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Abstract: The application of the Chebyshev-Halley type scheme for nonlinear equations is extended with no additional 
conditions. In particular, the purpose of this study is two folds. The proof of the semi-local convergence analysis is 
based on the recurrence relation technique in the first fold. In the second fold, the proof relies on majorizing sequences. 
Iterates are shown to belong to a larger domain resulting in tighter Lipschitz constants and a finer convergence analysis 
than in earlier works. The convergence order of these methods is at least three. The numerical example further validates 
the theoretical results.
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1. Introduction
Many applications in computational Sciences require finding a solution x* of the nonlinear equation

(1)( ) 0,x =

where the operator  : D ⊂ X → Y is acting between Banach spaces X and Y. Higher convergence order schemes have 
been used extensively to generate a sequence approximating x* under certain conditions [1-4]. In particular, the third 
order scheme [5] has been used and is defined ∀k = 0, 1, 2, … by

(2)1
1 ( ) ( ( ),k k k k kx x T x x−

+ ′= −  

where 1 1 11 1
2 2, ( ) ( ) ( ) ( ),  and ( ) . If 0,  ,  1, k k k k ka L x x x x T I L I aL a− − −′ ′′ ′∈ = = + − =        then (2) reduces to the

Contemporary Mathematics
http://ojs.wiserpub.com/index.php/CM/

Copyright ©2023 Samundra Regmi, et al.
DOI: https://doi.org/10.37256/cm.4120232070
This is an open-access article distributed under a CC BY license 
(Creative Commons Attribution 4.0 International License)
https://creativecommons.org/licenses/by/4.0/

1
1 ( ) ( ( )),k k k k kx x T x x−

+ ′= −  

https://orcid.org/0000-0003-0035-1022
https://orcid.org/0000-0002-9189-9298
https://orcid.org/0000-0002-3530-5539
http://www.wiserpub.com/
http://ojs.wiserpub.com/index.php/CM/


Contemporary Mathematics 2 | Samundra Regmi, et al.

Chebyshev, Halley and Super-Halley Schemes [6-10], respectively.
The convergence conditions used [11-15] are:
(A1) ||'(x0)

−1|| ≤ β.
(A2) ||'(x0)

−1(x0)|| ≤ η.
(A3) ||''(x) ≤ M1|| for each x ∈ D.
(A4) ||''(x) − ''(y)|| ≤ L1||x − y|| for each x, y ∈ D.
But there are even simple scalar examples where condition (A4) is not satisfied.
Example 1.1 Let X = Y = R, D = [−0.5, 1.5]. Define the function λ on the interval D by

3 2 5 4log if 0( ) .
0 if 0

x x x x xx
x

 + − ≠= 
=



Then, we get x* = 1, and

2 2( ) 6 log 60 24 22.x x x x′′′ = + − +

But ϵ'''(x) is unbounded on D. Thus, the convergence of scheme (2) is not assured by the previous works [13-16].
That is why in reference [5] the following conditions are used:
(B3) ||'(x)|| ≤ M1 for each x ∈ D.
(B4) ||''(x) − ''(y)|| ≤ w1(||x − y||) for each x, y ∈ D, where w1(0) ≥ 0, and for t > 0, function w1 is continuous and 

nondecreasing.
(B5) There exists  w̄1(ts) ≤  w̄1(t)w1(s) for t ∈ [0, 1] and s ∈ (0, +∞).
Using (A1), (A2), (B3)-(B5) the Halley scheme was shown to be of R−order at least two [5]. In particular, if 

1
1

( ) ,i
j

q
i

i
w t L t

=
= ∑  the Halley scheme is of R−order at least 2 + q, where q = min{q1, q2, … qj}, qi ∈ [0, 1]. i = 1, 2, … , j.

If a /= 0, scheme (2) requires the evaluation of the inverse of linear operator I − aL at each step. That is why to 
reduce the computational cost of this inversion and increase the R−order scheme

(3)

1( ) ( )k k k ky x x x−−= ′ 

1 1( ) ( )k k k k kz x T x x−′= −  

2 1
1 ( ) ( )k k k k kx z T x y−

+ ′= −  

was studied in [5], where 
21 2 3 2 3 3 1 11

2 2 2 , , [0, 1], [ 2, 2] and ( ) ( ) ( ) ( ).b b
k k k k k k k kT I L L L T I L cT a c T x x x z− −′ ′′ ′= + + + = + + ∈ ∈ − =       

2
1 2 3 2 3 3 1 11 , , [0, 1], [ 2, 2] and ( ) ( ) ( ) ( ).

2 2 2k k k k k k k k
b bT I L L L T I L cT a c T x x x z− −′ ′′ ′= + + + = + + ∈ ∈ − =       

Let us consider the condition:
(C4) ||''(x) − ''(y)|| ≤ w2(||x − y||) for each x, y ∈ D1 ⊆ D where D1 /= is a convex set, w2(t) is a continuous and 

nondecreasing scalar fucntion with w2(0) ≥ 0, and there exists non-negative real function w3 ∈ C[0, 1] satisfying w3(t) ≤ 
1 and w2(ts) ≤ w2(t)w2(s), t ∈ [0, 1], s ∈ (0, ∞).

Using conditions (A1)-(A3) and (C4) the R−order was increased. In particular, if the second derivative satisfies (A4) 
the R−order of the scheme (3) is at least five which is higher than Chebyshev’s, Halley’s, and Super-Halley’s [1-4, 17].
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In our study, we are concerned with optimization considerations. We raise the following questions.
Can we: (Q1) Increase the convergence domain?
(Q2) Weaken the suffcient semi-local convergence criteria?
(Q3) Improve the estimates on error bounds on the distances ||xk+1 − xk||, ||xk − x*||?
(Q4) Improve the uniqueness information for the location of x*.
(Q5) Use weaker conditions.
and
(Q6) Provide the results in affne invariant form.
The advantages of (Q6) are well-known [3, 17-18]. Denote this set of questions by (Q). We would like question 

Q to be answered positively without additional or even weaker conditions. This can be achieved by finding at least as 
small M1, L1, w1,  w̄1, w2 and w3.

In Section 2 we achieve this goal. Another concern involves conditions (A4) or (B4) or (C4). Denote the set of 
nonlinear equations where the operator  satisfies say (C4) by S1. Moreover, denote by S2 the set of nonlinear equations 
where the operator ' does not satisfy (C4). Then, S1 is a strict subset of S2. Therefore, working on S2 instead of S1 
is interesting, since the applicability of scheme (3) is extended. We show how to do this by dropping condition (C4) in 
Section 3.

2. Semi-local convergence I
The results are presented in the affine invariant form. Therefore, the condition (A1) is dropped. In particular, the 

conditions (H) are used:
(H1) ||'(x0)

−1('(x) − '(x0))|| ≤ M0||x − x0|| ∀x ∈ D.

Set 0 0
0

1( , ) .D U x D
M

= ∩

(H2) ||'(x0)
−1''(x)|| ≤ M ∀x ∈ D0.

(H3) ||'(x0)
−1(''(x) − ''(y))|| ≤ w(||x − y||) ∀x, y ∈ D0, where w is a continuous and nondecreasing function with 

w(0) ≥ 0, and there exists a non-negative function w0 ∈ C[0, 1] such that w0(t) ≤ 1 and w(ts) ≤ w0(t)w(s)∀t ∈ [0, 1], s ∈ (0, 
∞).

Remark 2.1 It follows by the definition of the set D0 that

(4)0 ,D D⊆

so

(5)0 1,M Mβ≤

(6)1M Mβ≤

and

(7)1( ) ( ).w t w tβ≤

Notice also that using (A3) the following estimate was used in the earlier studies [3-5, 7-16]:
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1

1 0
( ) .

1
x

M x x
β

β
−′ ≤

− −
‖ ‖

‖ ‖


But using the weaker and needed (H1) we obtained instead the tighter estimate

1
0

0 0

1( ) ( ) ,
1

x x
M x x

−′ ′ ≤
− −

‖ ‖
‖ ‖

 

Moreover, suppose

0 .M M≤

Otherwise, the results that follow hold with the parameter M0 replacing M.
Next, we state the semi-local convergence result [5, Theorem 1]. But first, we consider some scalar functions. Let 

us define the functions p, h and φ by

1 1 1 1 1 2 1 2 1( ) ( ) [1 | | ( )] ( ),p u g u u c u g u g u= + + +

1
1 1

1( ) ,
1 ( )

h u
u p u

=
−

2 2
1 1 2 1 1 2 1 2| | ( , ) [1 | | ( , )] ( , )c u u u u c u u u uψ ψ ψ+ +

2 2 1 1 1 2 1 2[1 | | ( , )] ( , )I u u c u u u u uψ ψ+ + +

2
2 21

1 1 1 1 1 2 1 2[1 ][1 | | ( , )] ( , )
2

u
u u u c u u u U uβ β ψ ψ+ + + + +

2 21
1 1 1 2 1 2[1 | | ( , )] ( , ) ,

2
u

u c u u u u uψ ψ+ + +

1 2( , )u uϕ =

where

2
2 3

1 1 1 1 1
1( ) 1 ,
2 2 2

g u u u uβ β
= + + +

2 2 21
2 1 1 1 1 1( ) [1 ( ) ],

2
u

g u u u g uβ β= + + +

2 3
2 2 2 2 2 21 1

1 2 1 1 1 1 1 1 1 1( , ) (1 ) (1 ) (1 )
2 2 8

u u
u u u u u u I u u uβψ δ δ β β β= + + + + + + + +

and
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1 1
1 1 1 2 10 0

( )( , ( . 1 ) )I u u d I u dξ ξ ξ ξ= − =∫ ∫

Moreover, define the function g(u1) = u1p(u1) − 1. Notice that for u1 > 0 the function g(u1) is increasing. Then g(u1) 

= 0 has non more than one root in (0, ∞). Since, g(0) = −1 < 0, g(1
2) > 0, we know that g(u1) = 0 has a root in (0, 1

2). 

Define s* as the positive root of equation u1p(u1) − 1 = 0, then s* < 1
2.

Theorem 2.2 Suppose:  : D ⊆ X → Y is twice Fréchet differentiable and conditions (A1)-(A3), (C4)and

0[ , ]U x R Dη ⊂

hold, where 0
0

( ) *
0 1 0 2 0 0 0 0 0 0 01 , , ( ), ( ) ( ) satisfy  and ( ) 1, .p a

dR a M b w d h a a b a s h a dβη βη η ψ−= = = = < <  Then, the following 

assertion holds

0{ } [ , ].nx U x Rη⊂

Moreover, there exists limk→∞ xk = x* ∈ U[x0, Rη] so that (x*) = 0,

2 1
* 20 3

1( ) ,
1

k

k
k k kx x e p a ηλ γ

λγ

−

− ≤ =
−

‖ ‖

where γ = h(a0)d0 and λ = 
0

1
( )h a  only solution of equation (x) = 0 in the region U(x0, R1η) ∩ D, where R1 = 

0
2

a  − R.
In our case we have
Theorem 2.3 Suppose  : D ⊆ X → Y is twice Fréchet differentable and the conditions (H) hold.

0
0 0 0

0
 

( )
[ , ] , ,

1
p a

U x R D R
d

η ⊂ =
−

where *
0 0 0 0 0 0 0 0, ( ), ( ) ( , ) satisfy and     ( ) 1.a M b w d h a a b a s h a dβη η η ψ== = < <  Then, the following assertion holds

0 0{ } [ , ].nx U x R η⊂

Moreover, there exists limk→∞ xk = x* ∈ U[x0, R0η], such that (x*) = 0,

2 1
* 2

0 0 0 3
0 0

1( ) ,
1

k

k
k k kx x e p a ηλ γ

λ γ

−

− ≤ =
−

‖ ‖

where 
0

1
0 0 0 0 ( )( )  and .h ah a dγ λ= =  Furthermore, the point x* is the only solution of equation (x) = 0 in the region 

0
2

0 1 1 0( , ) , where .MU x R D R Rη ∩ = −

Proof. Simply use 0 0 0 0 1 0 0 1 2 0 0 0 1, , , , , , ,  for , , , , , , , , M w a b d R R M w a b d R Rλ γ λ γ  used in Theorem 2.2.
                                                                                                                                                                                     □
Remark 2.4 In view of (4)-(7), we have
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* *
0 0 ,a s a s< ⇒ <

0 0 ,a a<

0 0 0 0( ) 1 ( ) 1h a d h a d< ⇒ <

,k ke e≤

and

1 1.R R≤

These estimates show that questions (Q) have been answered positively under our technique.

3. Semi-local convergence II
The results are also presented in an affine invariant form and the restrictive condition (C4) is dropped.
Suppose:
(H4) ||'(x0)

−1('(x) − '(y))|| ≤ v(||x − y||) ∀x, y ∈ D0, where v is a real continuous and nondecreasing function 
defined on the interval [0, ∞).

Denote conditions (A2), (H1), (H2) and weaker (H3) or (C4) or (B4), or (A4). The semi-local convergence is based 
on conditions (H)':

Define scalar sequences {tk}, {sk} and {uk} ∀k = 0, 1, 2, … by

(8)

0 0 0,t s η= =

( ),k k k k ku s s tγ= + −

1
01

k k
k k

k
t u

M t
β α

+ = +
−

1
1 1

0 1
,

1
k

k k
k

s t
M t
δ +

+ +
+

= +
−

where

2 3 3 42
2

2
0 0

( ) ( )1 | |( )
2 2 1 2 (1 )

k k k k
k k k

k k

M s t M s tb bM s t
M t M t

α
− −

= − + +
− −

1
0

( ( )) ( ),k k k kv u t d u tθ θ+ − −∫



Contemporary MathematicsVolume 4 Issue 1|2023| 7

2
0 0

( )
1 | | ,

1 (1 )
k k k

k
k k

M s t M
c

M t M t
α

β
−

= + +
− −

2 32

0 0 0

( ) ( ) ( )1 | |
2 1 2 1 2 1

k k k k k k
k

k k k

M s t M s t M s tb b
M t M t M t

γ
   − − −

= + +   − − −   

and

22

1 2 2
00 0

| | ( ) | |
( )

1(1 ) (1 )
k k k k

k k k
kk k

c M M s t c M
M s t

M tM t M t
α α

δ +
 −

= + − +  −− − 

1 12 ( )( ) ( )( )k k k k k k k kM s t t u M u s t u+ ++ − − + − −

1
1 10

( ( )) ( ).k k k kv t u d t uθ θ+ ++ − −∫

We shall show that these sequences are majorizing for the scheme (3).
Lemma 3.1 Suppose

(9)0 1 0, 1, 2, .kM t k< ∀ = …

Then, the sequence {tk} is increasing, bounded from above by t** = 
0

1
M  and converges to t* ∈ [0, t**], which is its 

unique least upper bound.
Proof. It follows from (8) and (9) that sequence {tk} is such that tk ≤ sk ≤ uk ≤ tk+1 < 

0
1

M , and as such it converges 

to t*. 
                                                                                                                                                                                      □
Another convergence result with stronger conditions but easier to verify than (9) follows. Suppose that

(10)1 0 ,k ks t mη≤ − ≤ <

and

(11)02 1.kM t ≤

Then, the following estimates hold:

2 2
3(1 2 | | 4 62 ) ,k M b M b Mγ η η η µ≤ + + =

2 2 2 3 31( | | 2
2k M b M b Mα η η η≤ + +

1
3 30

( (1 ) ) (1 ))( )k kv d s tθ µ η θ µ+ + + −∫

0 ( ),k ks tµ= −
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0 0
0

2 ( )(1 2 2 | | )
1

k k
k k

k
s t M c M

M t
β α

µ η µ η≤ − + +
−

2 ( ),k ks tµ= −

and

21
0 0

0
2[4 | | (2 4 | | )

1
k

k
c M M M c M

M t
δ

µ η η µ η+ ≤ + +
−

2 3 22 (1 ) (1 )M Mµ η µ µ η+ + + +

1
2 20

( (1 ) ) (1 )]( )k kv d s tθ µ η θ µ+ + + −∫

3( ).k ks tµ= −

Set m = max{µ1, µ2, µ3} for 0 = max{η, u0 − s0, t1 − u0} and 1 = min{µ1, µ2, µ3}.
Lemma 3.2 Under conditions (13) and (14) further suppose

(12)0 1 00 1 2 .m M η≤ ≤ ≤ < − 

Then, the following assertions hold

(13)10 ( ) ,k
k k k ku s m s t m η−≤ − ≤ − ≤

(14)1 10 ( ) ,k
k k k ks t m s t m η− −≤ − ≤ − ≤

(15)1
10 ( ) ,k

k k k kt u m s t m η+
+≤ − ≤ − ≤

(16)
1

1 110 ,
1 1

i
k k

k i k
m Bt t B m m

m m
ηη

−
− −

+
−

≤ − ≤ ≤
− −

and there exists t* = limk→∞ tk such that

(17)* 10
1

k
k

Bt t m
m

η −≤ − ≤
−

and

02 1,kM t ≤

where B = 1 + m + m2.
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Proof. It follows from (8), (9), (11) and (12) that estimates (13)-(16) hold. Let i ≥ 0 be an iteger. Then, we can 
write in turn that

(18)

1 1 2 10 ( ) ( ) ( )k i k k i k i k i k i k kt t t t t t t t+ + + − + − + − +≤ − = − + − +…+ −

2( )k i k iB m tη + − −≤ +…+

1 1
1 1 ,

1 1

i k
k m B mB m

m m
ηη

− −
− −

= ≤
− −

so the assertion (17) holds. Hence, the sequence {tk} is complete in the Banach space X and as such it converges to some 
t*. By letting k → ∞ in (18), we obtain (18). Notice also that

1
0

0 0
212 2 1,

1 1

k

k
MmM t M

m m
η

η
+−

≤ ≤ ≤
− −

by the right hand side of (12), thus 
0

1
1 kM t−  ≤ 2.

                                                                                                                                                                                     □
Remark 3.3 The condition (12) is the sufficient convergence criterion for the sequence {tk}. Such a criterion is 

standard in this type of study. It shows how close x0 should be to the solution (i.e. how small η should be) to obtain 
convergence.

Notice also that each µi < 1, i = 1, 2, 3 can be solved for η, which depends on M0, M, b, c, and v, i.e. the initial data.
The following modified auxiliary result is needed from [5, Lemma 1].
Lemma 3.4 Suppose that the iterates {xk} are well defined by the scheme (6). Then, the following Ostrowski-type 

relationship [3-4] holds

1 2
1( ) ( )( ( ) ( ))k k k kx c x x z−

+ ′′ ′= −   

1 3 1( ) ( ) ( )( ) ( ) ( )k k k k k kx x x L cT x z− −′′ ′ ′+ +    

1( )( )( )k k k k kx y x x z+′′− − −

1
10

( ( )) ( )( )k k k k k k ky z y d z y x zθ θ +′′+ + − − −∫ 

1
1 10

+ [ ( ( )) ( )] ( ),k k k k k kz x z z d x zθ θ+ +′ ′+ − − −∫  

and
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1 21( ) ( )( ( ) ( ))
2k k k kz x x x−′′ ′= −   

1 1( ) ( ) ( ) ( ) ( )
2 k k k k k
b x x x L x x− −′′ ′ ′−     

2
1 2 1( ) ( ) ( ) ( ) ( )

2 k k k k k
b x x x L x x− −′′ ′ ′−     

1
0

( ( ( )) ( )) ( ).k k k k k kx z x x d z xθ θ′ ′+ + − − −∫  

Next, we present the second semi-local convergence result for the scheme (3).
Theorem 3.5 Under the conditions (H)’, further suppose U[x0, t

*] ⊂ D, if conditions of Lemma 3.1 or Lemma 3.2 
hold. Then, the following assertions hold {xk} ⊂ U[x0, t

*] and there exists limk→∞ xk = x* ∈ U[x0, t
*] so that

* * .k kx x t t− ≤ −‖ ‖

Proof. Assertions

(19),n n n ny x s t− ≤ −‖ ‖

(20),n n n nz y u s− ≤ −‖ ‖

and

1 1 ,n n n nx z t u+ +− ≤ −‖ ‖

shall be shown using induction. By (8) and the first substep of method (3), we have

1 *
0 0 0 0 0 0( ) ( ) ,y x x x s t tη−′− = ≤ = − <‖ ‖‖ ‖ 

thus, the iterat y0 ∈ U[x0, t
*] and (19) holds for n = 0. Let u ∈ U[x0, t

*]. Using (H1), we get

1 *
0 0 0 0 0( ) ( ( ) ( )) 1,x u x M u x M t−′ ′ ′− ≤ − ≤ <‖ ‖ ‖ ‖  

so '(u)−1 ∈ L(Y, X) and

1
0

0 0

1( ) ( )
1

u x
M u x

−′ ′ ≤
− −

‖ ‖
‖ ‖

 

follow from the Banach lemma on linear operators with inverses [1, 3-4,17]. Some estimates are obtained using the 
definitions, (H) and Lemma 3.2
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0 0
,

1
n n

n
n

M y x
L

M x x
−

≤
− −
‖ ‖‖ ‖
‖ ‖

2
1

0 0 0 0

1 | |
2 1 2 1

n n n n
n

n n

M y x M y xbT I
M x x M x x

 − −
− ≤ +  − − − − 

‖ ‖ ‖ ‖‖ ‖
‖ ‖ ‖ ‖

32

0 0
,

2 1
n n

n
n

M y xb
M x x

γ
 −

+ = − − 

‖ ‖
‖ ‖

1 1 1 1( ) ( ) ( ) ( ) ( ) ( )n n n n n n n n nz x x x x x T x x− − −′ ′ ′= − + −     

1 1( ) ( ) ( )n n n ny T I x x−′= − −  

1( )( ),n n n ny T I y x= + − −

thus,

( ) ,n n n n n n n n n nz y y x s t u sγ γ− ≤ − ≤ − ≤ −‖ ‖ ‖ ‖

1 2
0

1( ) ( )
2n n nx z M y x−′ ≤ −‖ ‖ ‖ ‖ 

2

0 0

| |
2 1

n n
n n

n

M y xb M y x
M x x

−
+ −

− −
‖ ‖‖ ‖
‖ ‖

222

0 02 1
n n

n n n n
n

M y xb M y x y x
M x x

 −
+ − −  − − 

‖ ‖‖ ‖ ‖ ‖
‖ ‖

1
0

( ) ,n n n n nv z x d z xθ θ α+ − − ≤∫ ‖ ‖ ‖ ‖

1 ,n nt u+≤ −

1 2
0 0 0 00 0

| |
1

1 11 )
n n n n

n n
n nn

M y x c M
x z

M x x M x xM x x
α α

+
 −

− ≤ + +  − − − −− − 

‖ ‖‖ ‖
‖ ‖ ‖ ‖‖ ‖
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2

1 1 2
0 1 0 0 0

| |1
1 (1 )

n
n n

n n

c M
y x

M x x M x x
α

+ +
+


− ≤ 

− − − −
‖ ‖

‖ ‖ ‖ ‖

2
0 0 0 0

| |
1 (1 )

n n n
n n

n n

M y x c M
M y x

M x x M x x
α −

+ − +  − − − − 

‖ ‖‖ ‖
‖ ‖ ‖ ‖

1 12 n n n n n n n nM y x x z M z y x z+ ++ − − + − −‖ ‖‖ ‖ ‖ ‖‖ ‖

1
1 10

( )n n n nv x z d x zθ θ+ +
+ − − ∫ ‖ ‖ ‖ ‖

1

0 1 01
n

nM x x
δ +

+
≤

− −‖ ‖

(21)1
1 1

0 1
,

1
n

n n
n

s t
M t
δ +

+ +
+

≤ ≤ −
−

where we also used 1 1, , ,n n n n n n n n n n n ny x s t z y u s x z t u+ +− ≤ − − ≤ − − ≤ −‖ ‖ ‖ ‖ ‖ ‖

*
0 0 0 ,n n n n n n n nz x z y y x u s s t u t− ≤ − + − ≤ − + − = <‖ ‖‖ ‖ ‖ ‖

*
1 0 1 0 1 0 1 ,n n n n n n n nx x x z z x t u u t t t+ + + +− ≤ − + − ≤ − + − = <‖ ‖‖ ‖ ‖ ‖

0 0 0( ) (1 )n n n n nx y x x x x y xθ θ θ+ − − ≤ − − + −‖ ‖ ‖ ‖ ‖ ‖

* * *(1 ) ,t t tθ θ< − + =

1 0 0 1 0( ) (1 )n n n n nz x z x z x x xθ θ θ+ ++ − − ≤ − − + −‖ ‖ ‖ ‖ ‖ ‖

* * *(1 ) ,t t tθ θ< − + =

and

1 0 1 1 1 0n n n ny x y x x x+ + + +− ≤ − + −‖ ‖‖ ‖ ‖ ‖

*
1 1 1 0 1 ,n n n ns t t t s t+ + + +≤ − + − = <

so, *
1 1 1 0, , ( ), ( ), ( , )n n n n n n n n nz x x y x z x z y U x tθ θ+ + ++ − + − ∈  and the induction for estimates is completed.

It follows that sequence {tn} is complete in X and as such it converges to some x* ∈ U[x0, t
*]. By letting n → ∞ in 

the estimation (see (21))



Contemporary MathematicsVolume 4 Issue 1|2023| 13

1
0 1 1( ) ( )n nx x δ−

+ +′ ≤‖ ‖ 

and using the continuity of  we obtain (x*) = 0. Moreover, see (20) for the proof of (26).
                                                                                                                                                                                     □
Remark 3.6 The condition U[x0, t

*] ⊂ D can be replaced by U[x0, 0
1

M ] ⊂ D if conditions of Lemma 3.1 hold or 

U[x0, 1 m
η
−  ⊂ D] under conditions of Lemma 3.2 where 

0
1

M  and 1 m
η
−  are given in closed form in contrast to t*.

The uniqueness of the solution x* result follows without necessarily using conditions of Theorem 2.2 or Theorem 2.3 
or Theorem 3.5.

Proposition 3.7 Suppose x* ∈ U(x0, ξ0) ⊂ D is a simple solution of equation (x) = 0; Condition (H2) holds and 
there exists ξ ≥ ξ0 such that

(22)0 0( ) 2.M ξ ξ+ <

Set G = U[x0, ξ] ∩ D. Then, the point x* is the only solution of equation (x) = 0 in the set G.
Proof. Let y* ∈ G with (y*) = 0. Define linear operator Q = ∫0

1'(x* + θ(y* − x*))dθ. By using (H2) and (22) we get 
in turn

11 * *
0 0 0 0 00

( ) ( ( )) ((1 ) )x Q x M x x y x dθ θ θ−′ ′− ≤ − − + −∫‖ ‖ ‖ ‖ ‖ ‖ 

0
0( ) 1.

2
M

ξ ξ≤ + <

Therefore, x* = y* is implied since Q−1 ∈ L(Y, X) and Q(y* − x*) = (y*) − (x*) = 0.
                                                                                                                                                                                     □

4. Numerical applications
Three numerical examples further validate the theory.
Example 4.1 Let us consider a scalar function  defined on the set Ω = [x0 − (1 − p), x0 + 1 − p] for p ∈ (0, 1) by

3( ) .x x p= −

Choose x0 = r = r1 = 1. Then, we obtain the estimates η = 
1

3
p−

,

2 2
0 0| ( ) ( ) | 3 | |x x x x′ ′− = − 

0 0 0 0 03 | || | 3(| || 2 | |) | |x x x x x x x x x≤ + − ≤ − −

0 03(1 2) | | 3(3 ) | |,p x x p x x= − + − = − −

for each 
0 0

1 1
0 0 0 0Ω, so (3 ), Ω ( , ) Ω ( , ),L Lx L p U x U x∈ = − = ∩ =
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2 2| ( ) ( ) | 3 | |y x y x′ ′− = − 

0 0 03 | || | 3(| 2 ) | |y x y x y x x x x y x≤ + − ≤ − + − + −

0 0 03(| | | | 2 | |) | |y x x x x y x= − + − + −

0 0 0

1 1 13( 2) | | 6(1 ) | |,y x y x
L L L

≤ + + − = + −

for each 20 0

1 1
1, Ω and so 3(1 ) and .L L

x y L L∈ = + =

The following Table 1, shows that the condition (4) is satisfied.
Hence, the convergence to *x p=  is established under weaker conditions than in [5].

Table 1. Sequence (4)

n 1 2 3 4 5 6

tn+1 0.1995 0.2307 0.2324 0.2324 0.2324 0.2324

L0 tn+1 0.5168 0.5974 0.6018 0.6018 0.6018 0.6018

Example 4.2 We already saw in Example 1.1 that the older conditions (A4), (B4), and (C4) do not hold. Hence, 
the convergence of the scheme (3) to the solution x* = 1 cannot be assured with the previous approaches. However, the 
scheme (2) for x0 = 0.7 converges to x* after three iterations.

Example 4.3 Let us consider the nonlinear system

( ) 0,z =

where z = (z1, z2)
T

2 2
1 1 2 1 2 2

1 1( ) (2 , 2 ) .
9 9

Tz z z z z z z= − − − + −

The derivatives are

1

2

22 1
9( )

21 2
9

z
z

z

 − 
′  =

 − − 
 



and
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1

2

22 1 0 0
9( ) .

2 21 2 0
9 9

z
z

z

 
− 

 ′′ =
 − − − 
 



Choose z0 = (11.4, 11.4)T. Then, the solution z* = (9, 9)T is obtained after three iterations.

5. Conclusion
A two-fold finer semilocal convergence analysis for scheme (3) is presented with advantages as already stated in 

the introduction. Hence, the applicability of the scheme (3) is extended with the same or weaker conditions than before. 
This technique can be used to extend the applicability of other schemes analogously.
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