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Abstract: In this paper, we consider a generalized Cauchy product ¢ on ¢”(8) and then we characterize some Banach
algebra structures for ¢7(f). Also, some classic properties of ¢-multiplication operator A,, on ¢”(f) will be investigated.
In particular, we obtain the form of closed ideals of (¢”(/3),0).
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1. Introduction

Let {,} _, be a sequence of positive numbers with #(0)=1. For 1< p <oowe consider the space of sequences
S= {f(n)} with || £1l5=>" 70| f(m) " B(n)” <. We shall use the formal notation f(z)= Zfof(n)z” whether or not
the series converge for any complex values of z. Let ¢7 () denote the space of such formal power series. Note that if
% or liminf ,B(n)”—l then ¢”(f) consists of functions analytic on the open unit disc D={z e C:|z|<1} .The Hardy,
Bergman and Dirichlet spaces can be viewed in this way when p = 2 and respectively f(n)=1, B(n)=(n+1)"* and
B(n)=(n+1)"_Sources on formal power series include "

Let X be a Banach space and let 4 € B(X), the space of all bounded linear operators on X. Then x € X is called
cyclic vector for 4 in X if X =span{4'x:n=0,1,2.}. Also an operator 4 in B( X) is called Unicellular on X if the set of
its invariant closed subspaces, Lat( 4 ), is linearly ordered by inclusion.

In section 2, we define a generalized Cauchy product ¢, under certain conditions, on ¢”(4) and then we show that the
Banach space ¢7 () with the generalized Cauchy product ¢ is a Banach algebra. Then we determine invertible elements
and maximal ideal space of (£”(5),0). Also, we give a suffcient condition for the {-multiplication operator, M, .
acting on ¢”(g) to be Unicellular. This result, as usual, leads to a description of closed ideals of the algebra ¢”(8) and
cyclic vectors of the ¢-multiplication operator M, .

lim

2. Some banach algebra structures for £ (f)

Let {5,}_, be a sequence of positive numbers with S, =1.For 1< p<wo, let g be the conjugate exponent to p. For
each k, M e NU{0}, take

S 6,B(n) ’ (1)
G Supz( 5, S)B(n— k)]

and

5. B(ntk)
b s = n+k
v N 8.5, Bm) Bk @
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Throughout this paper, we assume that 1<p<8, C, <o and limb,, , =0 when M — . Given arbitrary two

functions f(z)= Z = f(n)z"and g(z)z > ,&(m)z" of the space ¢7(f), define the following generalized Cauchy product
series

3)
fog= ZZ ’”*”f(n)g(m)zm”

n=0 m= 0
Note that if we set 5, =1, the generalized Cauchy product ¢ will be coincided to the ordinary Cauchy product.

Let ¢°(B) be the set of all formal power series. For each f e /?(f), let M, ,: (”(B)—> (°(B) be defined by
M, (g)=f ¢ g,beits corresponding {-multiplication operator. It is easy to see that

M, (f)= Zé”“f(n)Z"+1 and M’ (f)— of,

n=0 1

forall Ne NU{0} and f e?(pB).

Take C =su M Since b,, , <o foreachk, M e N u{O}, then C < o . It follows that
RO

MY f1l5= Z( 5";;)" | f(m)|” B(n+ N)

& 8, Bn+ N)
;' S pn) (—5,,ﬁ(n)5lN

<crifig.

)P

Hence || M, || < C. On the other hand, if we put f.,(z)=z", then Il £, ll;= B(n) and M) ()= ””]Vv z"N
Therefore we have 3,9,

p(n+N)on+ N
5n51N

=ML (S Nl UM M= 1M 1 B(n)

This implies that C < || M. || and so IIMéVZ || =C". In the next Theorem, we get that ¢”(f) is a unital
commutative Banach algebra w1th respect to the generalized Cauchy product ¢ .

Theorem 2.1 (/7 (), <) is a unital commutative Banach algebra.

Proof. It is easy to see that the constant function /= 1 is a unity for (£”(£),0). Hence if we prove that M, , is a
bounded operator on ¢” (), then we get the result. To see this let f, g e ¢7(B). Using (3), it is easy to see that

(f © g)n)= Z f(k)g(n—F) )

k055nk

By using Holder inequality and (1), we have
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1M, ()= 17 0 )m)l" An)”

ﬂ(ﬂ)”

0,
25 X JU)&(n—k)

IA

(S o,p(n) A o ) p
Z( 5.5 Bopin—ty ONEE=BIAE S ")j

n

Q|

n

: e[ < spm Y
Z[ (17G0) | B | &(n— )| B(n— k))j {Z( Y ")U

n

O

< oqi | SOOI B | &(n—F) [P B(n—FK)

—cy [i| Fr p (n)f’](2| O ﬂ(n)ﬁj

P

=Co 1AMz g I

Consequently, we get that
1 1

WMo (Dl =11f 0 gll, <CSNS Nl gl and so || M, , 1< CE 1l £l B.

Here we give another condition instead of (1) and (2) under which (¢7(f),Q) is a unital commutative Banach
algebra.

Remark 2.2 Suppose that there exist N e N such that

OpnPn+m) (5)
n,m;VH 5,,5”,18(”)18(”1) '

Then for every f, g € £'(f3), we have

fog=3Y ’“"f(n)g(m)z’"*"—f(O) + LD D32 g (m)z"" +

nOmO é‘1m0

f;N)Z N 5 (m)z" N ++g(0) z g(n)z" +g§) Z é",”f( n)z"" +

g(N) ~ 5 N 7 m+N N N 5 —+; m+n
+ = f(n)z = f(n)g(m)z
5N HZ:(; 5/1 nZN;—l mZN:—»—l 5 5

Thus, we can write
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708=33 % fngime = Oz 70, )+ LA ()4 £ OR,, )

n=0 m=0 Y,,Yy,; 61\7
+EMRy, (M. (/) + % Ryu (MY (2)+ Z Z ST mgem=""

where R (g):=) 7 &(n)z". It follows that

L 5k k < m+nﬂ(n+m)
s ogll, s( kz(;ﬂ(k)é ||Mz,o||+n’r;m§n5mﬂ( S )jnfnﬂngn,,

Thus, if we replace the condition (1) and (2) with (5), then (¢'(3),©) is also a unital commutative Banach algebra.
Now we give some technical lemmas that we will use them in the sequel.

Lemma 2.3a. Let f < ¢”(f) and let 4 be a non-zero complex number. If J}(O) =0, then A/-M, , has closed
range, where / is the identity operator. '

Proof. Let f (0) =0. To show that A7 —M, , has closed range, we only need to prove the ¢)-multiplication operator
M, , is compact on ¢”(f).For M €N, define K,, on ¢”(f) by

Ky (g): ZZ ”*’"f (m)g(m)z"""

mOnO

Since

M 0 0

> Y e f gz =Zg(?§lm[ S, Lo f(n)z’””’j

m=0 n=M +1 5,,5”, n=M+1 5 57”

m

Zé m)(s‘mRMH(M ).

then we have

K, (g)= ZZ

mOnO

g 4 > SO R (M)

m

and so K,, is a bounded and finite-rank operator on ¢”(f3). Also, it is easy to verify that

n%;lm%—%—l 5 5 g(n)f(m)znm B n ;+2 (k§+l 5 5,[ kg(k)f(n k))Z

Therefore
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WM, (g)-K, (@I, =If0g-K,(&l

—‘ ISR IOVICIERED WP I

n=M+1 m=M +1

- f(m)g(m)z"™

nYm n=0 m=M +1 5 5

B
n—M -1

Z (D &) (n—kyz"

n=2M+2 k=M+1

IA

ﬂ +1L 5(1” | (; L n) ” pom 1Y ] |

Since

|f(k)| . m+k P 4 ’ 7 N 5r:+kﬁ(m+k)p A 4 4 r
5 (; Tl ﬂ(m+k)] |f(k>|ﬂ(k>(m§+l Sre sy pomy | 21 B j

B (m + k) p P
SFal” (MM&M )ﬁ(k)j(ﬁg( )7 B(m) ]

<A sl g llp by

holds for every () < k < M, then we get that

1M, ()~ K, ()], < { > (; 55 k%;)(n SO CINCRRINT —k)J J

FIL Il (B by by ) . er[ > (Z FWP pR | 2= h) ﬂ(n—k)’”j

(3 ssm

i\ 6.0, f(n—k)p(k)

1
p

2|

FU LU gl (Byy 4By s + e b

v )

<cy ||g||ﬁ£2|f<n)|" ﬂ(n)*’j LUl g lly (Byy s+ +

Hence by (2), || M, , —K,, ll; = 0, when M — oo. This implies that M, . is the norm limit of a sequence of
finite-rank operators and therefore compact.

Lemma 2.3b Let condition (5) be satisfied. If f e ¢'(5) and 4 is a nonzero complex number and if, /(0)=0 then
Al —M, , has closed range, where [ is the identity operator.

Proof Let f (0)=0. To show that A/ —-M, , has closed range, we only need to prove the ¢-multiplication operator
M, , is compact on ' (B) . For M eN define X,, on ¢'(B) by

Ky (g)= ZZ ”“”f(n)g(M)Z“m

mOnO

Since
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n= M+15§m

m

g(m)s"

> 2 5”; F(m)g(myz"" zié "“)5"'( S Ouim f(n)z’”’"j
f_ B Ry (ML)

m

then
Ky(@=23 Safmaom= 3 EC R, M),

and so K, is a bounded and finite-rank operator on ¢'(f3).
Therefore we have

WM, (&)-K, (@I, =If0g-K,(&l,

-2 > 5";; & mz" +Z; (;g" f(mgm:z""

B

o & 8, Brm) L& 8, Bntm)
S n+m n+m
(%% 5.0 B 2,2, nmﬂ(ﬂ)ﬂ(m)j”f loll &1l

Hence by (5), [| M, , — K, Il = 0 when M —oo. Thus, A, , is the limit in the norm of a sequence of the finite-
rank operators and therefore compact Here we provide some suff01ent conditions under which M . is one-to-one.
Lemma 2.4 Let / < ¢7(3) and f(0)= 0. Then M, oy 18 one to one.

Proof. Let g€ ("(f) and M, ,(g)=f ¢ g=0. Then (f 0 g)(n) =0, for all ne NU{0}. Hence, by (4)
we get that ‘

(/ 0 2)(0)= F(0)2(0)=0=> g(0) =0
(/ 0 D)= FO)2() + f(1)g(0)=0=>g(1)=0,

and so on. Thus, we get g(0)=g(1)=g(2)=---=0,and so g=0.

Now we can get an equivalent condition to invertibility of elements of ¢# () with respectto ¢).

Theorem 2.5 If f € ¢7 (,6‘) then f'is {)- 1nvert1ble if and only if f(O) #0.

Proof. Suppose that f(O) #0.Put h=f— f(O) M, , = f(O)+M,, with h(O) 0. By the above lemmas
and the open mapping theorem, M, ,: M, . (¢"(B)) — /" () is bounded. On the other hand, since M, , is compact,
then the residual spectrum of M, , is empty, and so M, € B(£7(B)). Conversely, suppose that fis invertible. Then
there exists g e ¢”(f) suchthat £ 0 g =1 andso £(0)g(0)=(f ¢ g)(0)=1. This implies that £(0) 0.

By the above observations, we obtain the maximal ideal space of (£7(5),9).

Corollary 2.6 The maximal ideal space of (£”(f),0) consists of one homomorphism ¢@( ) = f O)ferlt?(p)).

Proof. Let M (¢7 (L)) be the maximal ideal space of £ (f) with generalized Cauchy product ¢). Recall that for
each fe /”(ﬁ) Aeo(f), the spectrum of f,if and only if f — A is not invertible. By Theorem 2.5, A € o(f") if and
only if (f =2)(0)=0 or equivalently 7(0)=A. Since o(f) = {(p(f) @ e ML’ (ﬂ))} thus ¢ € 991(¢” (B)) if and only
if ()= f(O), for each 1 e ¢7(B) .

Yousefi in [3] gives, some suffcient conditions for the usual multiplication operator M, on ¢7 () to be Unicellular.
For study the related topics, see [2, 5]. In the following we give a suffcient condition for the (-multiplication operator
M, . acting on ¢7 () to be Unicellular.

Let ¢5(B)=¢2(B), L.(B)= {0} and let for ie Nu{O} , 0P (B) :{Z i CaZ" e["(ﬁ)} . Given two functions
=X f(mz" and g(z)= Z —&(m)z" of the subspace ¢7(f3). Let ¢  be the restriction of generalized Cauchy product
¢ on ¢7(p) defined as follows: l
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RO ‘;5 Ovsncs f(n)3(m)z, .

n-m

For each n, k, M e NU{0}, define

3 S, B(n) !
€= S“pzl 5 B B(n— k+z)j

and

b]lw . i= sup n+kﬁ(n + k) .
£ I S BBk +i)

Note that when i = 0, these are coincide with (1) and (2) respectively. For f € ¢7 (), put
M,.f(g):=f0 g, geli(P.

Then for each n e NU{0}, we have

oz(f)— "0 f= Ot 0. f=M, f( O z") ©)
& &
It follows that for each i € NU {0}, ¢7(3) is an invariant subspace for M, . Letll- ||, be the restriction of ||l
on ¢7(B). According to the procedure used in the proof of the Theorem 2.1, we get that

(f 0, @)n) = 25; — [ ()g(n—k+i),

n—k+i
1

and || f 0, g s, < Ci; Il f PR l|| g ||/>’,i . Thus ¢”(f) is a Banach algebra with multiplication (}i and unity §z'.
By these observations, we obtain the Lat(M,,_) .
Theorem 2.7 Let C, < oo and let limb), , =0 when M —> co. Then, Lat(M,.) = {éf’ )iz O} ,and so M, _

is an Unicellular operator on (¢7(£),90) .
Proof. Note that the set {!éf’ B):i= 0} is linearly ordered by inclusion.

For fe¢?(p), put
E(f)=span{f .M, (f).M;_.(f).M_.(f). ...}

Since E( /) is an invariant subspace for M, _ , the operator M, _ is Unicellular in the Banach algebra ¢” (/) if and
only if for all nonzero f € (7 (f), E(f') is equal to £7 () for some i=0, 1, 2, ... i( f).

Now, we show that equality of E( /) with ¢7(£) is equivalent to the condition (@) #0. To see this note that by (6)
we have

E(f)=span{M{_(f):n=0}= W{Mo,f (‘;— z")inz 0} =M, (7 (B)

1

and so

E(f)=06(B) =M, ((B)=1(P).

Now, we show that

M, (02 (B) =11 (B) < f(i)=0.
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Indeed, M, (¢7(B))=¢7(p) then there exists a sequence of {/,} = ¢7(B) such that /0, f, >,z and so
—f(z)f -4 as n —> o, which implies that f(z) #0.

Conversely, if /(i) =0, then it is suffcient prove that M,  is an invertible operator in 7 () which will imply that
M, (¢1(B))=10{(p),asdesired. Put h= 71— Ff(@)z". Then a, :%HMQ,,, .By the same argument in the proof of the Lemmas
2.3 and 2.4, it is suffcient to show that M, and M, are compact and one-to-one operators respectively in ¢7 () . For
this purpose define

i & HM +n—i n+m—i He m 5"1 ' m—i
Ki@=25% O Seminimz 4 3 A 8( ) Ry (M (B)).,

for every integer M e N and g € ¢7 (). By an argument similar to the proof of the Lemma 2.3, K, is a finite-rank
operator and we can show that .
1M, (&)—K, (&)=

1 - 1

<Collglly, C S 1A B Y + 11 RNl & Ny, (Bl +Bly s+ - 4Bl )

n=M +i+1

Thus, [|M,, K, || ->0 when M — oo, and hence A7, is a compact operator. Now, let g € ¢7(/3) and
L (@)=19, g 0. Then forall n>i, (f 9, g)(m)=0. Hence we get that

N YR .
(f 0, &)= gf(l)g(l) =0=g()=0
A TN 1oL 1 .. . .
(f 0, @)+ ZEf(l)g(l +1)+gf(l +Dg()=0= g+ =0,
and so on. It follows that g(i) = g(i+1)=g(i+2)=---=0; i.e, g =0. This completes the proof of the theorem.
Corollary 2.8 If we set {5, =1} in the last theorem, then we will have a suffcient condition for multiplication
operator M _on £”(f3) to be unicellular. This condition is different from given conditions by B. Yousefi in [3].

Corollary 2.9 Let /"< ¢”(f). Then fis a cyclic vector for M _ if and only if 7(0)=0.
Proof. Let f e ¢”(f). Then we have

Span{Mg”z(f) n> O} = span{Mw(%Z") n> 0}
1 .

If f(O) # 0, then by Theorem 2.5, M, , is an invertible operator on ¢” (), and W{M;z (fH:n= 0} =07(p)
which implies that fis a cyclic vector for M, . . Conversely, suppose fis a cyclic vector for M, . Then there exists
sequence {fn} c ¢7(B) such that || £, ¢ f—1ll; — 0. This implies that 7.(0)£(0) =1, and so f(0)#0.

In the following theorem, we characterize the form of all closed ideals of the Banach algebra (¢7(£3),9).

Theorem 2.10 Let i e NuU {0}, C, <oo and let limbj“ =0 when M — o . Then the closed ideals of (¢7(5),0)
are exactly of the form £7(f3).

Proof. For any i e NuU {O}, it is easy to see that £”(f) is a closed ideal of (¢*(8),0). Let K be an arbitrary closed
ideal of (¢7($),0). Then for each f €K, z0 feK and so M, < K. Now, by Theorem 2.7, K = (?(f) for some
ieNu {0} . This completes the proof.
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