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Abstract: In this paper, we consider a generalized Cauchy product ◊  on ( )p β  and then we characterize some Banach 
algebra structures for ( )p β . Also, some classic properties of ◊-multiplication operator ,◊ zM  on ( )p β  will be investigated. 
In particular, we obtain the form of closed ideals of ( ( ), )◊

p β .
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1. Introduction
Let { } 0n n

β ∞

=  be a sequence of positive numbers with (0) 1β = . For 1 p≤ < ∞we consider the space of sequences 
{ }ˆ ( )f f n=  with 0

ˆ|| || | ( ) | ( )p p p
nf f n nβ β∞
== < ∞∑ . We shall use the formal notation 0

ˆ( ) ( ) n
nf z f n z∞
==∑  whether or not 

the series converge for any complex values of z. Let ( )p β
 denote the space of such formal power series. Note that if 

( 1lim
( )n

n
n

β
β

+ ）

 
or 

1

liminf ( )n
n

nβ =1, then ( )p β  consists of functions analytic on the open unit disc { }:| | 1z z= ∈ < .The Hardy, 
Bergman and Dirichlet spaces can be viewed in this way when p = 2 and respectively ( ) 1nβ = , 1/2( ) ( 1)n nβ −= + and 

1/2( ) ( 1)n nβ = + . Sources on formal power series include [4, 1]. 
Let X be a Banach space and let ( )A B X∈ , the space of all bounded linear operators on X. Then x X∈  is called 

cyclic vector for A in X if { }: 0,1, 2nX span A x n= =  . Also an operator A in B( X ) is called Unicellular on X if the set of 
its invariant closed subspaces, Lat( A ), is linearly ordered by inclusion.

In section 2, we define a generalized Cauchy product ◊, under certain conditions, on ( )p β  and then we show that the 
Banach space ( )p β

 with the generalized Cauchy product ◊ is a Banach algebra. Then we determine invertible elements 
and maximal ideal space of ( ( ), )◊

p β . Also, we give a suffcient condition for the ◊-multiplication operator, ,◊ zM  
acting on ( )p β  to be Unicellular. This result, as usual, leads to a description of closed ideals of the algebra ( )p β  and 
cyclic vectors of the ◊-multiplication operator ,◊ zM .

2. Some banach algebra structures for ℓp(β) 
Let { } 0n n

δ ∞

= be a sequence of positive numbers with 0 1δ = . For 1 p< < ∞ , let q be the conjugate exponent to p. For 
each k, { }0M ∈ ∪ , take 

0 0

( ): sup
( ) ( )

qn
n

o
n k k n k

nC
k n k

δ β
δ δ β β≥ = −

 
=  − 

∑ 
                                                        

and
        

,
1

( ): sup
( ) ( )

n k
M k

n M + n k

n+kb
n k

δ β
δ δ β β

+

≥
=                                                                                (2) 
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Throughout this paper, we assume that 1 p θ< < , oC < ∞  and ,lim 0M kb =  when M →∞ . Given arbitrary two 
functions 0

ˆ( ) ( ) n
nf z f n z∞
==∑ and 0 ˆ( ) ( ) n

ng z g n z∞
=∑  of the space ( )p β

, define the following generalized Cauchy product 
series

0 0

ˆ ˆ( ) ( )
∞ ∞

++

= =

◊ =∑∑ m nm n

n m n m

f g f n g m zδ
δ δ

  

Note that if we set 1≡nδ , the generalized Cauchy product ◊  will be coincided to the ordinary Cauchy product. 
Let 0 ( )β  be the set of all formal power series. For each ( )pf β∈ , let ,◊ fM : 0( ) ( )p β β→   be defined by 

, ( )◊ = ◊fM g f g  , be its corresponding ◊-multiplication operator. It is easy to see that

11
,

0 1

ˆ( ) ( )
∞

++
◊

=

=∑ nn
z

n n

M f f n zδ
δ δ  

and ,
1

( )◊ = ◊N NN
z NM f z fδ

δ
  ,                  

for all { }0N ∈ ∪
 
and

 ( )pf β∈ .

Take 0
1

( )sup
( )

n N
n N

n

n NC
n

β δ
β δ δ

+
≥

+
= . Since ,M kb < ∞ for each k, { }0M ∈ ∪ , then C < ∞ . It follows that

,
0 1

ˆ( ) | ( ) | ( )
∞

+
◊

=

= +∑ 

N p p p pn N
z N

n n

M f f n n Nβ
δ β
δ δ

                

                                                     0 1

( )ˆ| ( ) | ( ) ( )
( )

p p pn N
N

n n

n Nf n n
n

δ ββ
δ β δ

∞
+

=

+
=∑

                     ≤  β
p pC f .

                          

Hence ,
N

zM C◊ ≤  . On the other hand, if we put ( ) = n
nf z z , then ( )nf nβ β=   and ,

1

( ) ++
◊ =N n Nn N

z n N
n

M f zδ
δ δTherefore we have

, , ,
1

( ) ( ) ( )N N N
z n z n zN

n

n N n N M f M f M nβ β
β δ β

δ δ ◊ ◊ ◊

+ +
= ≤ =            .

This implies that ,◊≤  

N
zC M 

 
and so ,◊ = 

N
zM C [4]. In the next Theorem, we get that ( )p β  is a unital 

commutative Banach algebra with respect to the generalized Cauchy product ◊ .
Theorem 2.1 ( ( ), )◊

p β  is a unital commutative Banach algebra. 
Proof. It is easy to see that the constant function f = 1 is a unity for ( ( ), )◊

p β . Hence if we prove that ,◊ fM  is a 
bounded operator on ( )p β , then we get the result. To see this let , ( )∈ βpf g . Using (3), it is easy to see that 



0

ˆ ˆ( )( ) ( ) ( )
= −

◊ = −∑
n

n

k k n k

f g n f k g n kδ
δ δ

                                                                    (4)
   

By using Hölder inequality and (1), we have 
  

                                               (3)  
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= = = −
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nf k k g n k n k
k n k

δ ββ β
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∞

= =

≤ − −∑∑ β β
p n

p p p pq
O

n o k
C f k k g n k n k

                         

0 0
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= =
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OC f g

Consequently, we get that 
1

, ( )◊ = ◊ ≤       

q
f OM g f g C f gβ β β β     

 
, and so 

1

,◊ ≤   

q
f OM C f β  .

Here we give another condition instead of (1) and (2) under which ( ( ), )◊

p β  is a unital commutative Banach 
algebra. 

Remark 2.2 Suppose that there exist ∈N   such that

, 1

( )
( ) ( )

+

≥ +

+
< ∞∑ δ β

δ δ β β
n m

n m N n m

n m
n m  

.                                                                                      (5)

Then for every 1, ( )∈ βf g , we have 

11

0 0 01

ˆ (1)ˆ̂ ˆ̂( ) ( ) (0) ( )+
∞ ∞ ∞

++ +

= = =

◊ = = + +∑∑ ∑ 
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n m mn m
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            11

0 1 11
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δ δ δ δ

 

            0 1 1
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∞ ∞ ∞
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= = + = +

+∑ ∑ ∑m N m nn N m n

n n N m NN n n m

g N f n z f n g m zδ δ
δ δ δ δ

+ 

Thus, we can write 
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1
, , 1

0 0

ˆ ( )ˆ̂̂ ˆ̂( ) ( ) (0) (1) ( ) ( ) (0) ( )
∞ ∞

++
◊ ◊ +

= =

◊ = = + + +∑∑ 
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where ˆ( ) : ( ) n
N n NR g g n z∞

==∑ . It follows that

 
 

1
,

0 , 1
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( ) ( ) ( )

∞
+

◊
= = +

 +
◊ ≤ + 

 
∑ ∑       

kN
k m n
z

k n m Nk n m

n mf g M f g
k n mβ β β

δ βδ
β δ δ δ β δ

    
                                                                                                                                                        

                                                                                                                                               
         .

Thus, if we replace the condition (1) and (2) with (5), then 1( ( ), )◊ β  is also a unital commutative Banach algebra. 
Now we give some technical lemmas that we will use them in the sequel. 
Lemma 2.3a. Let ( )pf β∈  and let λ  be a non-zero complex number. If ˆ (0) 0f = , then ,◊− fI Mλ  has closed 

range, where I is the identity operator. 
Proof. Let ˆ (0) 0f = . To show that ,◊− fI Mλ  has closed range, we only need to prove the ◊-multiplication operator 

,◊ fM  is compact on ( )p β . For M ∈, define MK
 on ( )p β  by 

0 0

ˆ ˆ( ) : ( ) ( )
M

m nn m
M

m n n m

K g f n g m zδ
δ δ

∞
++

= =

= ∑∑ 
                                                                            

.

Since

    

1

0 1 0 1 1

ˆ ( )ˆ̂ ˆ( ) ( ) ( )
mM M

n m n mn m n m
m

m n M m n Mn m m n

g mf n g m z f n zδ δδ
δ δ δ δ δ

∞ ∞
+ ++ +

= = + = = +

 
=  

 
∑ ∑ ∑ ∑

                                                     
                                                        

1
1 ,

0

ˆ ( ) ( ( ))+ ◊
=

= ∑
mM

m
M z

m m

g m R M fδ
δ ,

then we have

1
1 ,

0 0 0

ˆ ( )ˆ ˆ( ) ( ) ( ) ( ( ))++
+ ◊

= = =

= +∑∑ ∑
mM M M

n m mm n
M M z

m n mn m m

g mK g f n g m z R M fδ δ
δ δ δ ,

and so MK  is a bounded and finite-rank operator on ( )p β
. Also, it is easy to verify that

1

1 1 2 2 1

ˆ̂ˆ̂ ( ) ( ) ( ( ) ( ))+

+

n M
n m nn m

n M m M n M k Mn m k n k

ng n f m z g k f n k zδ δ
δ δ δ δ

∞ ∞ ∞ − −
+

= + = + = + = −

= −∑ ∑ ∑ ∑
                                          .

Therefore
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, ( ) ( ) ( )◊ − = ◊ −   f M MM g K g f g K gβ β    

1 1 0 1
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M

n m n mn m n m
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β
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= +∑ ∑ ∑ ∑
1

1
1
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β
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+

= + = + = +

 
≤ − + + 

 
∑ ∑ ∑
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+ 
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∑
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p
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f k g m m kδ β
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1
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∞
+
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 +
=  
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1
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∞
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  
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p
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                                                                         ,≤     M kf g bβ β ,

holds for every 0 k M≤ ≤ , then we get that 

1

1

,
2 2 1

( ) ˆˆ( ) ( ) | ( ) | ( ) | ( ) | ( )
( ) ( )

∞ − −

◊
= + = + −

  
 − ≤ − −  −  
∑ ∑ 

p pn M
n
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n M k M k n k

nM g K g g k k f n k n k
k n kβ

δ β β β
δ δ β β

  

1

,1 ,2 ,
2 2 1

ˆ ˆ( ) | ( ) | ( ) | ( ) | ( )
∞ − −

≤
= + = +

  + + + − −  
 

∑ ∑    

n M
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n M k M
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1
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1

( ) ( )
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∑     
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1
1

,1 ,2 ,
ˆ| ( ) | ( ) ( )

∞

=

 ≤ + + + 
 
∑      

p
p pq

O M M M M
n M

C g f n n f g b b bβ β ββ   

Hence by (2), , 0◊ − → f MM K β  , when M →∞ . This implies that ,◊ fM  is the norm limit of a sequence of 
finite-rank operators and therefore compact. 

Lemma 2.3b Let condition (5) be satisfied. If 1( )f β∈  and λ  is a nonzero complex number and if, ˆ (0) 0f =  then 
,◊− fI Mλ  has closed range, where I is the identity operator.

Proof. Let ˆ (0) 0f = . To show that ,◊− fI Mλ  has closed range, we only need to prove the ◊-multiplication operator 
,◊ fM  is compact on 1( )β . For M ∈  define MK  on 1( )β

 by

0 0

ˆ ˆ( ) ( ) ( )
M

n mn m
M

m n n m

K g f n g m zδ
δ δ

∞
++

= =

= ∑∑
                                                                                

.

Since
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0 1

ˆ ˆ( ) ( )
∞

++

= = +
∑ ∑
M

n mn m

m n M n m

f n g m zδ
δ δ

1

0 1 1

ˆ ( ) ˆ ( )
∞
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= = +

 
=  

 
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mM
n mn m

m
m n Mm n

g m f n zδδ
δ δ δ

                                                      
1

1 ,
0

ˆ ( ) ( ( ))+ ◊
=

= ∑
mM

m
M z

m m

g m R M fδ
δ                                                         ,

then

1
1 ,

0 0 0

ˆ ( )ˆ ˆ( ) ( ) ( ) ( ( ))++
+ ◊

= = =

= +∑∑ ∑
mM M M

n m mm n
M M z

m n mn m m

g mK g f n g m z R M fδ δ
δ δ δ

,

and so MK  is a bounded and finite-rank operator on 1( )β .
Therefore we have 

, ( ) ( ) ( )◊ − = ◊ −   f M MM g K g f g K gβ β    

1 1 1 1

ˆ̂ˆ̂ ( ) ( ) ( ) ( )
M

n m n mn m n m

n M m M n m Mn m n m

g n f m z f n g m z
β

δ δ
δ δ δ δ

∞ ∞ ∞
+ ++ +

= + = + = = +

= +∑ ∑ ∑ ∑

1 1 1 1

( ) ( )
( ) ( ) ( ) ( )

M
n m n m

n M m M n m Mn m n m

n m n m f g
n m n m β β

δ β δ β
δ δ β β δ δ β β

∞ ∞ ∞
+ +

= + = + + = +

 + +
≤ + 
 
∑ ∑ ∑ ∑    

                                                                                                                             
.

Hence by (5), , 0◊ − → f MM K β   when M →∞ . Thus, ,◊ fM  is the limit in the norm of a sequence of the finite-
rank operators and therefore compact.  Here we provide some suffcient conditions under which ,◊ fM  is one-to-one. 

Lemma 2.4 Let ( )pf β∈  and ˆ (0) 0f ≠ . Then ,◊ fM  is one to one.
Proof. Let ( )pg β∈  and , ( ) 0◊ = ◊ =fM g f g  . Then ( )( ) 0◊ =f g n  , for all { }0n∈ ∪ . Hence, by (4) 

we get that 

 ˆ ˆ̂( )(0) (0) (0) 0 (0) 0◊ = = ⇒ =f g f g g  

 ˆ̂ ˆ̂̂( )(1) (0) (1) (1) (0) 0 (1) 0  ◊ = + = ⇒ =f g f g f g g  ,

and so on. Thus, we get ˆ̂̂ (0) (1) (2) 0g g g= = = = , and so g = 0.
Now we can get an equivalent condition to invertibility of elements of ( )p β  with respect to ◊ .
Theorem 2.5 If ( )pf β∈  then f is ◊-invertible if and only if ˆ (0) 0f ≠ .
Proof. Suppose that ˆ (0) 0f ≠ . Put ˆ (0)h f f= − . , ,

ˆ (0)◊ ◊= +f hM f I M  with ˆ(0) 0h = . By the above lemmas 
and the open mapping theorem, ,◊ fM : , ( ( )) ( )◊ → 

p p
fM β β  is bounded. On the other hand, since ,◊ fM  is compact, 

then the residual spectrum of ,◊ fM is empty, and so 1
, ( ( ))−
◊ ∈ 

p
fM B β . Conversely, suppose that f is invertible. Then 

there exists ( )pg β∈  such that 1◊ =f g   and so ˆ ˆ(0) (0) ( )(0) 1= ◊ =f g f g  . This implies that ˆ (0) 0f ≠ .
By the above observations, we obtain the maximal ideal space of ( ( ), )◊

p β .
Corollary 2.6 The maximal ideal space of ( ( ), )◊

p β  consists of one homomorphism ˆ( ) (0)( ( ))pf f fϕ β= ∈ .
Proof. Let ( ( ))p βM  be the maximal ideal space of ( )p β  with generalized Cauchy product ◊ . Recall that for 

each ( )pf β∈ , ( )fλ σ∈ , the spectrum of  f , if and only if f λ−  is not invertible. By Theorem 2.5, ( )fλ σ∈  if and 
only if ( )(0) 0f λ− =  or equivalently ˆ (0)f λ= . Since { }( ) ( ) : ( ( ))pf fσ ϕ ϕ β= ∈ M , thus ( ( ))pϕ β∈ M  if and only 
if ˆ( ) (0)f fϕ = , for each ( )pf β∈ . 

Yousefi in [3] gives, some suffcient conditions for the usual multiplication operator zM  on ( )p β

 to be Unicellular. 
For study the related topics, see [2, 5]. In the following we give a suffcient condition for the ◊-multiplication operator  

,◊ zM  acting on ( )p β
 to be Unicellular. 

Let 0 ( ) ( )p pβ β=  ,  { }( ) 0p β∞ =  and let  for { }0i∈ ∪ , { }( ) ( )p n p
i n i nc zβ β≥= ∈∑  .  Given two functions 

ˆ( ) ( ) n
n if z f n z∞
==∑  and ˆ( ) ( ) n

n ig z g n z∞
==∑  of the subspace ( )p

i β
. Let ◊i

 be the restriction of generalized Cauchy product 
◊ on ( )p

i β  defined as follows:
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,

ˆ ˆ( )( ) : ( ) ( )+ −
+ −

≥

◊ = ∑ n m i
i n m i

n m i n m

f g z f n g m zδ
δ δ

   .

For each n, k, { }0M ∈ ∪ , define 

( ): sup
( ) ( )

qn
n

i
n i k i k n k i

nC
k n k i

δ β
δ δ β β≥ = − +

 
=  − + 

∑ 

                                                                                    
 ,

and

,
1

( ): sup
( ) ( )

i n k
M k

n M i n k i

n kb
n k i

δ β
δ δ β β

+

≥ + + +

+
=

+
 

                                                                        
. 
     

Note that when i = 0, these are coincide with (1) and (2) respectively. For ( )p
if β∈ , put 

, ( ) :◊ = ◊
i iM f g f g   , ( )p

ig β∈ .

Then for each { }0n∈ ∪ , we have

, ,
1 1 1

( ) ( )+ ++ +
◊ ◊= ◊ = ◊ =

i

n n n i n in n i n i
z i fn n nM f z f z f M zδ δ δ

δ δ δ
                                       (6)

 

It follows that for each { }0i∈ ∪ , ( )p
i β

 is an invariant subspace for ,◊ zM . Let ,. iβ   be the restriction of . β   
on ( )p

i β
. According to the procedure used in the proof of the Theorem 2.1, we get that 

 ˆ ˆ( )( ) ( ) ( )
= − +

◊ = − +∑
n

n
i

k i k n k i

f g n f k g n k iδ
δ δ

  ,

and 
1

,◊ ≤   

q
i i if g C fβ β  , ,i ig β  . Thus ( )p

i β  is a Banach algebra with multiplication ◊i
 and unity i

i zδ .
By these observations, we obtain the Lat ,( )◊ zM .
Theorem 2.7 Let iC < ∞  and let ,lim 0i

M kb =  when M →∞ . Then, Lat ,( )◊ zM  { }( ) : 0p
i iβ= ≥ , and so ,◊ zM  

is an Unicellular operator on ( ( ), )◊

p β .
Proof. Note that the set { }( ) : 0p

i iβ ≥  is linearly ordered by inclusion.
For ( )pf β∈ , put 

{ }2 3
, , ,( ) , ( ), ( ), ( ),◊ ◊ ◊= z z zE f span f M f M f M f  .

Since E( f ) is an invariant subspace for ,◊ zM , the operator ,◊ zM  is Unicellular in the Banach algebra ( )p β  if and 
only if for all nonzero ( )pf β∈ , E( f ) is equal to ( )p

i β  for some i = 0, 1, 2, ... i( f ).
Now, we show that equality of E( f ) with ( )p

i β  is equivalent to the condition ˆ ( ) 0f i ≠ . To see this note that by (6) 
we have 

{ }
,, ,

1

( ) ( ) : 0 ( ) : 0 ( ( ))++
◊ ◊ ◊

 
= ≥ = ≥ = 

 


i f

n n i pn i
z f inE f span M f n span M z n Mδ β

δ  ,

and so

,
( ) ( ) ( ( )) ( )◊= ⇔ =  

i f

p p p
i i iE f Mβ β β

 .

Now, we show that 

,

ˆ( ( )) ( ) ( ) 0◊ = ⇔ ≠ 

i f

p p
i iM f iβ β

 
.
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Indeed, 
,

( ( )) ( )◊ = 

i f

p p
i iM β β

 
 then there exists a sequence of { } ( )p

n if β⊆   such that ◊ → i
i n if f zδ   and so 

1 ˆ̂ ( ) n i
i

f i f δ
δ

→  as n →∞ , which implies that ˆ ( ) 0f i ≠ .
Conversely, if ˆ ( ) 0f i ≠ , then it is suffcient prove that 

,◊i f
M

 
 is an invertible operator in ( )p

i β  which will imply that 

,
( ( )) ( )◊ = 

i f

p p
i iM β β

 
, as desired. Put ˆ ( ) ih f f i z= − . Then 

, ,

ˆ ( )
◊ ◊= +

i f i h
i

f iM I M
δ 

.By the same argument in the proof of the Lemmas 
2.3 and 2.4, it is suffcient to show that 

,◊i h
M

 
 and 

,◊i f
M

 
 are compact and one-to-one operators respectively in ( )p

i β
. For 

this purpose define

1
1 ,

ˆ ( )ˆ ˆ( ) ( ) ( ) ( ( ))+
−+ + +

+ − −−
+ ◊

= = =

= +∑∑ ∑
m ii M i M i M

i n m i m im n i
M M z

m i n i m in m m

g mK g h n g m z R M hδ δ
δ δ δ ,

for every integer ∈M   and ( )∈ p
ig β . By an argument similar to the proof of the Lemma 2.3, i

MK  is a finite-rank 
operator and we can show that

, ,( ) ( )◊ − = 

i h

i
M iM g K g β

1 1

, , , ,1 ,2 ,
1

ˆ( | ( ) | ( ) ) ( )
∞

= + +

≤ + + + +∑      

p p i i iq p
i i i i M M M M

n M i
C g h n n h g b b bβ β ββ   

Thus, 
,

0◊ − → 

i h

i
MM K   when →∞M , and hence 

,◊i h
M

 
 is a compact operator. Now, let ( )∈ p

ig β  and 

,
( ) 0◊ = ◊ =

i f iM g f g
 

  . Then, for all ≥n i , ( )( ) 0◊ =if g n  . Hence we get that



1 ˆ ˆ̂( )( ) ( ) ( ) 0 ( ) 0◊ = = ⇒ =i
i

f g i f i g i g i
δ

  



1 1ˆ̂ ˆ̂̂( )( 1) ( ) ( 1) ( 1) ( ) 0 ( 1) 0◊ + = + + + = ⇒ + =i
i i

f g i f i g i f i g i g i
δ δ

  ,

and so on. It follows that ˆ̂̂ ( ) ( 1) ( 2) 0;= + = + = =g i g i g i  i.e., 0g = . This completes the proof of the theorem. 
Corollary 2.8 If we set { }1=nδ  in the last theorem, then we will have a suffcient condition for multiplication 

operator zM  on ( )

p β  to be unicellular. This condition is different from given conditions by B. Yousefi in [3]. 
Corollary 2.9 Let ( )∈ pf β . Then f is a cyclic vector for ,◊ zM  if and only if ˆ (0) 0≠f . 
Proof. Let ( )∈ pf β . Then we have 

{ }, ,
1

( ) : 0 ( ) : 0◊ ◊

 
≥ = ≥ 

 
n nn

z f nspan M f n span M z nδ
δ

                                                                                                     
.

If ˆ (0) 0≠f , then by Theorem 2.5, ,◊ fM  is an invertible operator on ( )

p β , and { }, ( ) : 0 ( )◊ ≥ = n p
zspan M f n β  

which implies that f is a cyclic vector for ,◊ zM . Conversely, suppose f is a cyclic vector for ,◊ zM . Then there exists 
sequence { } ( )⊆  p

nf β  such that 1 0◊ − → nf f β   . This implies that ˆ̂ (0) (0) 1→nf f , and so ˆ (0) 0≠f .
In the following theorem, we characterize the form of all closed ideals of the Banach algebra ( ( ), )◊

p β .
Theorem 2.10 Let { }0∈ ∪i  , < ∞iC  and let ,lim 0=i

M kb  when →∞M . Then the closed ideals of ( ( ), )◊

p β
are exactly of the form ( )

p β .
Proof. For any { }0∈ ∪i  , it is easy to see that ( )

p β  is a closed ideal of ( ( ), )◊

p β . Let K be an arbitrary closed 
ideal of ( ( ), )◊

p β . Then for each ∈f K , ◊ ∈z f K   and so ,◊ ⊆zM K . Now, by Theorem 2.7, ( )=  p
iK β  for some 

{ }0∈ ∪i  . This completes the proof. 
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