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Abstract: In this study, the blood flow mechanism in an inclined artery with the unwanted growth inside the arterial 
wall has been investigated by modelling blood as a non-Newtonian Casson fluid. A significant quantitative investigation 
on various flow physical parameters, including axial velocity, volumetric flow rate, plug core radius, plug core velocity, 
wall shear stress, and effective viscosity, has been analyzed through numerical calculations under the assumption that 
blood flow is unsteady. According to this study, slip velocity, inclination, yield stress, stenosis height and Reynolds 
number all have made a considerable impact on flow characteristics during blood flow in the core region.
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1. Introduction
Incomplete or complete artery occlusion is the cause of cardiovascular illnesses. Stenosis is defined by Rodbard 

[1] as an unfavorable development inside the artery’s cavity. Acceleration causes our body to jerk, putting a lot of health 
issues at risk, including headaches, a raised pulse rate, etc. When blood circulates via microscopic vessels, it has a non-
Newtonian nature [2, 3] in the core area and a Newtonian nature close to the arterial wall. 

In a Casson fluid model, blood shows non-zero yield stress at low shear rates, in accordance with Casson’s [4] 
observations. The Casson model was shown to be appropriate for blood flow via an artery with a 130-1,300 micrometre 
diameter by Merrill et al. [5]. Numerous studies, including Sankar and Lee, Chaturani and Ponnalagar Samy, Nagarani, 
and Sarojamma [6-9], have described the pulsatile Casson fluid flow via stenosed artery under the acceleration of the 
body. 

All arteries in our body are not horizontal and vertical. Present study examines the blood flow through inclined 
stenosed blood artery. These circumstances are more likely to exist where the blood veins are curved, bifurcate, meet, 
have a side branch, or have an abrupt change in flow geometry and the flow is erratic. This will help in understanding 
the new insights of practical applications of physical phenomena of blood flow through inclined artery. Siddiqui & 
Awasthi [10] described the blood flow via stenosed artery having catheter inside it and observed the slip, unsteadiness 
and body acceleration. Sharma et al. [11] studied the effects of a magnetic field and body acceleration during blood flow 
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through an inclined artery. Srivastava et al. [12] worked on a non-Newtonian fluid flow model for the slip condition on 
blood flow through an inclined tapered stenosed artery using power-law fluid. 

Dhange et al. [13] discussed blood flow via an inclined tube under the influence of magnetic field and a constant 
incompressible Casson fluid. Kumar et al. [14] discussed on comparative study of non-Newtonian physiological blood 
flow through elastic stenotic artery with rigid body stenotic artery. Sriyab [15] studied on the effect of stenotic geometry 
and non-Newtonian property of blood flow through arterial stenosis.

In a lid-driven square hollow filled with a porous material developed by Darcy Forchheimer, the effects of thermal 
radiation and heat generation on natural convection are explored in [16] and for non-Darcian natural convection is 
investigated by [17]. The two-dimensional laminar natural convection flow has been studied by [18]. Natural convection 
in a two-sided lid-driven inclined porous enclosure with a sinusoidal thermal boundary condition, is carried out by [19].

The effect of the aligned magnetic field on Williamson’s nanofluid on a stretching surface with convective 
boundary conditions is investigated numerically in [20]. To investigate the effects of radiation, on the heat and mass 
transfer of magneto-Casson fluid over a vertical permeable plate by using FEM method has been observed in [21]. 
Tangent hyperbolic nanofluid flow over an electromagnetic surface with velocity slip and heat source are studied in [22]. 
The resolution of radiation effects on MHD micropolar fluid flow in the case of heat generation or absorption through a 
stretched porous surface is discussed in [23].

This mathematical model has been created to analyze the rheology of blood by examining various factors affecting 
the inclined blood flow as well as normal blood flow.

• It helps, to count the effects of Reynolds number, yield stress, non-Newtonian nature, stenosis height, and slip on 
an accelerating fluid in the artery in order to get adequate findings in this subject. 

• Also, this study analyzes the blood flow in the core region of the artery under various rheological conditions. 
Blood flow remains steady when the artery’s wall shear stress is lower than the yield stress, and it plugs when the yield 
stress is higher and equal to the wall shear stress.

• This model may be used in the future to explore alternative flow parameters for Newtonian fluid, and other non-
Newtonian fluids over permeable wall. Also, we can observe the effects of magnetic field with nanoparticles on flow 
characteristics by using different numerical methods in the future.

2. Mathematical model
Let there be axially symmetric, laminar, unsteady, and fully developed blood flow in the stenosed artery. The 

Casson fluid is used to symbolize blood. The following section presents the mathematical impression for the radius of 
the artery (see Figure 1) that Sharma et al. [11] took into consideration.       

Figure 1. Geometry of stenosed artery in an inclined position
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where δc' indicates maximum stenosis height, R'a(z' ) indicates the radius of the artery with a stenosis, R'0a indicates the 
radius of the normal artery with a constant value, 2Z'0 indicates the stenosis length, and (δc' /R'0a) < 1. 

Equations (2) and (3), as used by Schlichting and Gersten [24], describe the momentum equations regulate the flow 
pattern. 
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where u'c denotes the axial velocity along the z' direction, p' denotes the pressure, t' denotes the time, ρ'ca denotes the 
density, τ'wa denotes the wall shear stress, Ψ denotes the inclination angle, ga denotes the acceleration due to gravity and 
B'c(t') denotes the periodic body acceleration (equation 4) along the axial direction.

( )0( ) cos bcc tB t a φ ω+ ′′ ′ ′=

where ϕ and a0 denotes the phase angle and amplitude of body acceleration with respect to the pressure gradient. Here 
ω'bc = 2πf 'bc; f 'bc denotes the frequency of body acceleration. Also, by taking f 'bc very small. The wave impact is not 
important.

Now the pressure gradient is
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The A0, pressure gradient in steady-state and the A1, amplitude of the fluctuating part are the functions of z'. Here 
ω'pc indicates the frequency of oscillation of the pulsatile flow, and it’s defined as ω'pc = 2πf 'pc, with f 'pc as the pulse rate 
frequency. Also, radial velocity can be neglected due to its small magnitude.

This equation (6), depicts how the Casson fluid functions,
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where, τ'c and μ'0 denotes the yield stress, viscosity of Casson fluid respectively. In the core region (τ'wa < τ'c), the velocity 
gradient vanishes, and this shows the plug flow. However, fluid behavior is indicated in the region τ'wa ≥ τ'c.

Considering the boundary conditions as
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where u's denotes the axial slip velocity at the obstructed wall of the artery.
Now introducing the variables in the non-dimensional form as
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where α denotes the pulsatile Reynolds number.
With the help of non-dimensional variables, equation (3) can be written as
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Now, the boundary conditions (7), (8) becomes
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The non-dimensional form of the radius of the artery, given in equation (1) becomes
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The volumetric flow rate in the non-dimensional form is defined below      
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with the help of non-dimensional variables, it’s defined as
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3. Analysis of the problem
The physical principle that stipulates that inertial effects are not relevant for smaller values of the frequency 

parameter that generates the pressure gradient is reflected in this paper’s assumed form of the solution, which is obtained 
by utilizing the perturbation method. Due to the fact that non-dimensional equations (10), (11) have a time-dependent 
α2 term, these equations should be expanded by α2. The axial velocity (uc), wall shear stress (τwa), plug core radius (Rc), 
plug core velocity (up), and plug core shear stress (τp) in terms of α2 (where α2 << 0) are as follows

( ) ( ) ( )2
0 1, , , , , , ...c ccu z r t u z r t z ru tα= + +

( ) ( ) ( )2
0 1, , , , , , ...wa wa waz r t z r t z r tτ τ α τ= + +

( ) ( ) ( )2
0 1, , , ...c c cR z t R z t R z tα= + +

( ) ( ) ( )2
0 1, , , ...p p pz t u z t u zu tα= + +

( ) ( ) ( )0 1
2, , , ...p p pz t z t z tτ τ α τ= + +

Substituting equations (17) and (18) in equation (10) and equating the α2 terms and constant terms, we get

( ) ( ) ( )0    
sin 2 cos t 1 cos  
4war r e B t

r F
ψτ φ ω

 
 
  

∂
= + + + +

∂

( )0
1

2c
wa

u
r

t r r
τ

∂ ∂
= −

∂ ∂

Integrating equation (22) between 0 and R0c, and using boundary condition (12), we have

0 0 ( )p cR D tτ =

( ) ( ) sin cos t 1 cowher ( ) se
4

 .e B tD t
F
ψφ ω + + + +  

=

Integrating equation (22) between R0c and r and using equations (12) and (24), we get

0 ( )wa rD tτ =

(16)

(17)

(18)

(19)

(20)

(21)

(22)

(23)

(24)

(25)



Contemporary Mathematics 22 | Chhama Awasthi, et al.

Substituting equations (17) and (18) in equation (11), we get
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Applying the expansion of uc and τw from equation (17) and (18) in equation (12) and (13) we have,
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Similarly solving equation (23) and using equations (30), (31) and boundary conditions (28), (29) we get the 
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From equations (25), (27), and (32), axial velocity u1c is
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From equation (34), u1p expression of plug core velocity is
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With the help of equation (30), (31) and (34), (35) in (17) and (20), the axial velocity uc, 
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plug core velocity up can be obtained as
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Using equation (15) and (36), the volumetric flow rate Q is
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Neglecting higher powers of α terms and α4 terms from the equation (19), the R1c approximation of the plug core 
radius can be obtained as

(41)
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( )1 0
1 ( )

c
c

τ R
R =
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With the help of equations (19), (34), and (38), the Rc is
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In dimensionless form, the effective viscosity is

( ) ( ) { }1 2 3 4
4 1 cos t( ) / z z ze a ze Q Qμ = z QR Q+ + + +

4. Numerical results and discussion
With the use of predefined parameters and MATLAB (R2022b), numerical computations of these quantities for 

their primary physiological importance have been carried out. The results of axial velocity (uc), plug core velocity (up), 
plug core radius (Rc), flow rate (Q), wall shear stress (τwa) and effective viscosity (μe) are obtained and computed for 
the fixed values of F = 0.2, n = 0.95, m = 2, φ = 0.2, τc = 0.1, ω = 1 [25-27]. Figure 2 depicts the variation of Reynolds 
number (α) on axial velocity (uc) with axial distance (r) for different fixed parameters F = 0.2, ϕ = 0.2, e = 1, ω = 1, t = 
1, δc = 0.1, us = 0.02. It has been found that increase of pulsatile Reynolds number, enhances the axial velocity slightly 
from the previous place. Also, the periodicity in graph shows pulsatile nature of blood. This describes the normal 
pulsatile blood flow in human body.

Figure 3 depicts the influence of different parameters inclined angle (Ψ ), slip velocity (us), wall shear stress (τc) and 
Reynolds number (α) on plug core velocity (up) versus axial distance (r) for F = 0.2, ϕ = 0.2, e = 1, δc = 0.1, ω = 1, t = 
1. It shows that an increase in Reynolds number, inclined angle, and slip velocity increases plug core velocity whereas 
decreases considerably when yield stress increases. This occurs as on increasing Reynolds number; flow becomes non-
linear and maximum flow takes place and hence core velocity increases. Similarly slip velocity and inclined angle also 
enhances the plug core velocity due to more flow. In the core region, flow occurs when wall shear stress is more than the 
yield stress. Therefore, if yield stress is maximum, wall shear stress is also maximum and reduces the plug flow.

Figure 4 illustrates plug core velocity with time graph for different values of Body acceleration (B), and stenosis 
height (δc) with F = 0.2, ϕ = 0.2, α = 0.2, Ψ = 30°, e = 1, t = 1, ω = 1. Figure 4 describes that body acceleration enhances 
the plug core velocity while it decreases swiftly on increasing stenosis height with the increase of time from 0° to 120° 
and then it partially increases and decreases for time 120° to 180° and 180° to 240° respectively again it increases 
rapidly for 240° to 360°. On increasing body acceleration width of core region enhances and hence core velocity 
decreases.

Figure 5 sketches the graph of plug core radius (Rc), with axial distance (r) for distinct values of Reynolds number 
(α), body acceleration (B), stenosis height (δc), and yield stress (τc) with F = 0.2, ϕ = 0.2, e = 1, ω = 1, us = 0.02. Figure 5 
depicted that plug core radius slightly increases on increasing the Reynolds number and yield stress while reduces for an 
increase in stenosis depth. Also, enhancement in body acceleration decreases the plug core radius. Figure 6 depicted the 
wall shear stress (τwa) variation with time (t) for distinct values of inclined angle (Ψ) and body acceleration (B) with F = 
0.2, ϕ = 0.2, ω = 1. From Figure 6, it has been observed that the wall shear stress (τwa) diminishes as body acceleration (B) 
rises and fluctuated when time increases. It has symmetry and a minimum value at t = 180° whereas maximum at t = 0° 
and 360°. It occurs as blood is pulsatile in nature.

Effective viscosity (μe) versus body acceleration (B) is shown in Figure 7 for different values of slip velocity (us) 
and stenosis height (δc) with F = 0.2, ϕ = 0.2, α = 0.5, B = 0, e = 0.05, ω = 1, t = 1. It has been noticed that increase in 
body acceleration and slip velocity reduces the viscosity due to more flow of blood inside the artery. whereas viscosity 
increases on increasing stenosis depth.

(42)

(43)

(44)
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Figure 2. Variation of axial velocity with axial distance

Figure 3. Variation of plug core velocity with axial distance

Figure 4. Variation of plug core velocity with time
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Figure 5. Variation of plug core radius with axial distance

Figure 6. Variation of wall shear stress with time

Figure 7. Variation of effective viscosity with body acceleration
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5. Conclusions
Significant aspects of the rheology of pulsatile blood in an inclined stenosed artery have been examined in the 

current study and found that analytical results are in agreement with the experimental results. The major findings of the 
analysis are summarized as follows: 

• Raising the Reynolds number, the axial velocity increases and the formation of periodic pattern exhibits the 
pulsatility of blood flow.

• Plug core velocity decreases as yield stress and stenosis height increases while it increases as Reynolds number, 
inclined angle, slip velocity, and body acceleration increases and shows symmetry in graph. 

• Plug core radius increases for greater yield stress and Reynolds number. 
• Wall shear stress diminishes as body acceleration rises and fluctuated over the time.
• Viscosity increases with increasing stenosis depth and decreases as body acceleration and slip velocity increase.
Another conclusion that could be drawn is that slip could aid to lessen damage to the vessel wall. Therefore, 

this research may aid doctors in determining the extent of stenosis and its long-term effects or in the treatment of 
cardiovascular ailments including myocardial infarction, stroke, heart attacks, etc. In the event of more severe stenosis, 
this investigation may be furthered by the addition of other rheological and physical data.
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