50 0.2029 0.1947 0.2551 0.6124

100 0.1796 0.1844 0.0347 0.0354

200 0.0668 0.1654 0.0043 0.0297

5 4 5 2 20 1.2136 0.9086 1.6549 0.8187

50 1.1918 0.2946 1.2551 0.6124

100 0.9647 0.0863 0.456 0.0354

200 0.1654 0.0262 0.239 0.0264

0.5 3 3 3 20 2.0653 1.2446 1.2457 1.0989

50 1.1446 1.1246 1.1758 0.9997

100 0.7605 0.5460 1.1344 0.9200

200 0.064 0.0246 1.1015 0.8000

3 0.5 3 3 20 1.8322 1.5421 1.0257 1.1587

50 0.9370 0.3251 0.8015 1.0185

100 0.2810 0.1254 0.1549 0.9254

200 0.1630 0.0542 0.12354 0.1175
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The survival function of Xi given vi follows from (2) as

exp
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Let F and C be the sets of individuals for which xi is the lifetime or censoring ci, respectively. The total log-
likelihood function for θ = (a, c, β1

┬, β2
┬)┬ from model (16) has the form   
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∑

where r is the number of failures.
The MLE θ̂ of the vector of unknown parameters can be found by maximizing Equation (17) via R software or 

NLMixed procedure in SAS. Equation (17) is twice differentiable with respect to the variable xi since it is a composite 
function built by two times differentiable functions. Then, the standard regularity conditions for maximum likelihood 
estimation are satisfied, and the existence of the MLEs with desirable properties follow.

For the OPAW regression model, we consider the quantile residuals (qrs), namely


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       −          = Φ −  
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[36] suggested the construction of envelopes to enable better interpretation of the probability normal plot of the 
residuals. These envelopes are simulated confidence bands that contain the residuals such that if the model is well-fitted, 
the majority of points will be within these bands and randomly distributed.

(16)

(17)
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8. Applications
We consider two sub-models of the new family to compare with the baseline distributions and six other extended 

models (with two extra parameters) by means of four real datasets. The models are: the Beta-G (BG) [3], Exponentiated 
Generalized-G (EGG) [7], Kumaraswamy-G (KG) [5], Log Gamma-G I and II (LGGI and LGGII) [30], and Weibull-G 
(WG) [8]. The maximum log-likelihood (lmax), four classical statistics denoted by their initials (AIC, CAIC, BIC, HQIC), 
and Anderson-Darling (A∗) and Cramér-von Mises (W ∗) are adopted as measures of the adequacy of the fitted models.

Dataset I: 1,150 heights measurements of the surface roughness of rollers (available for download [31]).
Dataset II: 74 gauge lengths of 20 mm [32].
The descriptive statistics for both datasets are reported in Table 4

Table 4. Descriptive analysis

Data Mean Median Mode Variance Skewness Kurtosis Min Max

I 3.535 3.614 3.750 0.422 -0.987 1.863 0.237 5.150

II 2.477 2.513 2.750 0.238 -0.154 -0.049 1.312 3.585

Table 5. Findings from the fitted distributions

Dataset Model Parameter MLE SE

I OPAW a 1.139 0.229

c1 0.031 0.019

b 2.419 0.242

k 2.976 0.427

II OPAGA a 1.314 1.089

c1 0.149 0.173

b 17.14 6.095

k 8.361 2.835

We consider the Weibull and gamma baselines for fitting eight distributions to datasets I and II. The MLEs, their 
Standard Errors (SEs) for the OPAW and OPAGA models are reported in Table 5. The adequacy statistics of the eight 
fitted distributions are given in Tables 6 and 7. Figures 8 and 9 illustrate the closeness of the estimated pdfs and cdfs for 
both models to their empirical counterparts. Further, the Probabilityprobability (PP) and Quantile-Quantile (QQ) plots 
are close to the first bisector line.
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Table 6. Adequacy measures for dataset I

Model AIC CAIC BIC HQIC W ∗ A∗ −lmax

OPAW 2120.614 2120.649 2140.804 2128.236 0.074 0.463 1056.307

Weibull 2179.853 2179.863 2189.948 2183.663 0.651 4.004 1087.926

BW 2164.985 2165.020 2185.175 2172.606 0.645 3.618 1078.492

EGW 2166.374 2166.409 2186.564 2173.995 0.663 3.719 1079.187

KW 2152.446 2152.481 2172.636 2160.067 0.517 2.860 1072.223

LGWI 2164.924 2164.959 2185.114 2172.545 364.9 2284 1078.462

LGWII 2143.234 2143.269 2163.424 2150.855 0.425 2.333 1067.617

WW 2183.853 2183.888 2204.043 2191.474 0.833 4.817 1087.926

Figure 8. Results from the OPAW distribution fitted to dataset I
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Table 7. Adequacy measures for dataset II

Model AIC CAIC BIC HQIC W ∗ A∗ −lmax

OPAW 109.896 110.476 119.112 113.572 0.023 0.182 50.948

Weibull 110.330 110.499 114.938 112.168 0.086 0.564 53.165

BW 110.227 110.807 119.443 113.903 0.026 0.209 51.113

EGW 110.260 110.839 119.476 113.936 0.027 0.213 51.130

KW 110.314 110.894 119.530 113.990 0.029 0.219 51.157

LGWI 110.227 110.807 119.443 113.904 24.50 148.0 51.114

LGWII 112.406 112.986 121.623 116.083 0.061 0.414 52.203

WW 110.273 110.853 119.489 113.950 0.028 0.223 51.137

Figure 9. Results from the OPAGA distribution fitted to dataset II
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8.1 Datasets III and IV: Bimodal data and regression model

The third application refers to a bimodal dataset to show the flexibility of the OPAW distribution, and the fourth 
application considers a OPAW regression model for censored data. We compare the results of their fits with those of 
non-nested KW and BW models. The computations are performed with the gamlss script in R software [28].

Figure 10. QQ plots from fitted models to dataset III: (a) OPAW (b) KW (c) BW (d) Weibull
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8.1.1 Dataset III

The data consist of n = 272 waiting times (in minutes) between eruptions in Old Faithful geyser in Wyoming’s 
Yellowstone National Park, USA (library datasets in the R software).

Table 8 reports the values of some statistics for the fitted models, which indicate that the OPAW distribution is 
the best model. Figure 10 displays the QQ plots of the qrs for the fitted models, thus supporting previous conclusion. 
Table 9 gives the MLEs and their SEs. The histogram and the estimated densities in Figure 11a, and the empirical and 
estimated cdfs in Figure 11b reveal that the OPAW distribution explains the current data.

Table 8. Measures for some models fitted to dataset III

Model AIC CAIC BIC HQIC W ∗ A∗ −lmax

OPAW 2127.87 2128.02 2142.30 2133.66 0.4828 3.4287 1059.94

KW 2157.62 2157.77 2172.04 2163.408 0.5796 3.5759 1074.81

BW 2155.96 2180.33 2170.38 2185.971 0.5153 3.4972 1073.98

Weibull 2174.02 2174.06 2181.23 2176.911 1.1559 6.4249 1085.01

Figure 11. Dataset III. (a) Estimated densities. (b) Empirical and estimated cdfs

Table 9. Findings for the OPAW model fitted to dataset III
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8.1.2 Dataset IV

The data refer to head cancer (n = 96), where 51 patients received radiotherapy (Arm A) and 45 patients received 
radiotherapy and chemotherapy (Arm B). In this study, we have approximately 24% of censored data. For more details, 
see [33-35].

Just one covariate v1 is used: two-Arm (Arm A = 0 and Arm B = 1), and the systematic components for b and k are

( ) ( )10 11 1 20 21 1exp and exp , 1 96,i ib v k v iβ β β β= + = + = …

where β1 = (β10, β11)
┬ and β2 = (β20, β21)

┬.

Figure 12. QQ plots from the fitted regression models to dataset IV: (a) OPAW (b) KW (c) BW (d) Weibull
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Table 10 lists three statistics, thus showing that the OPAW regression model is the best for the current data. The QQ 
plots of the qrs for both models in Figure 12, and the plots of the empirical and estimated survival functions in Figure 
13 support this conclusion. Table 11 provides the estimates, their SEs and p-values. We note that the covariate two-Arm 
is significant for both parameters. The residual index plot (Figure 14a), and the normal probability plot of the residuals 
with simulated envelope [36] (Figure 14b) show no evidence against the regression assumptions. So, the OPAW model 
is adequate to Efron’s data.

Figure 13. Dataset IV: Estimated survival and empirical functions

Figure 14. (a) Index plot of the qrs. (b) QQ plot for the qrs with envelope
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Table 10. Adequacy measures for some regression models fitted to dataset IV

Model AIC CAIC BIC

OPAW 1071.31 1081.57 1086.70

KW 1080.86 1096.68 1096.24

BW 1085.14 1100.96 1100.53

Weibull 1096.71 1116.53 1106.96

Table 11. Findings from the OPAW regression fitted to dataset IV

MLEs SEs p-values

β10 7.7440 0.2229 0.0000

β11 -0.7642 0.2665 0.0051

β20 0.9386 0.0737 0.0000

β21 0.1812 0.0865 0.0388

log(a) -1.4866 0.1570

log(c) -7.7486 0.3614

9. Conclusions
Significant progress has been made in the last years towards constructing flexible lifetime regression models 

among applied statisticians. We provide a mathematical treatment of the distribution including the density of the 
quantile measures and give infinite expansions for the rth moment which hold in generality for any parameter values. 
We proposed the Odd Pareto-G (OPAG) family of distributions, and developed a regression model based on it. The 
inference was conducted based on likelihood theory. Four applications to real data proved empirically the utility of 
the new models. The main advantage of the OPAG family is that it can model bimodal data instead of using mixtures 
of distributions. Another advantage is the associated regression model presented in applications III and IV. For future 
researches, other regression models can be developed, such as random effects, semiparametric, bivariate regression 
models based on the new family.
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Appendix A
For the OPAW(a, c1, b, k) and OPAGA(a, c1, b, k) models, the observed information matrix is given by
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