On the Net Distance Matrix of a Signed Block Graph

Zixuan Hong, Yaoping Hou*

MOE-LCSM, CHP-LCOCS, School of Mathematics and Statistics, Hunan Normal University, Changsha, Hunan 410081, P. R. China Email: yphou@hunnu.edu.cn

Received: 18 October 2022; Revised: 7 March 2023; Accepted: 10 March 2023

Abstract

A connected signed graph G, where all blocks of it are positive cliques or negative cliques (of possibly varying sizes), is called a signed block graph. Let A, N and \tilde{D} be adjacency, net Laplacian and net distance matrices of a signed block graph, respectively. In this paper the formulas for the determinant of A and \tilde{D} were given firstly. Then the inverse (resp. Moore-Penrose inverse) of \tilde{D} is obtained if it is nonsingular (resp. singular), which is the sum of a Laplacian-like matrix and at most two matrices with rank 1.

Keywords: signed block graph, net distance matrix, net Laplacian matrix, adjacency matrix, Moore-Penrose inverse

MSC: 05C50

1. Introduction

A signed graph \dot{G} is a pair (G, σ), where $G=(V, E)$ is a simple graph called the underlying graph, and $\sigma: E \rightarrow$ $\{1,-1\}$ is the signature. An edge $e \in E$ of \dot{G} is called positive (resp. negative) edge if $\sigma(e)=+1$ (resp. $\sigma(e)=-1$). The number of vertices of \dot{G} is denoted by n. For a signed graph $\dot{G}=(G, \sigma)$, the degree δ_{i} of a vertex i of \dot{G} is the number of its neighbours. The positive degree (resp. negative degree) δ_{i}^{+}(resp. δ_{i}^{-}) is the number of positive (resp. negative) neighbours of i. The net degree of i is $\delta_{i}^{ \pm}=\delta_{i}^{+}-\delta_{i}^{-}$. We use K_{n} (resp. $-K_{n}$) to denote the positive (resp. negative) n-clique.

Recall that a signed hypergraph (Γ, ξ) is a hypergraph $\Gamma=(V, H)$ with a vertex-edge incidence function $\xi: V \times H$ $\rightarrow\{-1,0,1\}$ and the sign of a hyper-edge h is $-\Pi_{v \in h} \xi(v, h)$. A signed hypergraph is called a signed hypertree, if it is both connected and acyclic. One can refer [1] for properties of a signed hypertree. For a signed hypertree (Γ, ξ), let \dot{G} be the signed graph obtained from (Γ, ξ) by replacing each signed hyperedge with a signed clique, for example, replacing a negative hyperedge of five vertices with a negative clique of order five, then \dot{G} is a signed block graph with each block a positive or negative clique, see Figure 1 for an example, where the signatures of vertices and the positive (resp. negative) hyperedges are depicted by + (resp. -), and the corresponding signed block graph with signed cliques $-K_{3}$, K_{2}, K_{3} and $-K_{4}$, and the edges of the positive (resp. negative) clique are depicted by solid (resp. dash) lines. Let \dot{G} be a signed block graph with signed cliques $B_{i}, 1 \leq i \leq k$, here the order of B_{i} is b_{i} and the signature of B_{i} is η_{i}. In this paper, each signed clique of a signed block graph is assumed to be a positive clique or a negative clique, that is $\eta_{i}=1$ if B_{i} is a positive clique and $\eta_{i}=-1$ if B_{i} is a negative clique.

Figure 1. A signed hypertree and the corresponding signed block graph.

The adjacency matrix $A=\left(a_{i j}\right)$ of a signed graph is obtained from the adjacency matrix of its underlying graph by reversing the sign of all 1 s which correspond to negative edges. The net Laplacian matrix of a signed graph is defined as $N=\triangle^{ \pm}-A$, where $\triangle^{ \pm}$is the diagonal matrix of vertex net degrees. For basic properties of the net Laplacian matrix, one can refer [2]. The Laplacian matrix of a unsigned graph is $L=\triangle-A$, where \triangle denotes the diagonal matrix of vertex degrees. More about the Laplacian matrices of unsigned graphs see [3]. Given a signed block graph \dot{G} with signed cliques $B_{i}, 1 \leq i \leq k$, each B_{i} of \dot{G} is considered as a graph on n vertices perhaps with isolated vertices and let its edge set be E_{i}. Let N_{i} and L_{i} be the net Laplacian matrix and the Laplacian matrix of $B_{i}=\left(V, E_{i}\right)$, respectively. Define the net Laplacian-like matrix and the Laplacian-like matrix of the signed block graph as $\hat{N}=\sum_{i=1}^{k} \frac{1}{b_{i}} N_{i}$ and $\hat{L}=\sum_{i=1}^{k} \frac{1}{b_{i}} L_{i}$, respectively.

Recall that the distance $d(i, j)$ between the vertices i and j of a graph G is the length of a shortest path from i to j. The distance matrix $D=\left(d_{i j}\right)$ of G is an $n \times n$ matrix, where $d_{i j}=d(i, j)$ and $d_{i i}=0, i, j=1,2, \ldots, n$. One can refer [4] for properties of distance matrix. For the distance matrix of a tree with n vertices, Graham and Pollak [5] showed that the determinant of D is $(-1)^{n-1}(n-1) 2^{n-2}$, which depends only on the order of T, and Graham and Lovász [6] gave a formula $D^{-1}=-\frac{1}{2} L+\frac{1}{2(n-1)} \tau \tau^{T}$, where $\tau=\left(\tau_{1}, \tau_{2}, \ldots, \tau_{n}\right)^{T}, \tau_{i}=2-\delta_{i}, i=1,2, \ldots, n$. Let β be an $n \times 1$ vector with $\beta_{i}=\sum_{i=1}^{r} \frac{1}{b_{i}}-(r-1)$, where vertex i is in $r \geq 1$ cliques of size $b_{1}, b_{2}, \ldots, b_{r}$. Bapat and Sivasubramanian [7] showed that if G is a block graph on n vertices with distance matrix D, then the determinant of D is $\operatorname{det}(D)=(-1)^{n} \lambda \prod_{i=1}^{k} b_{i}$ and the inverse of D is $D^{-1}=-\hat{L}+\frac{1}{\lambda} \beta \beta^{T}$, where $\lambda=\sum_{i=1}^{k} \frac{b_{i}-1}{b_{i}}$. The formula for D^{-1} establishes the relationship between the inverse of the distance matrix and the Laplacian-like matrix \hat{L} of a block graph. Similar results for an odd-cycle-clique graph and a bi-block graph were given in [8-9]. More about the inverse of distance matrix and Laplacian matrix of a graph, see [10-12].

For a signed graph \dot{G} with n vertices and $\operatorname{rank}(N)=n-1$. Following [13], let $Z=\left(N+\frac{1}{n} J\right)^{-1}, \bar{Z}=\operatorname{diag}\left(z_{11}, \ldots\right.$, $z_{n n}$), where $z_{i i}$ is the entries of the diagonal of $Z, i=1, \ldots, n$. Call the matrix $R=(r(i, j))$, where $r(i, j)=z_{i i}+z_{j j}-2 z_{i j}$, the resistance matrix of \dot{G}. In a signed block graph \dot{G}, for two vertices i and $j, \tilde{d}(i, j)=\sum_{e \in \mathcal{P}_{i, j}} \sigma(e)$ denotes the net distance between i and j, where $\mathcal{P}_{i, j}$ is any shortest path from i to j, specially, $\tilde{d}(i, i)=0, i=1,2, \ldots, n$. The net distance matrix of a signed block graph \dot{G} is defined as $\tilde{D}=\left(\tilde{d}_{i j}\right)$, where $\tilde{d}_{i j}=\tilde{d}(i, j), 1 \leq i, j \leq n$. Recall that for an $n \times n$ matrix M, the Moore-Penrose inverse (denoted by M^{+}) of M is the unique $n \times n$ matrix satisfying the matrix equations (i) $M M^{+} M=M$, (ii) $M^{+} M M^{+}=M^{+}$, (iii) $\left(M M^{+}\right)^{T}=M M^{+}$, (iv) $\left(M^{+} M\right)^{T}=M^{+} M$. More for Moore-Penrose inverse of a matrix see [14].

The aim of this paper is to generalize the above results to a signed block graph. The paper is organized as follows. In Section 2, we obtain the determinants of the adjacency matrix A and the net distance matrix \tilde{D} of a signed block graph and it follows that \tilde{D} is nonsingular if and only if $\zeta=\sum_{i=1}^{k} \eta_{i} \frac{b_{i}-1}{b_{i}} \neq 0$. In Section 3, we showed that $\tilde{D}^{-1}=-\hat{N}+\frac{1}{\zeta} \beta \beta^{T}$ if \tilde{D} is nonsingular. In Section 4, we obtain the explicit formulas for \hat{N}^{+}and \tilde{D}^{+}, namely, $\hat{N}^{+}=-\tilde{D}-\frac{\mathbf{1}^{T} \tilde{D} \mathbf{1}}{n^{2}} J+\frac{1}{n}(\tilde{D} J+J \tilde{D})$, $\tilde{D}^{+}=-\hat{N}-\frac{\beta^{T} \hat{N} \beta}{\left(\beta^{T} \beta\right)^{2}} \beta \beta^{T}+\frac{1}{\beta^{T} \beta}\left(\hat{N} \beta \beta^{T}+\beta \beta^{T} \hat{N}\right)$.

2. The determinants of \boldsymbol{A} and $\tilde{\boldsymbol{D}}$

Let $\mathbf{1}$ be an appropriate size column vector whose entries are ones. Let I be the identity matrix and J be the all ones matrix. A block is called a pendant block if it has only one cut vertex or if it is the only block in that component. Given a signed block graph \dot{G} with signed cliques B_{1}, \ldots, B_{k}, if $S \subseteq\{1, \ldots, k\}$, then \dot{G}_{S} will denote the subgraph of \dot{G} induced by signed cliques $B_{i}, i \in S$. An isolated vertex in a signed block graph is considered to be a block of the signed block graph. The Lemma 1 in [15] also holds for signed block graphs. We state it in the following lemma and omit the proof.

Lemma 2.1 Let \dot{G} be a signed block graph of order n with signed cliques B_{1}, \ldots, B_{k}. Let b_{i} and η_{i} be the order and the signature of B_{i}, respectively. Let $\left(\alpha_{1}, \ldots, \alpha_{k}\right)$ be a k-tuples of nonnegative integers satisfying the following conditions: (i) $\sum_{i=1}^{k} \alpha_{i}=n$, (ii) for any nonempty $S \subseteq\{1, \ldots, k\}, \sum_{i \in S} \alpha_{i} \leq\left|V\left(\dot{G}_{S}\right)\right|$. If B_{i} is a pendant block, then α_{i} equals either b_{i} or $b_{i}-1$.

Given a signed block graph \dot{G}, for a vertex i, we use $\dot{G} \backslash\{i\}$ to denote the signed graph by deleting vertex i from \dot{G}. The next result gives a formula for the determinant of the adjacency matrix of a signed block graph which extend the similar result for a unsigned block graph. One can refer [15] for detail proof.

Theorem 2.2 Let \dot{G} be a signed block graph on n vertices with signed cliques B_{1}, \ldots, B_{k}. Let η_{i} be the signature of B_{i}. Let A be the adjacency matrix of \dot{G}. Then

$$
\operatorname{det}(A)=(-1)^{n-k} \sum(-1)^{t}\left(\alpha_{1}-1\right) \cdots\left(\alpha_{k}-1\right)
$$

where the summation is over all k-tuples $\left(\alpha_{1}, \ldots, \alpha_{k}\right)$ of nonnegative integers satisfying the following conditions: (i) $\sum_{i=1}^{k} \alpha_{i}=n$ (ii) for any nonempty $S \subseteq\{1, \ldots, k\}, \sum_{i \in S} \alpha_{i} \leq\left|V\left(\dot{G}_{S}\right)\right|$ and $t=\sum_{i \in X} \alpha_{i}, X \subseteq\{1, \ldots, k\}$ is the index set corresponding to negative cliques.

Next we consider the signed block graph in Figure 1 to illustrate the above result.
Example 2.3 For the signed block graph in Figure 1, we get the adjacency matrix is

$$
A=\left(\begin{array}{ccccccccc}
0 & -1 & -1 & 0 & 0 & 0 & 0 & 0 & 0 \\
-1 & 0 & -1 & 0 & 0 & 0 & 0 & 0 & 0 \\
-1 & -1 & 0 & 1 & 1 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 1 & 0 & -1 & -1 & -1 \\
0 & 0 & 0 & 0 & 0 & -1 & 0 & -1 & -1 \\
0 & 0 & 0 & 0 & 0 & -1 & -1 & 0 & -1 \\
0 & 0 & 0 & 0 & 0 & -1 & -1 & -1 & 0
\end{array}\right) .
$$

Then we have

$$
\begin{aligned}
\operatorname{det}(A)= & 2=(-1)^{9-4}\left((-1)^{2+3}(2-1)(2-1)(2-1)(3-1)+(-1)^{3+3}(3-1)(1-1)(2-1)(3-1)\right. \\
& \left.+(-1)^{3+4}(3-1)(1-1)(1-1)(4-1)+(-1)^{2+4}(2-1)(2-1)(1-1)(4-1)\right) \\
= & (-1)^{n-4} \sum(-1)^{t}\left(\alpha_{1}-1\right)\left(\alpha_{2}-1\right)\left(\alpha_{3}-1\right)\left(\alpha_{4}-1\right),
\end{aligned}
$$

where $t=\sum_{i \in X} \alpha_{i}, X \subseteq\{1,4\}$ is the index set corresponding to negative cliques and the summation is over all 4-tuples (α_{1}, $\alpha_{2}, \alpha_{3}, \alpha_{4}$) of nonnegative integers satisfying the conditions (i) $\alpha_{1}+\alpha_{2}+\alpha_{3}+\alpha_{4}=9$, (ii) for any nonempty $S \subseteq\{1,2,3,4\}$, $\sum_{i \in S} \alpha_{i} \leq\left|V\left(\dot{G}_{S}\right)\right|$. The determinant of A not only depends on the order and the signature of each signed cliques, but also on the structure of \dot{G}. If we change the structure of the signed block graph in Figure 1, for example, exchange K_{3} and $-K_{4}$, then the determinant of A will be 0 .

If Q is an $n \times n$ matrix, then we use $\operatorname{cof}(Q)$ to denote the sum of its all algebraic cofactors. The following Theorem 2.4 is similar to the distance matrix of a graph, we omit the proof here. One can refer [16] for detail proof.

Theorem 2.4 Let \dot{G} be a signed block graph with signed cliques B_{1}, \ldots, B_{k}. Let \tilde{D} be the net distance matrix of \dot{G}. Then (i) $\operatorname{cof}(\tilde{D})=\prod_{i=1}^{k} \operatorname{cof}\left(\tilde{D}_{i}\right)$, (ii) $\operatorname{det}(\tilde{D})=\sum_{i=1}^{k} \operatorname{det}\left(\tilde{D}_{i}\right) \prod_{j \neq i} \operatorname{cof}\left(\tilde{D}_{j}\right)$, where \tilde{D}_{i} denotes the net distance matrix of signed clique $B_{i}, 1 \leq i \leq k$.

Let \dot{G} be a signed block graph with n vertices with signed cliques $B_{i}, 1 \leq i \leq k$, where each B_{i} is a b_{i}-clique with signature η_{i}. Denoted by ζ be the constant $\zeta=\zeta_{\dot{G}}=\sum_{i=1}^{k} \frac{b_{i}-1}{b_{i}} \eta_{i}$. We give the formula for the determinant of the net distance matrix of a signed block graph in the following theorem.

Theorem 2.5 Let \dot{G} be a signed block graph on n vertices with signed cliques $B_{i}, 1 \leq i \leq k$. Let B_{i} be a b_{i}-clique with signature η_{i}. Let \tilde{D} be the net distance matrix of \dot{G}. Then

$$
\operatorname{det}(\tilde{D})=(-1)^{n-1} \zeta \prod_{i=1}^{k} \eta_{i}^{b_{i}-1} b_{i}
$$

Proof. As the net distance matrix \tilde{D}_{i} of B_{i} is $\eta_{i}(J-I)$, we have $\operatorname{det}\left(\tilde{D}_{i}\right)=(-1)^{b_{i}-1}\left(b_{i}-1\right) \eta_{i}^{b_{i}}$ and $\operatorname{cof}\left(\tilde{D}_{i}\right)=(-1)^{b_{i}-1}$ $b_{i} \eta_{i}^{b_{i}-1}$. Since $\sum_{i=1}^{k} b_{i}=n-k+1$, then according to Theorem 2.4, it follows that

$$
\begin{aligned}
\operatorname{det}(\tilde{D}) & =\sum_{i=1}^{k} \operatorname{det}\left(\tilde{D}_{i}\right) \prod_{j \neq i} \operatorname{cof}\left(\tilde{D}_{j}\right)=\sum_{i=1}^{k}(-1)^{b_{i}-1} \eta_{i}^{b_{i}}\left(b_{i}-1\right) \prod_{j \neq i}(-1)^{b_{j}-1} \eta_{j}^{b_{j}-1} b_{j} \\
& =(-1)^{n-1} \prod_{i=1}^{k} b_{i} \cdot \sum_{i=1}^{k} \frac{b_{i}-1}{b_{i}} \eta_{i}^{b_{i}} \prod_{j \neq i} \eta_{j}^{b_{j}-1}=(-1)^{n-1} \prod_{i=1}^{k} b_{i} \cdot \sum_{i=1}^{k} \frac{b_{i}-1}{b_{i}} \eta_{i} \prod_{i=1}^{k} \eta_{i}^{b_{i}-1} \\
& =(-1)^{n-1} \zeta \prod_{i=1}^{k} \eta_{i}^{b_{i}-1} b_{i} .
\end{aligned}
$$

Remark 2.6 For a signed block graph \dot{G}, the determinant of \tilde{D} only depends on the order and signature of each
signed clique $B_{i}, 1 \leq i \leq k$, not on the structure of \dot{G}, which is different from the determinant of A. According to Theorem 2.5, the net distance matrix \tilde{D} of \dot{G} is nonsingular if and only if $\zeta_{\dot{G}} \neq 0$.

If $\zeta_{\dot{G}}=0$, we have $\operatorname{rank}(\tilde{D})=n-1$. In fact, for any vertex i which is not a cut vertex, we always have $\zeta_{\dot{G} \backslash\{i\}} \neq 0$. In other words, the net distance matrix of the signed block graph $\dot{G} \backslash\{i\}$ is nonsingular. Hence we have the following corollary.

Corollary 2.7 Let \tilde{D} be the net distance matrix of a signed block graph \dot{G}. Then

$$
\operatorname{rank}(\tilde{D})=\left\{\begin{array}{cc}
n, & \text { if } \zeta \neq 0 \\
n-1, & \text { if } \zeta=0
\end{array}\right.
$$

Example 2.8 For the signed block graph in Figure 1, whose signed cliques are $-K_{3}, K_{2}, K_{3}$ and $-K_{4}$. We have

$$
\tilde{D}=\left(\begin{array}{ccccccccc}
0 & -1 & -1 & 0 & 0 & 0 & -1 & -1 & -1 \\
-1 & 0 & -1 & 0 & 0 & 0 & -1 & -1 & -1 \\
-1 & -1 & 0 & 1 & 1 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 2 & 2 & 1 & 1 & 1 \\
0 & 0 & 1 & 2 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 2 & 1 & 0 & -1 & -1 & -1 \\
-1 & -1 & 0 & 1 & 0 & -1 & 0 & -1 & -1 \\
-1 & -1 & 0 & 1 & 0 & -1 & -1 & 0 & -1 \\
-1 & -1 & 0 & 1 & 0 & -1 & -1 & -1 & 0
\end{array}\right)
$$

and $\zeta=-\frac{2}{3}+\frac{1}{2}+\frac{2}{3}-\frac{3}{4}=-\frac{1}{4}$, hence, $\operatorname{det}(\tilde{D})=18=(-1)^{8} \cdot\left(-\frac{1}{4}\right) \cdot 3 \cdot 2 \cdot 3 \cdot(-4)=(-1)^{n-1} \zeta \cdot \prod_{i=1}^{k} \eta_{i}^{b_{i}-1} \cdot b_{i}$.

3. The formula for $\tilde{\boldsymbol{D}}^{-1}$

For a signed block graph \dot{G}, let β be an $n \times 1$ vector defined as follows. Let a vertex $v \in V$ be in $r \geq 1$ cliques of size b_{1}, \ldots, b_{r}. We define

$$
\beta_{v}=\sum_{i=1}^{r} \frac{1}{b_{i}}-(r-1) .
$$

For the signed block graph given in Figure 1 , we get $\beta=\left(\frac{1}{3}, \frac{1}{3},-\frac{5}{6}, \frac{1}{2}, \frac{1}{3},-\frac{5}{12}, \frac{1}{4}, \frac{1}{4}, \frac{1}{4}\right)^{T}$.
In this section, we first drive the eigenvector associated with eigenvalue 0 of \tilde{D} when \tilde{D} is singular. Furthermore, we obtain the formula for \tilde{D}^{-1} when it is nonsingular. Let us start with a lemma.

Lemma 3.1 [7, Lemma 1] Let \dot{G} be a signed block graph of order n with signed blocks $B_{i}, 1 \leq i \leq k$. Let β be the vector defined as above. Then

$$
\sum_{v \in V(\dot{G})} \beta_{v}=1 .
$$

For vectors f, g with the same dimension, we use $\langle f, g\rangle$ to denote the usual inner product of two vectors. The
following lemma is similar to the unsigned block graph. One can refer [7] for detailed proof.
Lemma 3.2 Let \tilde{D} be the net distance matrix of a signed block graph \dot{G} with n vertices. Let B_{i} be the signed clique of \dot{G} with signature $\eta_{i}, 1 \leq i \leq k$. Let β be the vector defined as above. Then

$$
\tilde{D} \beta=\zeta \mathbf{1}
$$

It follows from Lemma 3.2 that β is an eigenvector associated with eigenvalue 0 of the net distance matrix \tilde{D} if \tilde{D} is singular. We use $R_{v}(A)$ (resp. $\left.C_{v}(A)\right)$ to denote the v-th row (resp. column) of the matrix A.

Lemma 3.3 Let \dot{G} be a signed block graph on n vertices with signed cliques $B_{i}, 1 \leq i \leq k$. Let \tilde{D} be the net distance matrix of \dot{G}. Let \hat{N} and β be the matrix and the vector as defined above, respectively. Then

$$
\hat{N} \tilde{D}+I=\beta \mathbf{1}^{T} .
$$

Proof. We prove the result by induction on k. For $k=1$, we have $\tilde{D}=(J-I) \eta_{1}, \hat{N}=\left(I-\frac{1}{n} J\right) \eta_{1}$ and $\beta=\frac{1}{n} \mathbf{1}$. Then it is easy to verify that $\hat{N} \tilde{D}+I=\beta \mathbf{1}^{T}$. So let $k \geq 2$ and assume the result to be true for signed block graphs with less than k signed cliques.

Next considering a signed block graph \dot{G} with k signed cliques, we may assume, without loss of generality, that B_{1} is a pendant signed clique and its cut vertex is vertex c. Let $\dot{G}^{*}=\dot{G} \backslash\left(B_{1} \backslash\{c\}\right)$ and $\hat{N}_{\dot{G}^{*}}=\sum_{i=2}^{k} \frac{1}{b_{i}} N_{i}$. Let e_{c} be the $\left|V\left(\dot{G}^{*}\right)\right|$ dimensional column vector with 1 in position c and zeros elsewhere. Let α denote the c-th column of $\tilde{D}_{\dot{G}^{*}}, i$. e. $\alpha=\tilde{D}_{\dot{G}^{*}} e_{c^{*}}$ Let f_{i} be the $\left|V\left(B_{1} \backslash\{c\}\right)\right|$ dimensional column vector with 1 in position i and zeros elsewhere, where the index set of it is $V\left(B_{1} \backslash\{c\}\right)$. Then we have

$$
\hat{N}=\left(\begin{array}{cc}
\hat{N}_{\dot{G}^{*}}+\frac{b_{1}-1}{b_{1}} \eta_{1} e_{c} e_{c}^{T} & -\frac{\eta_{1}}{b_{1}} e_{c} \mathbf{1}^{T} \\
-\frac{\eta_{1}}{b_{1}} \mathbf{1} e_{c}^{T} & \frac{\eta_{1}}{b_{1}}\left(b_{1} I-J\right)
\end{array}\right), \tilde{D}=\left(\begin{array}{cc}
\tilde{D}_{\dot{G}^{*}} & \left(\alpha+\eta_{1} \mathbf{1}\right) \mathbf{1}^{T} \\
\mathbf{1}\left(\alpha^{T}+\eta_{1} \mathbf{1}^{T}\right) & (J-I) \eta_{1}
\end{array}\right)
$$

Thus it follows that

$$
\hat{N} \tilde{D}+I=\left(\begin{array}{cc}
\hat{N}_{\dot{G}^{*}}+\frac{b_{1}-1}{b_{1}} \eta_{1} e_{c} e_{c}^{T} & -\frac{\eta_{1}}{b_{1}} e_{c} \mathbf{1}^{T} \\
-\frac{\eta_{1}}{b_{1}} \mathbf{1} e_{c}^{T} & \frac{\eta_{1}}{b_{1}}\left(b_{1} I-J\right)
\end{array}\right)\left(\begin{array}{cc}
\tilde{D}_{\dot{G}^{*}} & \left(\alpha+\eta_{1} \mathbf{1}\right) \mathbf{1}^{T} \\
\mathbf{1}\left(\alpha^{T}+\eta_{1} \mathbf{1}^{T}\right) & (J-I) \eta_{1}
\end{array}\right)+I .
$$

Next we need to prove that $(\hat{N} \tilde{D}+I)_{i j}=\beta_{i}$, for all $1 \leq i, j \leq n$.
Case I: For row $i \in \dot{G}^{*} \backslash\{c\}$.
For such a row i and for columns $j \in \dot{G}^{*}$, by an induction assumption, we have $\left(\hat{N}_{\dot{G}^{*}} \tilde{D}_{\dot{G}^{*}}+I_{i j}=\left(\beta_{\dot{G}^{*}}\right)_{i}\right.$. Since $\beta_{i}=\left(\beta_{\dot{G}^{*}}\right)_{i}$ for $i \in \dot{G}^{*} \backslash\{c\}$, we are done for all columns in \dot{G}^{*}. While for columns $j \in B_{1} \backslash\{c\}$, we have

$$
(\hat{N} \tilde{D}+I)_{i j}=\left\langle R_{i}\left(\hat{N}_{\dot{G}^{*}}\right), \alpha+\eta_{1} \mathbf{1}\right\rangle=\left\langle R_{i}\left(\hat{N}_{\dot{G}^{*}}\right), \alpha\right\rangle+\left\langle R_{i}\left(\hat{N}_{\dot{G}^{*}}\right), \eta_{1} \mathbf{1}\right\rangle=\left(\hat{N}_{\dot{G}^{*}} \tilde{D}_{\dot{G}^{*}}\right)_{i c}=\beta_{i} .
$$

Case II: For row $i \in B_{1} \backslash\{c\}$.
Since for any row $i \in B_{1} \backslash\{c\}$, it is easy to note that $\beta_{i}=\frac{1}{b_{1}}$. For columns $j \in B_{1} \backslash\{c\}$, if $i \neq j$, then we get

$$
\begin{aligned}
(\hat{N} \tilde{D}+I)_{i j} & =\left\langle-\frac{\eta_{1}}{b_{1}} e_{c}^{T}, \alpha+\eta_{1} \mathbf{1}\right\rangle+\left\langle\frac{\eta_{1}}{b_{1}}\left(b_{1} f_{i}^{T}-\mathbf{1}^{T}\right), \eta_{1}\left(\mathbf{1}-f_{j}\right)\right\rangle \\
& =-\frac{1}{b_{1}}+\left\langle\eta_{1} f_{i}^{T}, \eta_{1} \mathbf{1}\right\rangle+\left\langle\eta_{1} f_{i}^{T},-\eta_{1} f_{j}\right\rangle+\left\langle-\frac{\eta_{1}}{b_{1}} \mathbf{1}^{T}, \eta_{1} \mathbf{1}\right\rangle+\left\langle-\frac{\eta_{1}}{b_{1}} \mathbf{1}^{T},-\eta_{1} f_{j}\right\rangle \\
& =-\frac{1}{b_{1}}+1-\frac{1}{b_{1}}\left(b_{1}-1\right)+\frac{1}{b_{1}}=\frac{1}{b_{1}}=\beta_{i}
\end{aligned}
$$

and it is easy to see that when $i=j$,

$$
(\hat{N} \tilde{D}+I)_{i j}=\frac{1}{b_{1}}-1+1=\beta_{i}
$$

For the column $j=c$, it is simple to note that

$$
\begin{aligned}
(\hat{N} \tilde{D}+I)_{i c} & =\left\langle-\frac{\eta_{1}}{b_{1}} e_{c}^{T}, \alpha\right\rangle+\left\langle\frac{\eta_{1}}{b_{1}}\left(b_{1} f_{i}^{T}-\mathbf{1}^{T}\right), \eta_{1} \mathbf{1}\right\rangle \\
& =1-\frac{\eta_{1}}{b_{1}} \eta_{1}\left(b_{1}-1\right)=\frac{1}{b_{1}}=\beta_{i} .
\end{aligned}
$$

For columns $j \notin B_{1}$, we obtain

$$
\begin{aligned}
(\hat{N} \tilde{D}+I)_{i j} & =\left\langle-\frac{\eta_{1}}{b_{1}} e_{c}^{T}, C_{j}\left(\tilde{D}_{\dot{G}^{*}}\right)\right\rangle+\left\langle\frac{\eta_{1}}{b_{1}}\left(b_{1} f_{i}^{T}-\mathbf{1}^{T}\right),\left(\tilde{d}_{j c}+\eta_{1}\right) \mathbf{1}\right\rangle \\
& =-\frac{\eta_{1}}{b_{1}} \tilde{d}_{j c}+\left\langle\frac{\eta_{1}}{b_{1}} b_{1} f_{i}^{T}, \tilde{d}_{j c} \mathbf{1}\right\rangle+\left\langle\frac{\eta_{1}}{b_{1}} b_{1} f_{i}^{T}, \eta_{1} \mathbf{1}\right\rangle+\left\langle-\frac{\eta_{1}}{b_{1}} \mathbf{1}^{T}, \tilde{d}_{j c} \mathbf{1}\right\rangle+\left\langle-\frac{\eta_{1}}{b_{1}} \mathbf{1}^{T}, \eta_{1} \mathbf{1}\right\rangle \\
& =-\frac{\eta_{1}}{b_{1}} \tilde{d}_{j c}+\eta_{1} \tilde{d}_{j c}+1-\frac{\eta_{1}}{b_{1}} \tilde{d}_{j c}\left(b_{1}-1\right)-\frac{1}{b_{1}}\left(b_{1}-1\right) \\
& =-\frac{\eta_{1}}{b_{1}} \tilde{d}_{j c}+\eta_{1} \tilde{d}_{j c}+1-\eta_{1} \tilde{d}_{j c}+\frac{\eta_{1}}{b_{1}} \tilde{d}_{j c}-1+\frac{1}{b_{1}}=\frac{1}{b_{1}}=\beta_{i} .
\end{aligned}
$$

Case III: For the row c.
For the column c, we have

$$
\begin{aligned}
(\hat{N} \tilde{D}+I)_{c c} & =\left\langle R_{c}\left(\hat{N}_{\dot{G}^{*}}\right), C_{c}\left(\tilde{D}_{\dot{G}^{*}}\right)\right\rangle+\left\langle\frac{b_{1}-1}{b_{1}} \eta_{1} e_{c}^{T}, C_{c}\left(\tilde{D}_{\dot{G}^{*}}\right)\right\rangle+\left\langle-\frac{\eta_{1}}{b_{1}} \mathbf{1}^{T}, \eta_{1} \mathbf{1}\right\rangle+1 \\
& =\left(\hat{N}_{\dot{G}^{*}} \tilde{D}_{\dot{G}^{*}}\right)_{c c}-\frac{1}{b_{1}}\left(b_{1}-1\right)+1=\left(\beta_{\dot{G}^{*}}\right)_{c}-1-1+\frac{1}{b_{1}}+1 \\
& =\left(\beta_{c}+1-\frac{1}{b_{1}}\right)-1+\frac{1}{b_{1}}=\beta_{c}
\end{aligned}
$$

For columns $j \in \dot{G}^{*} \backslash\{c\}$, we get

$$
\begin{aligned}
(\hat{N} \tilde{D}+I)_{c j} & =\left\langle R_{c}\left(\hat{N}_{\dot{G}^{*}}\right), C_{j}\left(\tilde{D}_{\dot{G}^{*}}\right)\right\rangle+\left\langle\frac{b_{1}-1}{b_{1}} \eta_{1} e_{c}^{T}, C_{j}\left(\tilde{D}_{\dot{G}^{*}}\right)\right\rangle+\left\langle-\frac{\eta_{1}}{b_{1}} \mathbf{1}^{T},\left(\tilde{d}_{j c}+\eta_{1}\right) \mathbf{1}\right\rangle \\
& =\left(\beta_{\dot{G}^{*}}\right)_{c}+\frac{b_{1}-1}{b_{1}} \eta_{1} \tilde{d}_{j c}-\frac{\eta_{1}}{b_{1}} \tilde{d}_{j c}\left(b_{1}-1\right)-\frac{1}{b_{1}}\left(b_{1}-1\right) \\
& =\left(\beta_{c}+1-\frac{1}{b_{1}}\right)-1+\frac{1}{b_{1}}=\beta_{c} .
\end{aligned}
$$

And for columns $j \in B_{1} \backslash\{c\}$, we drive that

$$
\begin{aligned}
(\hat{N} \tilde{D}+I)_{c j} & =\left\langle R_{c}\left(\hat{N}_{\dot{G}^{*}}\right), \alpha+\eta_{1} \mathbf{1}\right\rangle+\left\langle\frac{b_{1}-1}{b_{1}} \eta_{1} e_{c}^{T}, \alpha+\eta_{1} \mathbf{1}\right\rangle+\left\langle-\frac{\eta_{1}}{b_{1}} \mathbf{1}^{T}, \eta_{1}\left(1-f_{j}\right)\right\rangle \\
& =\left\langle R_{c}\left(\hat{N}_{\dot{G}^{*}}\right), C_{c}\left(\tilde{D}_{\dot{G}^{*}}\right)\right\rangle+\frac{b_{1}-1}{b_{1}}-\frac{1}{b_{1}}\left(b_{1}-1\right)+\frac{1}{b_{1}} \\
& =\left(\hat{N}_{\dot{G}^{*}} \tilde{D}_{\dot{G}^{*}}\right)_{c c}+\frac{1}{b_{1}}=\left(\beta_{\dot{G}^{*}}\right)_{c}-1+\frac{1}{b_{1}} \\
& =\left(\beta_{c}+1-\frac{1}{b_{1}}\right)-1+\frac{1}{b_{1}}=\beta_{c} .
\end{aligned}
$$

Therefore, we completed the proof of $\hat{N} \tilde{D}+I=\beta \mathbf{1}^{T}$.
We are now in a position to give a formula for the inverse of the net distance matrix when it is nonsingular.
Theorem 3.4 Let \tilde{D} be the net distance matrix of a signed block graph \dot{G}. Let \hat{N}, ζ, β be defined as above. If $\zeta \neq 0$, then

$$
\tilde{D}^{-1}=-\hat{N}+\frac{1}{\zeta} \beta \beta^{T}
$$

Proof. According to Lemmas 3.2 and 3.3, it is easy to verify that

$$
\left(-\hat{N}+\frac{1}{\zeta} \beta \beta^{T}\right) \tilde{D}=-\hat{N} \tilde{D}+\frac{1}{\zeta} \beta \beta^{T} \tilde{D}=I-\beta \mathbf{1}^{T}+\frac{1}{\zeta} \beta \mathbf{1}^{T} \zeta=I .
$$

Therefore, we get $\tilde{D}^{-1}=-\hat{N}+\frac{1}{\zeta} \beta \beta^{T}$.
For the signed block graph in Figure 1, we also have $\beta=\left(\frac{1}{3}, \frac{1}{3},-\frac{5}{6}, \frac{1}{2}, \frac{1}{3},-\frac{5}{12}, \frac{1}{4}, \frac{1}{4}, \frac{1}{4}\right)^{T}$ and

$$
\hat{N}=\left(\begin{array}{ccccccccc}
-\frac{2}{3} & \frac{1}{3} & \frac{1}{3} & 0 & 0 & 0 & 0 & 0 & 0 \\
\frac{1}{3} & -\frac{2}{3} & \frac{1}{3} & 0 & 0 & 0 & 0 & 0 & 0 \\
\frac{1}{3} & \frac{1}{3} & \frac{1}{2} & -\frac{1}{2} & -\frac{1}{3} & -\frac{1}{3} & 0 & 0 & 0 \\
0 & 0 & -\frac{1}{2} & \frac{1}{2} & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & -\frac{1}{3} & 0 & \frac{2}{3} & -\frac{1}{3} & 0 & 0 & 0 \\
0 & 0 & -\frac{1}{3} & 0 & -\frac{1}{3} & -\frac{1}{12} & \frac{1}{4} & \frac{1}{4} & \frac{1}{4} \\
0 & 0 & 0 & 0 & 0 & \frac{1}{4} & -\frac{3}{4} & \frac{1}{4} & \frac{1}{4} \\
0 & 0 & 0 & 0 & 0 & \frac{1}{4} & \frac{1}{4} & -\frac{3}{4} & \frac{1}{4} \\
0 & 0 & 0 & 0 & 0 & \frac{1}{4} & \frac{1}{4} & \frac{1}{4} & -\frac{3}{4}
\end{array}\right) .
$$

Then we obtain $\tilde{D}^{-1}=-\hat{N}+\frac{1}{\zeta} \beta \beta^{T}$.
In particular, for a signed block graph, if its all signed cliques are $\pm K_{2}$, then we have the following corollary from Theorem 3.4.

Corollary 3.5 Let \tilde{D} be the net distance matrix of a signed tree \dot{T} on n vertices with p positive edges and q negative edges, where $p \neq q$. Let N be the net Laplacian matrix of \dot{T} and τ be an $n \times 1$ vector with $\tau_{i}=2-\delta_{i}$, where δ_{i} is the degree of vertex i. Then

$$
\tilde{D}^{-1}=-\frac{1}{2} N+\frac{1}{2(p-q)} \tau \tau^{T} .
$$

4. The Moore-Penrose inverses of N, \hat{N}, \tilde{D} and R

It is clear to see that $\hat{N} \mathbf{1}=0, N \mathbf{1}=0$ and $\tilde{D} \beta=0$ when $\zeta=0$. Thus we know that \hat{N}, N and \tilde{D} are singular when $\zeta=0$. In this section, the rank of \hat{N} and N of a signed block graph is obtained. And the explicit formulas for the Moore-Penrose inverse of \hat{N} and \tilde{D} are given. Let us start with a lemma.

Lemma 4.1 Let \dot{G} be a signed block graph on n vertices with signed cliques $B_{i}, 1 \leq i \leq k$. Let η_{i} be the signature of $B_{i}, 1 \leq i \leq k$. Let N be the net Laplacian matrix of \dot{G}. Let \hat{N} be the matrix corresponding to \dot{G} defined as above. Then

$$
\operatorname{rank}(\hat{N})=\operatorname{rank}(N)=n-1 .
$$

Proof. We prove $\operatorname{rank}(N)=n-1$ by induction on k. For $k=1$, we have $\tilde{D}=(J-I) \eta_{1}$ and $N=(n I-J) \eta_{1}$. Then we get $\operatorname{rank}(N)=n-1$. So let $k \geq 2$ and assume the result to be true for signed block graphs with less than k signed cliques.

Next considering a signed block graph \dot{G} with k signed cliques, we may assume, without loss of generality, that B_{1} is a pendant signed clique and its cut vertex is vertex b_{1}. Let $\dot{G}^{*}=\dot{G} \backslash\left(B_{1} \backslash\left\{b_{1}\right\}\right)$. Let $e_{b_{1}}$ be the $\left|V\left(\dot{G}^{*}\right)\right|$ dimensional column vector with 1 in position b_{1} and zeros elsewhere. Then the net Laplacian matrix of \dot{G} is given by

$$
N=\left(\begin{array}{cc}
N_{\dot{G}^{*}}+\left(b_{1}-1\right) \eta_{1} e_{b_{1}} e_{b_{1}}^{T} & -\eta_{1} e_{b_{1}} \mathbf{1}^{T} \\
-\eta_{1} \mathbf{1} e_{b_{1}}^{T} & \eta_{1}\left(b_{1} I-J\right)
\end{array}\right),
$$

where $N_{\dot{G}^{*}}$ is the net Laplacian matrix of \dot{G}^{*}. In N, plus the columns corresponding to the index set $V\left(B_{1} \backslash\left\{b_{1}\right\}\right)$ to the column b_{1} and plus the rows corresponding to the index set $V\left(B_{1} \backslash\left\{b_{1}\right\}\right)$ to the row b_{1}. The resulting matrix is

$$
N_{1}=\left(\begin{array}{cc}
N_{\dot{G}^{*}} & 0 \\
0 & \eta_{1}\left(b_{1} I-J\right)
\end{array}\right)
$$

We get, by an induction assumption, $\operatorname{rank}(N)=\operatorname{rank}\left(N_{\vec{G}^{*}}\right)+\left(b_{1}-1\right)=\sum_{i=1}^{k}\left(b_{1}-1\right)=n-1$. Similarly, the rank of the matrix \hat{N} of a signed block graph is $n-1$.

Next we give the formulas for the Moore-Penrose inverse of \hat{N} and \tilde{D} of a signed block graph.
Theorem 4.2 Let \dot{G} be a signed block graph on n vertices with net distance matrix \tilde{D}. Let \hat{N} be the matrix corresponding to \dot{G} as defined above. Then the Moore-Penrose inverse of \hat{N} is

$$
\hat{N}^{+}=-\tilde{D}-\frac{\mathbf{1}^{T} \tilde{D} \mathbf{1}}{n^{2}} J+\frac{1}{n}(\tilde{D} J+J \tilde{D})
$$

Proof. Let $H=-\tilde{D}-\frac{\mathbf{1}^{T} \tilde{D} \mathbf{1}}{n^{2}} J+\frac{1}{n}(\tilde{D} J+J \tilde{D})$. We prove that H is the Moore-Penrose inverse of \hat{N} by the definition of Moore-Penrose inverse. In fact,

$$
\begin{aligned}
\hat{N} H & =-\hat{N} \tilde{D}-\frac{\mathbf{1}^{T} \tilde{D} \mathbf{1}}{n^{2}} \hat{N} J+\frac{1}{n}(\hat{N} \tilde{D} J+\hat{N} J \tilde{D}) \\
& =I-\beta \mathbf{1}^{T}+\frac{1}{n}\left(\beta \mathbf{1}^{T}-I\right) J=I-\frac{1}{n} J .
\end{aligned}
$$

Similarly, $H \hat{N}=I-\frac{1}{n} J$. Thus both $\hat{N} H$ and $H \hat{N}$ are symmetric. Hence

$$
\hat{N} H \hat{N}=\left(I-\frac{1}{n} J\right) \hat{N}=\hat{N}
$$

Finally,

$$
\begin{aligned}
H \hat{N} H & =\left(I-\frac{1}{n} J\right)\left(-\tilde{D}-\frac{\mathbf{1}^{T} \tilde{D} \mathbf{1}}{n^{2}} J+\frac{1}{n}(\tilde{D} J+J \tilde{D})\right) \\
& =H+\frac{1}{n} J \tilde{D}+\frac{\mathbf{1}^{T} \tilde{D} \mathbf{1}}{n^{3}} J J-\frac{1}{n^{2}} J \tilde{D} J-\frac{1}{n^{2}} J J \tilde{D} \\
& =H+\frac{1}{n} J \tilde{D}+\frac{\mathbf{1}^{T} \tilde{D} \mathbf{1}}{n^{2}} J-\frac{\mathbf{1}^{T} \tilde{D} \mathbf{1}}{n^{2}} J-\frac{1}{n} J \tilde{D}=H
\end{aligned}
$$

Therefore, H is the Moore-Penrose inverse of \hat{N}, i.e. $\hat{N}^{+}=-\tilde{D}-\frac{\mathbf{1}^{T} \tilde{D} \mathbf{1}}{n^{2}} J+\frac{1}{n}(\tilde{D} J+J \tilde{D})$.
Theorem 4.3 Let \dot{G} be a signed block graph on n vertices with $\zeta=0$. Let \tilde{D} be the net distance matrix of \dot{G}. Let \hat{N} and β be the matrix and the vector defined as above, respectively. Then

$$
\tilde{D}^{+}=-\hat{N}-\frac{\beta^{T} \hat{N} \beta}{\left(\beta^{T} \beta\right)^{2}} \beta \beta^{T}+\frac{1}{\beta^{T} \beta}\left(\hat{N} \beta \beta^{T}+\beta \beta^{T} \hat{N}\right)
$$

Proof. Let $H=-\hat{N}-\frac{\beta^{T} \hat{N} \beta}{\left(\beta^{T} \beta\right)^{2}} \beta \beta^{T}+\frac{1}{\beta^{T} \beta}\left(\hat{N} \beta \beta^{T}+\beta \beta^{T} \hat{N}\right)$. We prove the Moore-Penrose inverse of \tilde{D} by the definition of the Moore-Penrose inverse. In fact, we have

$$
\begin{aligned}
H \tilde{D} & =-\hat{N} \tilde{D}-\frac{\beta^{T} \hat{N} \beta}{\left(\beta^{T} \beta\right)^{2}} \beta \beta^{T} \tilde{D}+\frac{1}{\beta^{T} \beta}\left(\hat{N} \beta \beta^{T} \tilde{D}+\beta \beta^{T} \hat{N} \tilde{D}\right) \\
& =-\beta 1^{T}+I+\frac{1}{\beta^{T} \beta} \beta \beta^{T}\left(\beta 1^{T}-I\right)=I-\frac{1}{\beta^{T} \beta} \beta \beta^{T} .
\end{aligned}
$$

It is similar to show that $\tilde{D} H=I-\frac{1}{\beta^{T} \beta} \beta \beta^{T}$. Thus both $H \tilde{D}$ and $\tilde{D} H$ are symmetric matrices. We further drive that

$$
\tilde{D} H \tilde{D}=\tilde{D}\left(I-\frac{1}{\beta^{T} \beta} \beta \beta^{T}\right)=\tilde{D}
$$

and

$$
\begin{aligned}
H \tilde{D} H & =\left(-\hat{N}-\frac{\beta^{T} \hat{N} \beta}{\left(\beta^{T} \beta\right)^{2}} \beta \beta^{T}+\frac{1}{\beta^{T} \beta}\left(\hat{N} \beta \beta^{T}+\beta \beta^{T} \hat{N}\right)\left(I-\frac{1}{\beta^{T} \beta} \beta \beta^{T}\right)\right. \\
& =H+\frac{1}{\beta^{T} \beta} \hat{N} \beta \beta^{T}+\frac{\beta^{T} \hat{N} \beta}{\left(\beta^{T} \beta\right)^{3}} \beta \beta^{T} \beta \beta^{T}-\frac{1}{\left(\beta^{T} \beta\right)^{2}} \hat{N} \beta \beta^{T} \beta \beta^{T}-\frac{1}{\left(\beta^{T} \beta\right)^{2}} \beta \beta^{T} \hat{N} \beta \beta^{T}
\end{aligned}
$$

$$
=H+\frac{1}{\beta^{T} \beta} \hat{N} \beta \beta^{T}+\frac{\beta^{T} \hat{N} \beta}{\left(\beta^{T} \beta\right)^{2}} \beta \beta^{T}-\frac{1}{\beta^{T} \beta} \hat{N} \beta \beta^{T}-\frac{\beta^{T} \hat{N} \beta}{\left(\beta^{T} \beta\right)^{2}} \beta \beta^{T}=H
$$

Hence, H is the Moore-Penrose inverse of \tilde{D}, i.e. $\tilde{D}^{+}=-\hat{N}-\frac{\beta^{T} \hat{N} \beta}{\left(\beta^{T} \beta\right)^{2}} \beta \beta^{T}+\frac{1}{\beta^{T} \beta}\left(\hat{N} \beta \beta^{T}+\beta \beta^{T} \hat{N}\right)$.
Since the rank of net Laplacian matrix N of a signed block graph with n vertices is $n-1$, next we turn to the Moore-Penrose inverse of N. Ali, Atik and Bapat [13] showed that $R^{-1}=-\frac{1}{2} N+\frac{1}{\rho^{T} R \rho} \rho \rho^{T}$ if $\rho^{T} R \rho \neq 0$, and $\operatorname{rank}(R)=$ $n-1$ if $\rho^{T} R \rho=0$, where $\rho=\left(\rho_{1}, \ldots, \rho_{n}\right)^{T}, \rho_{i}=2-\sum_{j \sim i} r_{i j} \sigma(i j)$. And $R^{+}=-\frac{1}{2} N+\frac{1}{2}\left(R^{+} \mathbf{1} \rho^{T}+\rho \mathbf{1}^{T} R^{+}\right)-\frac{\mathbf{1}^{T} R^{+} \mathbf{1}}{2} \rho \rho^{T}$, which is a relationship between R^{+}and N. The following theorem give the Moore-Penrose inverses of N and R if R is singular. Since the proofs are similar to \tilde{D}^{+}and \hat{N}^{+}, we omit the proofs here.

Theorem 4.4 Let \dot{G} be a signed block graph on n vertices. Let N be the net Laplacian matrix and R the resistance matrix of \dot{G}, respectively. Then

$$
\begin{aligned}
& N^{+}=-\frac{1}{2} R-\frac{\mathbf{1}^{T} R \mathbf{1}}{2 n^{2}} J+\frac{1}{2 n}(R J+J R), \\
& R^{+}=-\frac{1}{2} \hat{N}-\frac{\rho^{T} N \rho}{2\left(\rho^{T} \rho\right)^{2}} \rho \rho^{T}+\frac{1}{2 \rho^{T} \rho}\left(N \rho \rho^{T}+\rho \rho^{T} N\right) .
\end{aligned}
$$

Next we illustrate the above results by an example.

Figure 2. A signed block graph of order seven with signed blocks $-K_{3},-K_{2}, K_{2}$ and K_{3}.

Example 4.5 Consider the signed block graph \dot{G} in Figure 2. Then we have $\zeta=0, \beta=\left(\frac{1}{3}, \frac{1}{3},-\frac{2}{3}, \frac{1}{2},-\frac{1}{6}, \frac{1}{3}, \frac{1}{3}\right)^{T}$, $\rho=\left(\frac{2}{3}, \frac{2}{3},-\frac{4}{3}, 1,-\frac{1}{3}, \frac{2}{3}, \frac{2}{3}\right)^{T}, \rho^{T} R \rho=0$,

$$
\tilde{D}=\left(\begin{array}{ccccccc}
0 & -1 & -1 & -2 & 0 & 1 & 1 \\
-1 & 0 & -1 & -2 & 0 & 1 & 1 \\
-1 & -1 & 0 & -1 & 1 & 2 & 2 \\
-2 & -2 & -1 & 0 & 0 & 1 & 1 \\
0 & 0 & 1 & 0 & 0 & 1 & 1 \\
1 & 1 & 2 & 1 & 1 & 0 & 1 \\
1 & 1 & 2 & 1 & 1 & 1 & 0
\end{array}\right), \hat{N}=\left(\begin{array}{cccccccc}
-\frac{2}{3} & \frac{1}{3} & \frac{1}{3} & 0 & 0 & 0 & 0 \\
\frac{1}{3} & -\frac{2}{3} & \frac{1}{3} & 0 & 0 & 0 & 0 \\
\frac{1}{3} & \frac{1}{3} & -\frac{2}{3} & \frac{1}{2} & -\frac{1}{2} & 0 & 0 \\
0 & 0 & \frac{1}{2} & -\frac{1}{2} & 0 & 0 & 0 \\
0 & 0 & -\frac{1}{2} & 0 & \frac{7}{6} & -\frac{1}{3} & -\frac{1}{3} \\
0 & 0 & 0 & 0 & -\frac{1}{3} & \frac{2}{3} & -\frac{1}{3} \\
0 & 0 & 0 & 0 & -\frac{1}{3} & -\frac{1}{3} & \frac{2}{3}
\end{array}\right),
$$

Hence we obtain

$$
\hat{N}^{+}=\frac{1}{49}\left(\begin{array}{ccccccc}
-40 & 9 & 37 & 51 & -5 & -26 & -26 \\
9 & -40 & 37 & 51 & -5 & -26 & -26 \\
37 & 37 & 16 & 30 & -26 & -47 & -47 \\
51 & 51 & 30 & -54 & -12 & -33 & -33 \\
-5 & -5 & -26 & -12 & 30 & 9 & 9 \\
-26 & -26 & -47 & -33 & 9 & 86 & 37 \\
-26 & -26 & -47 & -33 & 9 & 37 & 86
\end{array}\right)=-\tilde{D}-\frac{\mathbf{1}^{T} \tilde{D} \mathbf{1}}{n^{2}} J+\frac{1}{n}(\tilde{D} J+J \tilde{D})
$$

$$
\begin{aligned}
\tilde{D}^{+} & =\left(\begin{array}{ccccccc}
248 / 441 & -193 / 441 & -13 / 441 & -53 / 294 & -17 / 882 & 17 / 441 & 17 / 441 \\
-193 / 441 & 248 / 441 & -13 / 441 & -53 / 294 & -17 / 882 & 17 / 441 & 17 / 441 \\
-13 / 441 & -13 / 441 & -58 / 441 & 1 / 294 & 433 / 882 & 8 / 441 & 8 / 441 \\
-53 / 294 & -53 / 294 & 1 / 294 & 19 / 98 & -5 / 294 & 5 / 147 & 5 / 147 \\
-17 / 882 & -17 / 882 & 433 / 882 & -5 / 294 & -989 / 882 & 107 / 441 & 107 / 441 \\
17 / 441 & 17 / 441 & 8 / 441 & 5 / 147 & 107 / 441 & -214 / 441 & 227 / 441 \\
17 / 441 & 17 / 441 & 8 / 441 & 5 / 147 & 107 / 441 & 227 / 441 & -214 / 441
\end{array}\right) \\
& =-\hat{N}-\frac{\beta^{T} \hat{N} \beta}{\left(\beta^{T} \beta\right)^{2}} \beta \beta^{T}+\frac{1}{\beta^{T} \beta}\left(\hat{N} \beta \beta^{T}+\beta \beta^{T} \hat{N}\right), \\
N^{+} & =\frac{1}{147}\left(\begin{array}{ccccccc}
-32 & 17 & 45 & 66 & -18 & -39 & -39 \\
17 & -32 & 45 & 66 & -18 & -39 & -39 \\
45 & 45 & 24 & 45 & -39 & -60 & -60 \\
66 & 66 & 25 & -81 & -18 & -39 & -39 \\
-18 & -18 & -39 & -18 & 45 & 24 & 24 \\
-39 & -39 & -60 & -39 & 24 & 101 & 52 \\
-39 & -39 & -60 & -39 & 24 & 52 & 101
\end{array}\right)=-\frac{1}{2} R-\frac{\mathbf{1}^{T} R \mathbf{1}}{2 n^{2}} J+\frac{1}{2 n}(R J+J R),
\end{aligned}
$$

and

$$
\begin{aligned}
R^{+} & =\left(\begin{array}{ccccccc}
362 / 441 & -599 / 882 & -41 / 882 & -65 / 294 & -47 / 882 & 31 / 882 & 31 / 882 \\
-599 / 882 & 362 / 441 & -41 / 882 & -65 / 294 & -47 / 882 & 31 / 882 & 31 / 882 \\
-41 / 882 & -41 / 882 & -43 / 441 & 25 / 294 & 493 / 882 & 11 / 441 & 11 / 441 \\
-65 / 294 & -65 / 294 & 25 / 294 & 47 / 196 & -61 / 588 & 59 / 588 & 59 / 588 \\
-47 / 882 & -47 / 882 & 493 / 882 & -61 / 588 & -2473 / 1764 & 599 / 1764 & 599 / 1764 \\
31 / 882 & 31 / 882 & 11 / 441 & 59 / 588 & 599 / 1764 & -331 / 441 & 661 / 882 \\
31 / 882 & 31 / 882 & 11 / 441 & 59 / 588 & 599 / 1764 & 661 / 882 & -331 / 441
\end{array}\right) \\
& =-\frac{1}{2} \hat{N}-\frac{\rho^{T} N \rho}{2\left(\rho^{T} \rho\right)^{2}} \rho \rho^{T}+\frac{1}{2 \rho^{T} \rho}\left(N \rho \rho^{T}+\rho \rho^{T} N\right) .
\end{aligned}
$$

Remark 4.6 A symmetric matrix is called centered symmetric if it has zero row sums and a symmetric matrix is called hollow symmetric if it has zero diagonal elements. Kurata and Bapat [13] showed that there is a one to one correspondence between the classes of hollow symmetric matrices and centered symmetric matrices. For a signed block graph \dot{G} with n vertices, \tilde{D} (resp. R) is a hollow symmetric matrix and corresponding centered symmetric matrix is \hat{N}^{+} (resp. N), moreover, if $\zeta_{\dot{G}} \neq 0$, (resp. $\rho^{T} R \rho=0$) then matrices $\tilde{D}\left(\right.$ resp. R) and \hat{N}^{+}(resp. N) have the same rank $n-1$.

Aknowledgement

This research is supported by the National Natural Science Foundation of China (No.11971164).

Conflict of interest

The authors declare no competing financial interest.

References

[1] Sivasubramanian S. q-Analogs of distance matrices of 3-hypertrees. Linear Algebra Appl. 2009; 431: 1234-1248.
[2] Stanić Z. Some properties of the eigenvalues of the net Laplacian matrix of a signed graph. Discuss. Math. Graph Theory. 2022; 42: 893-903.
[3] Molitierno JJ. Applications of combinatorial matrix theory to Laplacian matrices of graphs. CRC Press, Boca Raton. FL; 2012.
[4] Bapat RB. Graphs and matrices. 2nd ed. Hinduston Book Agency, New Delhi; 2018.
[5] Graham RL, Pollak HO. On the addressing problem for loop switching. Bell System Tech. J. 1971; 50: 2495-2519.
[6] Graham RL, Lovász L. Distance matrix polynomials of trees. Adv. Math. 1978; 29(1): 60-80.
[7] Bapat RB, Sivasubramanian S. Inverse of distance matrix of a block graph. Linear and Multilinear Algebra. 2011; 59(12): 1393-1397.
[8] Hou Y, Fang A, Sun Y. Inverse of the distance matrix of cycle-clique graph. Linear Algebra Appl. 2015; 485: 3346.
[9] Hou Y, Sun Y. Inverse of the distance matrix of a bi-block graph. Linear and Multilinear Algebra. 2016; 64(8): 1509-1517.
[10] Balaji R, Bapat RB, Goel S. An inverse formula for the distance matrix of a wheel graph with even number of vertices. Linear Algebra Appl. 2021; 610: 274-292.
[11] Bapat RB, Kirkland SJ, Neumann M. On distance matrices and Laplacians. Linear Algebra Appl. 2005; 401: 193209.
[12] Kurata H. Bapat RB. Moore-Penrose inverse of a hollow symmetic matrix and a predistance matrix. Spec. Matrices. 2016; 4(1): 270-282.
[13] Ali P, Atik F, Bapat RB. Identities for minors of the Laplacian, resistance and distance matrices of graphs with arbitrary weights. Linear and Multilinear Algebra. 2018; 68(2): 323-336.
[14] Bapat RB, Manjunatha PK. The generalized Moore-Penrose inverse. Linear Algebra Appl. 1992; 165: 59-69.
[15] Bapat RB, Roy S. On the adjacency matrix of a block graph. Linear and Multilinear Algebra. 2014; 62: 406-418.
[16] Graham RL, Hoffman AJ, Hosoya H. On the distance matrix of a directed graph. J. Graph Theory. 1977; 1(1): 8588.

