UNIVERSAL WISER
PUBLISHER

Some Algebraic Properties of $\boldsymbol{\ell}^{p}(\boldsymbol{\beta})$

Y. Estaremi ${ }^{\mathbf{1 *}}$, M. R. Jabbarzadeh ${ }^{2}$
${ }^{1}$ Department of mathematics, Payame noor university, P. O. Box: 19395-3697, Tehran, Iran
${ }^{2}$ Faculty of mathematical sciences, University of tabriz, P. O. Box: 5166615648, Tabriz, Iran
E-mail: estaremi@gmail.com, mjabbar@tabrizu.ac.ir

Abstract

In this paper, we consider a generalized Cauchy product \diamond on $\ell^{p}(\beta)$ and then we characterize some Banach algebra structures for $\ell^{p}(\beta)$. Also, some classic properties of \diamond-multiplication operator $M_{\diamond, z}$ on $\ell^{p}(\beta)$ will be investigated. In particular, we obtain the form of closed ideals of $\left(\ell^{p}(\beta), \diamond\right)$.

Keywords: Cauchy product, \rangle-multiplication operator, Unicellularity, cyclicity, closed ideal

1. Introduction

Let $\left\{\beta_{n}\right\}_{n=0}^{\infty}$ be a sequence of positive numbers with $\beta(0)=1$. For $1 \leq p<\infty$ we consider the space of sequences $f=\{\hat{f}(n)\}$ with $\|f\|_{\beta}^{p}=\sum_{n=0}^{\infty}|\hat{f}(n)|^{p} \beta(n)^{p}<\infty$. We shall use the formal notation $f(z)=\sum_{n=0}^{\infty} \hat{f}(n) z^{n}$ whether or not the series converge for any complex values of z. Let $\ell^{p}(\beta)$ denote the space of such formal power series. Note that if $\lim _{n} \frac{\beta(n+1)}{\beta(n)}$ or $\liminf _{n} \beta(n)^{\frac{1}{n}}=1$, then $\ell^{p}(\beta)$ consists of functions analytic on the open unit disc $\mathbb{D}=\{z \in \mathbb{C}:|z|<1\}$. The Hardy, Bergman and Dirichlet spaces can be viewed in this way when $p=2$ and respectively $\beta(n)=1, \beta(n)=(n+1)^{-1 / 2}$ and $\beta(n)=(n+1)^{1 / 2}$. Sources on formal power series include ${ }^{[4,1]}$.

Let X be a Banach space and let $A \in B(X)$, the space of all bounded linear operators on X. Then $x \in X$ is called cyclic vector for A in X if $X=\overline{\operatorname{span}}\left\{A^{n} x: n=0,1,2 \cdots\right\}$. Also an operator A in $B(X)$ is called Unicellular on X if the set of its invariant closed subspaces, $\operatorname{Lat}(A)$, is linearly ordered by inclusion.

In section 2, we define a generalized Cauchy product \diamond, under certain conditions, on $\ell^{p}(\beta)$ and then we show that the Banach space $\ell^{p}(\beta)$ with the generalized Cauchy product \diamond is a Banach algebra. Then we determine invertible elements and maximal ideal space of $\left(\ell^{p}(\beta), \diamond\right)$. Also, we give a suffcient condition for the \diamond-multiplication operator, $M_{\diamond, z}$ acting on $\ell^{p}(\beta)$ to be Unicellular. This result, as usual, leads to a description of closed ideals of the algebra $\ell^{p}(\beta)$ and cyclic vectors of the \diamond-multiplication operator $M_{\diamond, z}$.

2. Some banach algebra structures for $\boldsymbol{\ell}^{\boldsymbol{p}}(\boldsymbol{\beta})$

Let $\left\{\delta_{n}\right\}_{n=0}^{\infty}$ be a sequence of positive numbers with $\delta_{0}=1$. For $1<p<\infty$, let q be the conjugate exponent to p. For each $k, M \in \mathbb{N} \cup\{0\}$, take

$$
\begin{equation*}
C_{o}:=\sup _{n \geq 0} \sum_{k=0}^{n}\left(\frac{\delta_{n} \beta(n)}{\delta_{k} \delta_{n-k} \beta(k) \beta(n-k)}\right)^{q} \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
b_{M, k}:=\sup _{n \geq M+1} \frac{\delta_{n+k} \beta(n+k)}{\delta_{n} \delta_{k} \beta(n) \beta(k)} \tag{2}
\end{equation*}
$$

Throughout this paper, we assume that $1<p<\theta, C_{o}<\infty$ and $\lim b_{M, k}=0$ when $M \rightarrow \infty$. Given arbitrary two functions $f(z)=\sum_{n=0}^{\infty} \hat{f}(n) z^{n}$ and $g(z) \sum_{n=0}^{\infty} \hat{g}(n) z^{n}$ of the space $\ell^{p}(\beta)$, define the following generalized Cauchy product series

$$
\begin{equation*}
f \diamond g=\sum_{n=0}^{\infty} \sum_{m=0}^{\infty} \frac{\delta_{m+n}}{\delta_{n} \delta_{m}} \hat{f}(n) \hat{g}(m) z^{m+n} \tag{3}
\end{equation*}
$$

Note that if we set $\delta_{n} \equiv 1$, the generalized Cauchy product δ will be coincided to the ordinary Cauchy product.
Let $\ell^{0}(\beta)$ be the set of all formal power series. For each $f \in \ell^{p}(\beta)$, let $M_{\diamond, f}: \ell^{p}(\beta) \rightarrow \ell^{0}(\beta)$ be defined by $M_{\diamond, f}(g)=f \diamond g$, be its corresponding \diamond-multiplication operator. It is easy to see that

$$
M_{\diamond, z}(f)=\sum_{n=0}^{\infty} \frac{\delta_{n+1}}{\delta_{n} \delta_{1}} \hat{f}(n) z^{n+1} \text { and } M_{\diamond, z}^{N}(f)=\frac{\delta_{N}}{\delta_{1}^{N}} z^{N} \diamond f
$$

for all $N \in \mathbb{N} \cup\{0\}$ and $f \in \ell^{p}(\beta)$.
Take $C=\sup _{n \geq 0} \frac{\beta(n+N) \delta_{n+N}}{\beta(n) \delta_{n} \delta_{1}^{N}}$. Since $b_{M, k}<\infty$ for each $k, M \in \mathbb{N} \cup\{0\}$, then $C<\infty$. It follows that

$$
\begin{aligned}
\left\|M_{\diamond, z}^{N} f\right\|_{\beta}^{p} & =\sum_{n=0}^{\infty}\left(\frac{\delta_{n+N}}{\delta_{n} \delta_{1}^{N}}\right)^{p}|\hat{f}(n)|^{p} \beta(n+N)^{p} \\
& =\sum_{n=0}^{\infty}|\hat{f}(n)|^{p} \beta(n)^{p}\left(\frac{\delta_{n+N} \beta(n+N)}{\delta_{n} \beta(n) \delta_{1}^{N}}\right)^{p} \\
& \leq C^{p}\|f\|_{\beta}^{p}
\end{aligned}
$$

Hence $\left\|M_{\diamond, z}^{N}\right\| \leq C$. On the other hand, if we put $f_{n}(z)=z^{n}$, then $\left\|f_{n}\right\|_{\beta}=\beta(n)$ and $M_{\diamond, z}^{N}\left(f_{n}\right)=\frac{\delta_{n+N}}{\delta_{n} \delta_{1}^{N}} z^{n+N}$
He have Therefore we have

$$
\frac{\beta(n+N) \delta n+N}{\delta_{n} \delta_{1}^{N}}=\left\|M_{\diamond, z}^{N}\left(f_{n}\right)\right\|_{\beta} \leq\left\|M_{\diamond, z}^{N}\right\|\left\|f_{n}\right\|_{\beta}=\left\|M_{\diamond, z}^{N}\right\| \beta(n)
$$

This implies that $C \leq\left\|M_{\diamond, z}^{N}\right\|$ and so $\left\|M_{\diamond, z}^{N}\right\|=C^{[4]}$. In the next Theorem, we get that $\ell^{p}(\beta)$ is a unital commutative Banach algebra with respect to the generalized Cauchy product \diamond.

Theorem $2.1\left(\ell^{p}(\beta), \diamond\right)$ is a unital commutative Banach algebra.
Proof. It is easy to see that the constant function $f=1$ is a unity for $\left(\ell^{p}(\beta), \diamond\right)$. Hence if we prove that $M_{\diamond, f}$ is a bounded operator on $\ell^{p}(\beta)$, then we get the result. To see this let $f, g \in \ell^{p}(\beta)$. Using (3), it is easy to see that

$$
\begin{equation*}
\widehat{(f \diamond g)}(n)=\sum_{k=0}^{n} \frac{\delta_{n}}{\delta_{k} \delta_{n-k}} \hat{f}(k) \hat{g}(n-k) \tag{4}
\end{equation*}
$$

By using Hölder inequality and (1), we have

$$
\begin{aligned}
\left\|M_{\diamond, f}(g)\right\|_{\beta}^{p} & =\sum_{n=0}^{\infty}|\widehat{(f \diamond g)}(n)|^{p} \beta(n)^{p} \\
& =\sum_{n=0}^{\infty}\left|\sum_{k=0}^{n} \frac{\delta_{n}}{\delta_{k} \delta_{n-k}} \hat{f}(k) \hat{g}(n-k)\right|^{p} \beta(n)^{p} \\
& \leq \sum_{n=0}^{\infty}\left(\left.\sum_{k=0}^{n} \frac{\delta_{n} \beta(n)}{\delta_{k} \delta_{n-k} \beta(k) \beta(n-k)}|\hat{f}(k) \| \hat{g}(n-k)| \beta(k) \right\rvert\, \beta(n-k)\right)^{p} \\
& \leq \sum_{n=0}^{\infty}\left(\sum_{k=0}^{n}(|\hat{f}(k)| \beta(k)|\hat{g}(n-k)| \beta(n-k))^{p}\right)^{\frac{p}{p}}\left(\sum_{k=0}^{n}\left(\frac{\delta_{n} \beta(n)}{\delta_{k} \delta_{n-k} \beta(k) \beta(n-k)}\right)^{q}\right)^{\frac{p}{q}} \\
& \leq C_{O}^{\frac{p}{q}} \sum_{n=o}^{\infty} \sum_{k=0}^{n}|\hat{f}(k)|^{p} \beta(k)^{p}|\hat{g}(n-k)|^{p} \beta(n-k)^{p} \\
& =C_{O}^{\frac{p}{q}}\left(\sum_{n=0}^{\infty}|\hat{f}(n)|^{p} \beta(n)^{p}\right)\left(\sum_{n=0}^{\infty}|\hat{g}(n)|^{p} \beta(n)^{p}\right) \\
& =C_{O}^{\frac{p}{q}}\|f\|_{\beta}^{p}\|g\|_{\beta}^{p}
\end{aligned}
$$

Consequently, we get that
$\left\|M_{\diamond, f}(g)\right\|_{\beta}=\|f \diamond g\|_{\beta} \leq C_{o}^{\frac{1}{q}}\|f\|_{\beta}\|g\|_{\beta}$, and so $\left\|M_{\diamond, f}\right\| \leq C_{o}^{\frac{1}{q}}\|f\| \beta$.
Here we give another condition instead of (1) and (2) under which $\left(\ell^{p}(\beta), \diamond\right)$ is a unital commutative Banach algebra.

Remark 2.2 Suppose that there exist $N \in \mathbb{N}$ such that

$$
\begin{equation*}
\sum_{n, m \geq N+1} \frac{\delta_{n+m} \beta(n+m)}{\delta_{n} \delta_{m} \beta(n) \beta(m)}<\infty \tag{5}
\end{equation*}
$$

Then for every $f, g \in \ell^{1}(\beta)$, we have

$$
\begin{aligned}
f \diamond g & =\sum_{n=0}^{\infty} \sum_{m=0}^{\infty} \frac{\delta_{m+n}}{\delta_{n} \delta_{m}} \hat{f}(n) \hat{g}(m) z^{m+n}=f(0) g+\frac{\hat{f}(1)}{\delta_{1}} \sum_{m=0}^{\infty} \frac{\delta_{m+1}}{\delta} g(m) z^{m+1}+\cdots \\
& +\frac{\hat{f}(N)}{\delta_{N}} \sum_{m=0}^{\infty} \frac{\delta_{m+N}}{\delta_{m}} \hat{g}(m) z^{m+N}++g(0) \sum_{n=N+1}^{\infty} g(n) z^{n}+\frac{\hat{g}(1)}{\delta_{1}} \sum_{n=N+1}^{\infty} \frac{\delta_{n+1}}{\delta_{n}} \hat{f}(n) z^{n+1}+\cdots \\
& +\frac{\hat{g}(N)}{\delta_{N}} \sum_{n=0}^{\infty} \frac{\delta_{n+N}}{\delta_{n}} \hat{f}(n) z^{m+N}+\sum_{n=N+1}^{\infty} \sum_{m=N+1}^{\infty} \frac{\delta_{m+n}}{\delta_{n} \delta_{m}} f(n) \hat{g}(m) z^{m+n}
\end{aligned}
$$

Thus, we can write

$$
\begin{aligned}
& f \diamond g=\sum_{n=0}^{\infty} \sum_{m=0}^{\infty} \frac{\delta_{m+n}}{\delta_{n} \delta_{m}} \hat{f}(n) \hat{g}(m) z^{m+n}=f(0) g+f(1) M_{z, 0}(g)+\cdots \frac{\hat{f}(N) \delta_{1}^{N}}{\delta_{N}} M_{z, 仑}^{N}(g)+g(0) R_{N+1}(f) \\
& +\hat{g}(1) R_{N+1}\left(M_{z, 0}(f)\right)+\cdots \frac{\hat{f}(N) \delta_{1}^{N}}{\delta_{N}} R_{N+1}\left(M_{z, 0}^{N}(g)\right)+\sum_{n=N+1}^{\infty} \sum_{m=N+1}^{\infty} \frac{\delta_{m+n}}{\delta_{n} \delta_{m}} \hat{f}(n) g(m) z^{m+n}
\end{aligned}
$$

where $R_{N}(g):=\sum_{n=N}^{\infty} \hat{g}(n) z^{n}$. It follows that
$\|f \diamond g\|_{\beta} \leq\left(2 \sum_{k=0}^{N} \frac{\delta_{1}^{k}}{\beta(k) \delta_{k}}\left\|M_{z, \diamond}^{k}\right\|+\sum_{n, m=N+1}^{\infty} \frac{\delta_{m+n} \beta(n+m)}{\delta_{n} \delta_{m} \beta(n) \delta(m)}\right)\|f\|_{\beta}\|g\|_{\beta}$
Thus, if we replace the condition (1) and (2) with (5), then $\left(\ell^{1}(\beta), \diamond\right)$ is also a unital commutative Banach algebra. Now we give some technical lemmas that we will use them in the sequel.
Lemma 2.3a. Let $f \in \ell^{p}(\beta)$ and let λ be a non-zero complex number. If $\hat{f}(0)=0$, then $\lambda I-M_{0, f}$ has closed range, where I is the identity operator.

Proof. Let $\hat{f}(0)=0$. To show that $\lambda I-M_{\odot, f}$ has closed range, we only need to prove the \diamond-multiplication operator $M_{\odot, f}$ is compact on $\ell^{p}(\beta)$. For $M \in \mathbb{N}$, define K_{M} on $\ell^{p}(\beta)$ by

$$
K_{M}(g):=\sum_{m=0}^{M} \sum_{n=0}^{\infty} \frac{\delta_{n+m}}{\delta_{n} \delta_{m}} \hat{f}(n) \hat{g}(m) z^{m+n}
$$

Since

$$
\begin{aligned}
\sum_{m=0}^{M} \sum_{n=M+1}^{\infty} \frac{\delta_{n+m}}{\delta_{n} \delta_{m}} \hat{f}(n) \hat{g}(m) z^{n+m} & =\sum_{m=0}^{M} \frac{\hat{g}(m) \delta_{1}^{m}}{\delta_{m}}\left(\sum_{n=M+1}^{\infty} \frac{\delta_{n+m}}{\delta_{n} \delta_{1}^{m}} f(n) z^{n+m}\right) \\
& =\sum_{m=0}^{M} \frac{\hat{g}(m) \delta_{1}^{m}}{\delta_{m}} R_{M+1}\left(M_{\diamond, z}^{m}(f)\right),
\end{aligned}
$$

then we have

$$
K_{M}(g)=\sum_{m=0}^{M} \sum_{n=0}^{M} \frac{\delta_{m+n}}{\delta_{n} \delta_{m}} \hat{f}(n) \hat{g}(m) z^{n+m}+\sum_{m=0}^{M} \frac{\hat{g}(m) \delta_{1}^{m}}{\delta_{m}} R_{M+1}\left(M_{\diamond, z}^{m}(f)\right),
$$

and so K_{M} is a bounded and finite-rank operator on $\ell^{p}(\beta)$. Also, it is easy to verify that

$$
\sum_{n=M+1}^{\infty} \sum_{m=M+1}^{\infty} \frac{\delta_{n+m}}{\delta_{n} \delta_{m}} \hat{g}(n) \hat{f}(m) z^{n+m}=\sum_{n=2 M+2}^{\infty}\left(\sum_{k=M+1}^{n-M-1} \frac{\delta n}{\delta_{k} \delta_{n-k}} g(k) f(n-k)\right) z^{n}
$$

Therefore

$$
\begin{aligned}
& \left\|M_{\diamond, f}(g)-K_{M}(g)\right\|_{\beta}=\left\|f \diamond g-K_{M}(g)\right\|_{\beta} \\
& =\left\|\sum_{n=M+1}^{\infty} \sum_{m=M+1}^{\infty} \frac{\delta_{n+m}}{\delta_{n} \delta_{m}} \hat{g}(n) \hat{f}(m) z^{n+m}+\sum_{n=0}^{M} \sum_{m=M+1}^{\infty} \frac{\delta_{n+m}}{\delta_{n} \delta_{m}} f(n) g(m) z^{n+m}\right\|_{\beta} \\
& \leq\left\|\sum_{n=2 M+2}^{\infty}\left(\sum_{k=M+1}^{n-M-1} \hat{g}(k) \hat{f}(n-k)\right) z^{n}\right\|_{\beta}+\frac{|\hat{f}(1)|}{\delta_{1}}\left(\sum_{m=M+1}^{\infty} \frac{\delta_{m+1}^{p}}{\delta_{m}^{p}}|g(m)|^{p} \beta(m+1)^{p}\right)^{\frac{1}{p}} .
\end{aligned}
$$

Since

$$
\begin{aligned}
\frac{|\hat{f}(k)|}{\delta_{k}}\left(\sum_{m=M+1}^{\infty} \frac{\delta_{m+k}^{p}}{\delta_{m}^{p}}|\hat{g}(m)|^{p} \beta(m+k)^{p}\right)^{\frac{1}{p}} & =|\hat{f}(k)| \beta(k)\left(\sum_{m=M+1}^{\infty} \frac{\delta_{m+k}^{p} \beta(m+k)^{p}}{\delta_{m}^{p} \delta_{k}^{p} \beta(k)^{p} \beta(m)^{p}}|\hat{g}(m)|^{p} \beta(m)^{p}\right)^{\frac{1}{p}} \\
& \leq\|f\|_{\beta}\left(\sup _{m \geq M+1} \frac{\delta_{m+k} \beta(m+k)}{\delta_{m} \delta_{k} \beta(m) \beta(k)}\right)\left(\sum_{m=1}^{\infty}|\hat{g}(m)|^{p} \beta(m)^{p}\right)^{\frac{1}{p}} \\
& \leq\|f\|_{\beta}\|g\|_{\beta} b_{M, k}
\end{aligned}
$$

holds for every $0 \leq k \leq M$, then we get that

$$
\begin{aligned}
& \left\|M_{\diamond, f}(g)-K_{M}(g)\right\|_{\beta} \leq\left(\sum_{n=2 M+2}^{\infty}\left(\sum_{k=M+1}^{n-M-1} \frac{\delta_{n} \beta(n)}{\delta_{k} \delta_{n-k} \beta(k) \beta(n-k)}|\hat{g}(k)| \beta(k)|\hat{f}(n-k)| \beta(n-k)\right)^{p}\right)^{\frac{1}{p}} \\
& +\|f\|_{\beta}\|g\|_{\beta}\left(b_{M, 1}+b_{M, 2}+\cdots b_{M, M}\right) H \nmid O \ddot{\leq} \operatorname{er}\left(\sum_{n=2 M+2}^{\infty}\left(\sum_{k=M+1}^{n-M-1}|\hat{f}(k)|^{p} \beta(k)^{p}|\hat{g}(n-k)|^{p} \beta(n-k)^{p}\right)\right. \\
& \left.\times\left(\sum_{k=M+1}^{n-M-1}\left(\frac{\delta_{n} \beta(n)}{\delta_{k} \delta_{n-k} \beta(n-k) \beta(k)}\right)^{q}\right)^{\frac{p}{q}}\right)^{\frac{1}{p}}+\|f\|_{\beta}\|g\|_{\beta}\left(b_{M, 1}+b_{M, 2}+\cdots+b_{M, M}\right) \\
& \leq C_{O}^{\frac{1}{q}}\|g\|_{\beta}\left(\sum_{n=M}^{\infty}|\hat{f}(n)|^{p} \beta(n)^{p}\right)^{\frac{1}{p}}+\|f\|_{\beta}\|g\|_{\beta}\left(b_{M, 1}+b_{M, 2}+\cdots b_{M, M}\right)
\end{aligned}
$$

Hence by (2), $\left\|M_{\diamond, f}-K_{M}\right\|_{\beta} \rightarrow 0$, when $M \rightarrow \infty$. This implies that $M_{\diamond, f}$ is the norm limit of a sequence of finite-rank operators and therefore compact.

Lemma 2.3b Let condition (5) be satisfied. If $f \in \ell^{1}(\beta)$ and λ is a nonzero complex number and if, $\hat{f}(0)=0$ then $\lambda I-M_{\diamond, f}$ has closed range, where I is the identity operator.

Proof. Let $\hat{f}(0)=0$. To show that $\lambda I-M_{\diamond, f}$ has closed range, we only need to prove the \diamond-multiplication operator $M_{\diamond, f}$ is compact on $\ell^{1}(\beta)$. For $M \in \mathbb{N}$ define K_{M} on $\ell^{1}(\beta)$ by

$$
K_{M}(g)=\sum_{m=0}^{M} \sum_{n=0}^{\infty} \frac{\delta_{n+m}}{\delta_{n} \delta_{m}} \hat{f}(n) \hat{g}(m) z^{n+m}
$$

Since

$$
\begin{aligned}
\sum_{m=0}^{M} \sum_{n=M+1}^{\infty} \frac{\delta_{n+m}}{\delta_{n} \delta_{m}} \hat{f}(n) \hat{g}(m) z^{n+m} & =\sum_{m=0}^{M} \frac{\hat{g}(m) \delta_{1}^{m}}{\delta_{m}}\left(\sum_{n=M+1}^{\infty} \frac{\delta_{n+m}}{\delta_{n} \delta_{1}^{m}} \hat{f}(n) z^{n+m}\right) \\
& =\sum_{m=0}^{M} \frac{\hat{g}(m) \delta_{1}^{m}}{\delta_{m}} R_{M+1}\left(M_{\diamond, z}^{m}(f)\right)
\end{aligned}
$$

then

$$
K_{M}(g)=\sum_{m=0}^{M} \sum_{n=0}^{M} \frac{\delta_{m+n}}{\delta_{n} \delta_{m}} \hat{f}(n) \hat{g}(m) z^{n+m}+\sum_{m=0}^{M} \frac{\hat{g}(m) \delta_{1}^{m}}{\delta_{m}} R_{M+1}\left(M_{\diamond, z}^{m}(f)\right)
$$

and so K_{M} is a bounded and finite-rank operator on $\ell^{1}(\beta)$.
Therefore we have

$$
\begin{aligned}
& \left\|M_{\diamond, f}(g)-K_{M}(g)\right\|_{\beta}=\left\|f \diamond g-K_{M}(g)\right\|_{\beta} \\
& =\left\|\sum_{n=M+1}^{\infty} \sum_{m=M+1}^{\infty} \frac{\delta_{n+m}}{\delta_{n} \delta_{m}} \hat{g}(n) \hat{f}(m) z^{n+m}+\sum_{n=1}^{M} \sum_{m=M+1}^{\infty} \frac{\delta_{n+m}}{\delta_{n} \delta_{m}} f(n) g(m) z^{n+m}\right\|_{\beta} \\
& \leq\left(\sum_{n=M+1}^{\infty} \sum_{m=M+1}^{\infty} \frac{\delta_{n+m} \beta(n+m)}{\delta_{n} \delta_{m} \beta(n) \beta(m)}+\sum_{n+1}^{M} \sum_{m=M+1}^{\infty} \frac{\delta_{n+m} \beta(n+m)}{\delta_{n} \delta_{m} \beta(n) \beta(m)}\right)\|f\|_{\beta}\|g\|_{\beta} .
\end{aligned}
$$

Hence by (5), $\left\|M_{\diamond, f}-K_{M}\right\|_{\beta} \rightarrow 0$ when $M \rightarrow \infty$. Thus, $M_{\diamond, f}$ is the limit in the norm of a sequence of the finiterank operators and therefore compact. Here we provide some suffcient conditions under which $M_{\diamond, f}$ is one-to-one.

Lemma 2.4 Let $f \in \ell^{p}(\beta)$ and $\hat{f}(0) \neq 0$. Then $M_{\diamond, f}$ is one to one.
Proof. Let $g \in \ell^{p}(\beta)$ and $M_{\diamond, f}(g)=f \diamond g=0$. Then $\widehat{(f \diamond g)}(n)=0$, for all $n \in \mathbb{N} \cup\{0\}$. Hence, by (4) we get that

$$
\begin{aligned}
& \widehat{(f \diamond g)}(0)=\hat{f}(0) \hat{g}(0)=0 \Rightarrow g(0)=0 \\
& \widehat{(f \diamond g)}(1)=\hat{f}(0) \hat{g}(1)+f(1) g(0)=0 \Rightarrow g(1)=0
\end{aligned}
$$

and so on. Thus, we get $\hat{g}(0)=g(1)=g(2)=\cdots=0$, and so $g=0$.
Now we can get an equivalent condition to invertibility of elements of $\ell^{p}(\beta)$ with respect to \diamond.
Theorem 2.5 If $f \in \ell^{p}(\beta)$ then f is \diamond-invertible if and only if $\hat{f}(0) \neq 0$.
Proof. Suppose that $\hat{f}(0) \neq 0$. Put $h=f-\hat{f}(0) . M_{\diamond, f}=\hat{f}(0) I+M_{\diamond, h}$ with $\hat{h}(0)=0$. By the above lemmas and the open mapping theorem, $M_{\diamond, f}: M_{\diamond, f}\left(\ell^{p}(\beta)\right) \rightarrow \ell^{p}(\beta)$ is bounded. On the other hand, since $M_{\diamond, f}$ is compact, then the residual spectrum of $M_{\diamond, f}$ is empty, and so $M_{\diamond, f}^{-1} \in B\left(\ell^{p}(\beta)\right)$. Conversely, suppose that f is invertible. Then there exists $g \in \ell^{p}(\beta)$ such that $f \diamond g=1$ and so $\hat{f}(0) \hat{g}(0)=\widehat{(f \diamond g)}(0)=1$. This implies that $\hat{f}(0) \neq 0$.

By the above observations, we obtain the maximal ideal space of $\left(\ell^{p}(\beta), \diamond\right)$.
Corollary 2.6 The maximal ideal space of $\left(\ell^{p}(\beta), \diamond\right)$ consists of one homomorphism $\varphi(f)=\hat{f}(0)\left(f \in \ell^{p}(\beta)\right)$.
Proof. Let $\mathfrak{M}\left(\ell^{p}(\beta)\right)$ be the maximal ideal space of $\ell^{p}(\beta)$ with generalized Cauchy product \diamond. Recall that for each $f \in \ell^{p}(\beta), \lambda \in \sigma(f)$, the spectrum of f, if and only if $f-\lambda$ is not invertible. By Theorem $2.5, \lambda \in \sigma(f)$ if and only if $\widehat{(f-\lambda)}(0)=0$ or equivalently $\hat{f}(0)=\lambda$. Since $\sigma(f)=\left\{\varphi(f): \varphi \in \mathfrak{M}\left(\ell^{p}(\beta)\right)\right\}$, thus $\varphi \in \mathfrak{M}\left(\ell^{p}(\beta)\right)$ if and only if $\varphi(f)=\hat{f}(0)$, for each $f \in \ell^{p}(\beta)$.

Yousefi in [3] gives, some suffcient conditions for the usual multiplication operator M_{z} on $\ell^{p}(\beta)$ to be Unicellular. For study the related topics, see $[2,5]$. In the following we give a suffcient condition for the \diamond-multiplication operator $M_{\diamond, z}$ acting on $\ell^{p}(\beta)$ to be Unicellular.

Let $\ell_{0}^{p}(\beta)=\ell^{p}(\beta)$, $\ell_{\infty}^{p}(\beta)=\{0\}$ and let for $i \in \mathbb{N} \cup\{0\}, \ell_{i}^{p}(\beta)=\left\{\sum_{n \geq i} c_{n} z^{n} \in \ell^{p}(\beta)\right\}$. Given two functions $f(z)=\sum_{n=i}^{\infty} \hat{f}(n) z^{n}$ and $g(z)=\sum_{n=i}^{\infty} \hat{g}(n) z^{n}$ of the subspace $\ell_{i}^{p}(\beta)$. Let \diamond_{i} be the restriction of generalized Cauchy product \diamond on $\ell_{i}^{p}(\beta)$ defined as follows:

$$
\left(f \diamond_{i} g\right)(z):=\sum_{n, m \geq i} \frac{\delta_{n+m-i}}{\delta_{n} \delta_{m}} \hat{f}(n) \hat{g}(m) z_{n+m-i}
$$

For each $n, k, M \in \mathbb{N} \cup\{0\}$, define

$$
C_{i}:=\sup _{n \geq i} \sum_{k=i}^{n}\left(\frac{\delta_{n} \beta(n)}{\delta_{k} \delta_{n-k+i} \beta(k) \beta(n-k+i)}\right)^{q},
$$

and

$$
b_{M, k}^{i}:=\sup _{n \geq M+i+1} \frac{\delta_{n+k} \beta(n+k)}{\delta_{n} \delta_{k+i} \beta(n) \beta(k+i)} .
$$

Note that when $i=0$, these are coincide with (1) and (2) respectively. For $f \in \ell_{i}^{p}(\beta)$, put

$$
M_{\diamond_{i}}, f(g):=f \diamond_{i} g, \quad g \in \ell_{i}^{p}(\beta) .
$$

Then for each $n \in \mathbb{N} \cup\{0\}$, we have

$$
\begin{equation*}
M_{\diamond, z}^{n}(f)=\frac{\delta_{n}}{\delta_{1}^{n}} z^{n} \diamond f=\frac{\delta_{n+i}}{\delta_{1}^{n}} z^{n+i} \diamond_{i} f=M_{\diamond_{i}, f}\left(\frac{\delta_{n+i}}{\delta_{1}^{n}} z^{n+i}\right) \tag{6}
\end{equation*}
$$

It follows that for each $i \in \mathbb{N} \cup\{0\}, \ell_{i}^{p}(\beta)$ is an invariant subspace for $M_{\diamond, z}$. Let $\|\cdot\|_{\beta, i}$ be the restriction of $\|.\|_{\beta}$ on $\ell_{i}^{p}(\beta)$. According to the procedure used in the proof of the Theorem 2.1, we get that

$$
\widehat{\left(f \diamond_{i} g\right)}(n)=\sum_{k=i}^{n} \frac{\delta_{n}}{\delta_{k} \delta_{n-k+i}} \hat{f}(k) \hat{g}(n-k+i)
$$

and $\left\|f \diamond_{i} g\right\|_{\beta, i} \leq C_{i}^{\frac{1}{q}}\|f\|_{\beta},{ }_{i}\|g\|_{\beta, i}$. Thus $\ell_{i}^{p}(\beta)$ is a Banach algebra with multiplication \diamond_{i} and unity $\delta_{i} z^{i}$.
By these observations, we obtain the $\operatorname{Lat}\left(M_{\diamond, z}\right)$.
Theorem 2.7 Let $C_{i}<\infty$ and let $\lim b_{M, k}^{i}=0$ when $M \rightarrow \infty$. Then, $\operatorname{Lat}\left(M_{\diamond, z}\right)=\left\{\ell_{i}^{p}(\beta): i \geq 0\right\}$, and so $M_{\diamond, z}$ is an Unicellular operator on $\left(\ell^{p}(\beta), \diamond\right)$.

Proof. Note that the set $\left\{\ell_{i}^{p}(\beta): i \geq 0\right\}$ is linearly ordered by inclusion.
For $f \in \ell^{p}(\beta)$, put

$$
E(f)=\overline{\operatorname{span}}\left\{f, M_{\diamond, z}(f), M_{\diamond, z}^{2}(f), M_{\diamond, z}^{3}(f), \ldots\right\}
$$

Since $E(f)$ is an invariant subspace for $M_{\diamond, z}$, the operator $M_{\diamond, z}$ is Unicellular in the Banach algebra $\ell^{p}(\beta)$ if and only if for all nonzero $f \in \ell^{p}(\beta), E(f)$ is equal to $\ell_{i}^{p}(\beta)$ for some $i=0,1,2, \ldots i(f)$.

Now, we show that equality of $E(f)$ with $\ell_{i}^{p}(\beta)$ is equivalent to the condition $\hat{f}(i) \neq 0$. To see this note that by (6) we have

$$
E(f)=\overline{\operatorname{span}}\left\{M_{\diamond, z}^{n}(f): n \geq 0\right\}=\overline{\operatorname{span}}\left\{M_{\diamond, f}\left(\frac{\delta_{n+i}}{\delta_{1}^{n} z^{n+i}}\right): n \geq 0\right\}=\overline{M_{\diamond_{i, f}}\left(\ell_{i}^{p}(\beta)\right)},
$$

and so

$$
E(f)=\ell_{i}^{p}(\beta) \Leftrightarrow \overline{M_{\diamond_{i, f}}\left(\ell_{i}^{p}(\beta)\right)}=\ell_{i}^{p}(\beta) .
$$

Now, we show that

$$
\overline{M_{\diamond_{i, f}}\left(\ell_{i}^{p}(\beta)\right)}=\ell_{i}^{p}(\beta) \Leftrightarrow \hat{f}(i) \neq 0 .
$$

Indeed, $\overline{M_{\diamond_{i, j}}\left(\ell_{i}^{p}(\beta)\right)}=\ell_{i}^{p}(\beta)$ then there exists a sequence of $\left\{f_{n}\right\} \subseteq \ell_{i}^{p}(\beta)$ such that $f \diamond_{i} f_{n} \rightarrow \delta_{i} z^{i}$ and so $\frac{1}{\delta_{i}} \hat{f}(i) f_{n} \rightarrow \delta_{i}$ as $n \rightarrow \infty$, which implies that $\hat{f}(i) \neq 0$.

Conversely, if $\hat{f}(i) \neq 0$, then it is suffcient prove that $M_{\theta_{i, f}}$ is an invertible operator in $\ell_{i}^{p}(\beta)$ which will imply that $\overline{M_{Q_{i, f}}\left(\ell_{i}^{p}(\beta)\right)}=\ell_{i}^{p}(\beta)$, as desired. Put $h=f-\hat{f}(i) z^{i}$. Then $M_{0, i,}=\frac{\hat{f}(i)}{\delta_{i}} I+M_{0, t}$. By the same argument in the proof of the Lemmas 2.3 and 2.4, it is suffcient to show that $M_{0, t h}$ and $M_{0_{i, f}}$ are compact and one-to-one operators respectively in $\ell_{i}^{p}(\beta)$. For this purpose define

$$
K_{M}^{i}(g)=\sum_{m=i}^{i+M} \sum_{n=i}^{i+M} \frac{\delta_{m+n-i}}{\delta_{n} \delta_{m}} \hat{h}(n) \hat{g}(m) z^{n+m-i}+\sum_{m=i}^{i+M} \frac{\hat{g}(m) \delta_{1}^{m-i}}{\delta_{m}} R_{M+1}\left(M_{\diamond, z}^{m-i}(h)\right)
$$

for every integer $M \in \mathbb{N}$ and $g \in \ell_{i}^{p}(\beta)$. By an argument similar to the proof of the Lemma 2.3, K_{M}^{i} is a finite-rank operator and we can show that

$$
\leq C_{i}^{\frac{1}{q}}\|g\|_{\beta, i}\left(\sum_{n=M+i+1}^{\infty}|\hat{h}(n)|^{p} \beta(n)^{p}\right)^{\frac{1}{p}}+\|h\|_{\beta, i}\|g\|_{\beta, i}\left(b_{M, 1}^{i}+b_{M, 2}^{i}+\cdots+b_{M, M}^{i}\right)
$$

Thus, $\left\|M_{\diamond_{i, h}}-K_{M}^{i}\right\| \rightarrow 0$ when $M \rightarrow \infty$, and hence $M_{\diamond_{i, h}}$ is a compact operator. Now, let $g \in \ell_{i}^{p}(\beta)$ and $M_{\nabla_{i, f}}(g)=f \diamond_{i} g=0$. Then, for all $n \geq i, \widehat{\left(f \diamond_{i} g\right)}(n)=0$. Hence we get that

$$
\begin{aligned}
& \widehat{\left(f \diamond_{i} g\right)}(i)=\frac{1}{\delta_{i}} \hat{f}(i) \hat{g}(i)=0 \Rightarrow g(i)=0 \\
& \widehat{\left(f \diamond_{i} g\right)}(i+1)=\frac{1}{\delta_{i}} \hat{f}(i) \hat{g}(i+1)+\frac{1}{\delta_{i}} f(i+1) g(i)=0 \Rightarrow g(i+1)=0
\end{aligned}
$$

and so on. It follows that $\hat{g}(i)=g(i+1)=g(i+2)=\cdots=0$; i.e., $g=0$. This completes the proof of the theorem.
Corollary 2.8 If we set $\left\{\delta_{n}=1\right\}$ in the last theorem, then we will have a suffcient condition for multiplication operator M_{z} on $\ell^{p}(\beta)$ to be unicellular. This condition is different from given conditions by B. Yousefi in [3].

Corollary 2.9 Let $f \in \ell^{p}(\beta)$. Then f is a cyclic vector for $M_{\diamond, z}$ if and only if $\hat{f}(0) \neq 0$.
Proof. Let $f \in \ell^{p}(\beta)$. Then we have

$$
\overline{\operatorname{span}}\left\{M_{\diamond, z}^{n}(f): n \geq 0\right\}=\overline{\operatorname{span}}\left\{M_{\diamond, f}\left(\frac{\delta_{n}}{\delta_{1}^{n}} z^{n}\right): n \geq 0\right\}
$$

If $\hat{f}(0) \neq 0$, then by Theorem 2.5, $M_{\diamond, f}$ is an invertible operator on $\ell^{p}(\beta)$, and $\overline{\operatorname{span}}\left\{M_{\diamond, z}^{n}(f): n \geq 0\right\}=\ell^{p}(\beta)$ which implies that f is a cyclic vector for $M_{\diamond, z}$. Conversely, suppose f is a cyclic vector for $M_{\diamond, z}$. Then there exists sequence $\left\{f_{n}\right\} \subseteq \ell^{p}(\beta)$ such that $\left\|f_{n} \diamond f-1\right\|_{\beta} \rightarrow 0$. This implies that $\hat{f}_{n}(0) f(0) \rightarrow 1$, and so $\hat{f}(0) \neq 0$.

In the following theorem, we characterize the form of all closed ideals of the Banach algebra $\left(\ell^{p}(\beta), \diamond\right)$.
Theorem 2.10 Let $i \in \mathbb{N} \cup\{0\}, C_{i}<\infty$ and let $\lim b_{M, k}^{i}=0$ when $M \rightarrow \infty$. Then the closed ideals of $\left(\ell^{p}(\beta), \diamond\right)$ are exactly of the form $\ell^{p}(\beta)$.

Proof. For any $i \in \mathbb{N} \cup\{0\}$, it is easy to see that $\ell^{p}(\beta)$ is a closed ideal of $\left(\ell^{p}(\beta), \diamond\right)$. Let K be an arbitrary closed ideal of $\left(\ell^{p}(\beta), \diamond\right)$. Then for each $f \in K, z \diamond f \in K$ and so $M_{\diamond, z} \subseteq K$. Now, by Theorem 2.7, $K=\ell_{i}^{p}(\beta)$ for some $i \in \mathbb{N} \cup\{0\}$. This completes the proof.

References

[1] T. S. Brewer. Agebraic properties of formal power series composition. Theses and Dissertations-Mathematics. 2014; 23.
[2] L. Fang, Unicellularity of Lambert's weighted shifts. Northeastern Math. J. 1991; 7: 35-40.
[3] S. Grabiner. Weighted Shifts and Banach Algebras of Power Series. American Journal of Mathematics. 1975; 1: 1642.
[4] A. L. Shields. Weighted shift operators and analytic function theory, Math. Surveys, A. M. S. Providence. 1974; 13:

49-128.
[5] B. Yousefi, A. I. Kashkuli. Cyclicity and unicellularity of the differentiation operator on Banach spaces of formal power series, Math. Proc. R. Ir. Acad. 2005; 105A: 1-7.

