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Abstract: In this paper, we present the local convergence analysis of Werner-King’s method to approximate the solution
of a nonlinear equation in Banach spaces. We establish the local convergence theorem under conditions on the first and
second Fréchet derivatives of the operator involved. The convergence analysis is not based on the Taylor expansions
as in the earlier studies (which require the assumptions on the third order Fréchet derivative of the operator involved).
Thus our analysis extends the applicability of Werner-King’s method. We illustrate our results with numerical examples.
Moreover, the dynamics and the basins of attraction are developed and demonstrated.
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1. Introduction

For approximately solving the nonlinear equation
f(x)=0

where f: Q C R — R* where Q is an open convex set, Werner [1] (Also see King [2]) considered the iterative method
defined forn =0, 1, 2, 3, ... by
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given xy, yg € Q, let
"Xt Va1
xn+1=xn_f(—n2 L) (%)

Vet = X1 — S (@)‘1 FGoa). (1)

The method is extensively studied in [1-6], and is of convergence order 1 + 2. Recall that iterative method x, is
said to converge to x* with order p, if there exist a nonzero constant C such that

i o=l

noeo | x —x"||P

The convergence order of method (1) is proved in [1, 3-6] using Taylor expansion. Hence it requires assumption
on the derivative of operator up to an order three. In this paper, we study the iterative method (1) for solving nonlinear
equation

F(x)=0, 2

where F : Q < D(F) € X — Y is a Fréchet differentiable operator between the Banach spaces X and Y and Q is an open
convex set. In fact, we consider the iterative method defined forn=1, 2, 3, ... by

given x, € Q, let

o =x0—F (x0) ' F(xp)
+y -1
Xpyy =X, —F (F— T Vny F(x,)

Xy +yn

Vel = X1 = F (=7 F(x, ). 3)

Our convergence analysis is not based on the Taylor expansion and assumptions only on the first and second

derivatives of F, are used to obtain the convergence order 1 + V2.

Convergence of method (3) is proved in ([7, Chapter 32]) by using assumption only on the first derivative of F.
But in [7], convergence order was not proved, instead the author of [7], used the Approximate Computational Order of
Convergence (ACOC) and the Computational Order of Convergence (COC). For an iterative sequence, the ACOC is
defined as

” Xn+l ~Xn ”)/1 ( ” Xn—1 ” )
Il x, —x, |

=In
7= R

and COC is defined as
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| X, —x ”)/ln( [ x, —x *|| )

Ix, —x |l lx,_ —x |

72 =In(

Further, we extended the method (2) to the other two methods of order # and 2++/6, respectively using the

technique in Cordero et al. [8-9].The new methods are defined for n =0, 1, 2, ... as follows:

o =x0—F (x0) " F(xp)
Zpel = X —F(”*y”) F(x,)

n+yn

1
Y+l = Zp F( ) F(zp41)

' -1
Xpil = Zpp —F (yn) F(Zn+l) “4)
and

vo =% —F (x0) " F(xg)

Zpt =%~ F (2220 ()

Xyt Vn )—1
2

+ Vn -1
Y+l = Zn+ F( > n) F(Zn+l)

’ -1
Xp1 = Zp1 —F'(2p31)  F(Z41)- Q)

Throughout the paper we have B(x, )= {y € X : [y —x|| <A} and B(x, A) = |y € X : [y — x|| < A}.

The rest of the paper is arranged as follows. In Section 2, Section 3 and Section 4, we provide the convergence
analysis of methods (3), (4) and (5), respectively. Numerical examples are given in Section 5. The dynamics and the
basins of attraction are developed in Section 6. The paper ends with conclusions in Section 7.

2. Convergence analysis of (3)

Our analysis is based on the following assumptions:
(al) x" is a simple solution of (2) and F' '(x*)f1 e L(Y, X).
@2) || (F'(x) = FO)I < Llx =yl vx,y € Q.

@3) [IFG") F'O) <Ly, vy € Q.

(@4) [|F(x") (F"(@) = F' ()| < Lyl = x|

Leto, 0, k, k, : [0, 1) = R be a continuous nondecreasing functions define by
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1 LL, 3L
o) = ———| = 22|,
41-Loy\1-Lt 2

k() = p(t)e* ~1,

1 1L, 3LL
‘”I(t)_z(l—u)[ 24 +2(1—Lt)

]

and k,(?) = (o](t)t2 — 1. Then, since k&(0) =—1 <0, k(f) > w0 ast— %_, there exist a least r, € (0, 1) such that k(r,)=0.

Similarly, there exists a least r, € (0, 1) such that k(r,)=0.
Let

2
r<min{l, —, n,n}. 6
{ s 2} (6)

Theorem 1 Suppose the conditions (al)-(a4) hold. Then, the sequence {x,} defined by (3), starting from x, € B(x",
r) is well defined and remains in B(x*, r) for n =0, 1, 2, ... and converges to a solution x* of (2). Moreover, we have the
following estimates forn =1, 2, ...

3L

< I Il " 7
S—— X, — X X, 1—X
20-Lr) " -l

Iy, ="

and
Ix, —x <o) llx, —x 1Pl —x" |l ®)

Proof. The proof is by induction. First, we shall prove that for x, y € B(x", r), F ’(HTy) and F'(x) are invertible. Note
that by (a2) we get

xX+y
2

I F Y D - Pyl L Il“Ty—x* I

L
SE(”x—x* [+l y-x"lh<Lr<1.

Hence, by Banach Lemma on invertible operators [10]

(XY 1
I EE0 P s : Q)
( 2 ) ) 1-Lr
Similarly one can prove
! - ’ * 1
1F' ) P I ———i (10)
1-Lx-x|
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By the mean value theorem one can write

F(xp)=F(xp)-F(x') = I;F'(x* +1(xg —x )di(xg—x ).

Thus, by (3), (10) and (a2), we obtain

IA

Lyo=2" 11 < 1FGo) JLF (o) = F'(6" 10 =3 Mt =57 |

IA

PGy P ) PP T (o) = PG 1k = 5 Dl g =) |

L

< —p— (11)
20-Llxg—x )
< X -x < 7. (12)
The last step follows from the relation ﬁ” X0 x| < ﬁr <% < 1, and hence y, € B(x", 7).

Moreover, we have
' + 1
X -x =xg-x —F (%)‘1 J Pt = x (g =)
rXo + _1¢l 1 Xo + % % *
= F R [ IF (0220~ I i = (g =)

' 1el v % % * *
=F(X"+Ty0)*1joj0F (" 410 —x )+¢9(XO+TyO—x “i(xg —x")))dO

X(WTyO—x* —t(xg —x Wt (g — ).

Therefore, it follows in turn

-1
Iel
lx —x" Il = IIF'(WTyOJ ; IOF"((x*+t(x0—x*)+0(xO+Tyo—x*—t(xO—x*)))d6’

§ [x0+y0—2x*—2t(x0—x*)
2

]dr(xo —xHl
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-1
1 [ X0 + ) Lel ., = * Xo + Y * *
E”F (%j IOIOF ((x +t(xg—x )+¢9(%—x —t(xg—x )))do

x((l—Zt)(xO ~ Y+ (v —x*))dt(xo .

+
Let = (x" +1(xp —x )+ 9(%—{‘ —t(xy—x")). Then

lx—x" | =

ary Matl

/

IA
N |

IN

IA

IA

-1
% {F[XO“LTJ’OJ ( j; j; F"(7)d0(yy —x")dt(xg —x")

#JoJo Fr o ~20)di g —x’ﬂ -1

—_

-1
F'(Xo ;yo ) F'(x*)

1¢p1 * 1 * *
I FE Pl ded =+ x|

J

+

[P G E ) - G+ FGO) - 20)ddi(xy 57

1 L

Em[nyo AN
- Xog —X

+ I; I;F Y E" ()~ F(x)(1-20)d0dt(xg —x )

+

Lel sn—1 o % *. D
jo jOF(x Y L (x ) (1-20)d6dt(xg —x ) ‘H

1
20—-Lllxg—x"1I

PE AN

1rl * *
+, [y Ji=20l = g - P doa

1 L .
. L x-xIP
20-Lllxg—x D[ 1-Llxo—x" |

1l .
+L2.[o.[o|l_2t|(|’(1_6’)|+|9|)||x0—x P deI}
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1 LL 3L
< F L+ 22 [lxy—x" P (13)
40-Llxg—x | 1-Lllxg—x 12

IN

ol xg—x" Il xg—x" 1P . (14)

Note that by (13), we have |[x; —x"|| < |lx, — x| < (since p(|lx, — x7(])|}x, — X< 1).
Thus, the iterate x, € B(x", r).
By the mean value theorem one can write

F(x)=F(x)-F(x')= .[;F'(x* +1(x —x Ndt(x; —x").

Hence, we have
% % ’ + 1l % % %
V=X =x—X - F (%) IJ.OF (x +t(x1—x )dt(xl—x )

= P20 Q20 - [ F (0 g~ ) =)

and

ly "1l < ||F’(x°;y‘))—l(F’(XO;y‘))—j;F’(x*H(xl—x*)dt)ll Iy 2"
< ||F(x0+y0)_1F( )||x||jF(x y L (o y(’) F (x +10q —x)dn |l |y -x)
1 x0+y0 * * *
< —Lf —@ e =) el -2

2

IA

—— |lx x + x —26(x —x |l dt |l x x||
2= L)I 0=X +Yo- (=) 1

Lllxg =x" 1+l yg =x" 1+l 2 = x" |
(Il xo Yo 1 )||x1—x*||

<
2(1-Lr)
3L x—x"|
< 0T iy -x | (15)
2(1-Lr)
< 3#Hxl -Xx ||(s1nce X0, Y0 X eB(x r)) (16)
2(1-Lr)
< oy =x"1I. )
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3Lr

3L
2(1-Lr) <D

The last step follows from the fact that I X —x I < | X —x I (since L)

Furthermore, consider

xz—x* =X - x —F( +yl) F(x)
= F A 1 A2 - F (6 it = iy =)
= F A2 PO PG E A - F (o = i =)

_F (Xl th )]

F'(x")x j; I;F'(x*)_lF" (" 1y —x)+ Q(WTJ“—x* —t(x —x"))dO
x(¥—x* — 1 =X N))de(x, - x7)
1 ! — * * " * * *

=S F Y PG a)dor =200 =5+ 01 =) =

N\ —t(x -x ))). Therefore

where 77, = (x +t(x —x )+9( 12
* 1 r X1+ — r, ¥
I =" < SIFES TR

oo PO )= FG P60 o - 20 )2 |

- ;J(;F'(X*)_IF” () —x))(x —x*)dedt‘H

IA

D s R g

2||F(—2 ) F')

x[” j; j;F'(x*)*l[F” ()= F"(x )dO(1-2t)dt(x; —x ) |
+l j; [ ;F'(x*)*lF”(x*)da(l—2t)dt(x1 ey

L F G E )0~ 0~ 3 )b ||}
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1
20-Llxg—x")

IA

1
(Lo fylm = =2 a4

Iy =" g =" ]

1
20-Lllxg—x")

IA

1 2 *
{sz.o(|t+5(l—2t)||xl—x [

9 * * % *
+|E|||y1—x N1=2¢1dellxy—x" P +L Iy =x" || xg—x ||}

IA

20-Lllxg—-x" | 24 20-Llxg—x"1Il)

o () =x" Pllxg —x" |

IA

IA

g —x" 1.

(18)

1 11L 3LL *
{ 2 1 1||x1—x* 1l x — x|

(19)

(20)

The last step follows the fact that ¢, (r)|lx, — x*|\2||x0 - x| < (,ol(r)r2||x1 — x"|| <|lx; — x| < r. Thus, the iterate x, €

B(x", 7).

Simply, replace x,, y,, x, in the previous estimate by x,, y,, x,

Remark 2 The uniqueness of the solution result can be found in [7, Chapter 32].
Theorem 3 The method (3) has convergence order 1 + V2.

to complete the induction.

Proof. The proof is analogous to the proof of Theorem 3 in [11]. But for the completeness we restate the proof. Let

e, = |jx, — x"||. Let p be maximal such that for some C > 0,

e
lim 2L — .
n—>0 e;ll)

Then, since e, <7 < 1, by (8)(for large enough ), we have
2
ey P(r)eye, .
So, by (21) and (22), we get
D 2
Ce, ~@i(r)eye, 1,
or

_ 1
el = E%(r)en—la
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or equivalently

Thus, by (21), we get

p:

Thusp:1+«/5.

3. Convergence analysis of (4)

Let

__L 3L o)
(p4(t)_1—Lt(2(1—Lt)+ 2 t](p‘@

and A(t) = ¢4(t)t4 — 1. Then 2(0) =—1 <0 and A(f) > © as t — %_. So A(f) = 0 has a smallest positive solution p € (0, %).
Let

R =min{r, p}. (23)
Then for all ¢ € (0, R),
0< 4
Sou()t <1.

Theorem 4 Suppose the conditions (al)-(a4) hold. Then, the sequence {x,} defined by (4), starting from x, € B(x",
R) is well defined and remains in (x*, R) for n =0, 1, 2, ... and converges to a solution x* of (2). Moreover, we have the
following estimates forn =1, 2, ...

3L

Iy, —x"l< TR lx, = | lxpy =" 1, (24)

Iz, —x <o (R I x, —x" IPlx, ; —x"II. (25)
and

Ix, —x < @Rl x, —x" Pl x,; —x" | (26)
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Proof. Note that (24) and (25) follows as in Theorem 1. To prove (26), we observe that
* ' -1
nil =X =Zpq—xX —F'(y,) F(z,4)

*
X,

= F'0) [ F ) = F 4 1z =3 0z = 3)

= F'(y,)  F'(x")x j;F'(x*)—l[F'( V) = F'(X" + (201 =X Ndt(zp01 =X ).

Hence, by (a2), we have

||xn+1—x ” < m(ﬂyn—x ||+5||Zn+1—x ||)||Z,1+1—X ”

L 3L R %
[ LBy

< Rx—x*3x_—x*2
BT o 1, 2" Bl 1=

IA

Pa(R) [l —x" Pl —x" 7
Note that since ¢,(R)||x, — x"‘||3 [Ix

n—1

Theorem 5 The method (4) has convergence order #

~xXf< ¢4(R)R4Hxn —x"| <|lx, — x"|| < R. Therefore, the iterate x,+1 € B(x", R).

O

Proof. The proof is analogous to the proof of Theorem 3. Let e, = ||x, —x"|| and let ¢ be maximal such that for some

C, >0,

e
lim L = ¢
n—»0 eg

Then, since e, <R <1, by (26) (for large enough n), we have
e ~ P4(R)eyen .
So, by (27) and (28), we get
Cief = oy (R 1.
or

3 _94(R) >
63 zTen—I’

or equivalently

@7

(28)
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—_
w
=
W

€ z[¢4(R)J‘1_ (en—l)q_ .

Hence, by (27), we get

‘ -
(98]

G

3 and C; :[qu .
q-

Thus, ¢ = #

4. Convergence analysis of (5)

Let

s(t) = ()

_ L
2(1-Le) 7
and A, (t) = gos(z‘)z‘5 —1.Then 7, (0)=—-1<0and h,(f) > wast— 1 so h,(t) = 0 has a smallest positive solution p, € (0,

L
L
L)

Let

Ry =min{r, p}. (29)
Then, for all ¢ € (0, R,),

0< o5 <1.

Theorem 6 Suppose the conditions (al)-(a4) hold. Then, the sequence {x,} defined by (5), starting from x, € B(x",
R)) is well defined and remains in B(x", R ) forn=0,1,2, ... and converges to a solution x* of (2). Moreover, we have
the following estimates forn=1, 2, ...

[y mf—LLm P P (30)

Iz, —x <oy R) 1 x, —x" 1Pl x, —x"|I. (31)
and

I x0 —x" < o5 (R 1, =" 1Pl =" I (32)
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Proof. Note that (30) and (31) follows as in Theorem 1. Observe that

* * -1
Xyl =X =Zpq—X —F'(z,) F(z,41)
’ -1 1 ’ ’ * * *
= F'(zp) ™ [ [F'Gpan) = F'( + (200 =5 Ddi(zpy =)

= F(zp)  FGO) % [ FO) I 2= FIGE 4 1z = Wiz ).

Therefore, by (a2), we have

lxp - < —E 2 =P
2(1-LRy)
L 2 * 14 * 12
< ——  o@®R) x,—x [I"lx,_;—x |
2(1—LR1)(/)1( 1) n n—1

IN

os(R) 1, =x [#1lx,y —x" .

. 4 2 5 ~
Note that since p5(R,)|kx, = x"[|"|lx,_, = x™|” < 05s(R DR |Ix, — x"|| < |lx, — x"|| < R,. Thus, the iterate x,,, € B(x", R,).
a]

Theorem 7 The method (5) has convergence order 2 + J6.

Proof. The proof is analogous to the proof of Theorem 3. Let e, = ||x, — x"|| and let s be maximal such that for some
C,>0,

lim <4l — ¢, (33)

no
Then, since e, <R, <1 by (32) (for large enough 7), we have

enst = 05(R1)eyey - (34)
Hence, by (33) and (34), we get

Crey ~ ps(Ry)enen_s,

or

4 _ps(Ry)
efl4z 5 le}%_l’
G

or equivalently
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So, by (33), we get

Thus,s=2+\/g.

5. Examples

Three examples are presented in this section.
Example 8 Let X = Y = ([0, 1], the space of continuous functions defined on [0, 1] and be equipped with the max
norm. Let D = B(0, 1). Define function F on D by

1
F(I)(x)=9(x)-5 j . x09(0)* de.
We have that
1
F'(9(E)(x) =&(x) _15.[0 x6h9(0)2 £(6)da, for each & € D.
Then, we get that for x* =0, L = 15 and L, =31, L,=8.5. Then the parameters are:
r=R= % =0.0267, 1 =0.0386, », =0.0296, p =0.0387, p; =0.0204 = R,.

Example 9 Let X=Y=R,, D=B(0, 1), x" = (0, 0, I)T. Define function ' on D for w = (x, y, Z)Tby

2

F(w) = (sinx, y?+ ¥, Z)T.

Then, the Fréchet-derivatives are given by

cosx 0 0

F'(W)=| 0 %H 0l.

and

iporary Math tics 112 | Santhosh George, et al.




—sinx 0 0[O0 O 0|0 O O
F'(v=| 0 0 0]0 % 010 0 Of.
0O 0 0/0O O O[O O O
Using conditions (al)-(a4), we have that L=L,=1and L, = %

Then the parameters are:
r=R=R| = % =0.4,71 =0.6808,n =0.6161, p=0.5217, p; =0.6016.
Example 10 Let X=Y=R, D = [—%, %]. Define F on D by

3,02 .5 4 .
Ft) = tlogt+t" —t" ift+#0
0 ift=0.

Then, we have t, =1 and L = L, = L, = 44.4234. Then the parameters are:

r=R=2=0.0090,r,=0.0197,r,=0.0120 p = 0.0155, p, = 0.0073 = R,.

6. Basins of attractions

In this section, we study the basin of attraction (i.e. the collection of all initial points from which the iterative
method converges to a solution of a given equation) or Fatou sets and Julia sets (i.e. the complement of Fatou sets)
corresponding to the method (3), (4) and (5). We consider three examples to provide the basins of attractions:

Example 11 Let (x, y) € Rz, consider the system of equations

< -y=0
y3 —-x=0
with solutions {(—1, —1), (0, 0), (1, 1)}.

Example 12 Let (x, y) € RR?, consider the system of equations

{3)62)/—)/3 =0

x3—3xy2—1=0

with solutions {(—%, —@), (-1, g), 1, 0)},

Example 13 Let (x, y) € R?, consider the system of equations

{x2+y2—4=0

3x2 +7y* -16=0

Volume 4 Issue 1]2023| 113 Contemporary Mathematics



with solutions {(+/3, 1), (—+/3, 1), (/3, -1), (3, —1)}.

A rectangular region is considered for generating the basin of attraction: R = {(x, y) € R*:2<x<2 -2< y <
2}. The region contains all the roots of test problems under consideration. Equidistant grid of 401 x 401 points in R are
used as the initial guess x,, for the methods (3), (4) and (5). A fixed tolerance 10" and a maximum of 50 iterations are
used for all the cases. Each attracting basin corresponding to a root is assigned a color. If the desired tolerance is not
attained within a fixed number of iterations, then a conclusion is made that, the iterative method starting at x, does not
converges to any of the roots. Such points are assigned a black color. Eventually the basins of attraction is distinguished
by the respective colors of distinct roots of the method.

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

Figure 1. Dynamical plane of the methods (3) with basins of attraction for the Example 11

2

2
2 5 1 05 0 05 1 15 2 2 5 1 05 0 05 1 15 2

Figure 2. Dynamical plane of the methods (4)(left) and (5)(right) with basins of attraction for the Example 11
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-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

Figure 3. Dynamical plane of the methods (3) with basins of attraction for the Example 12

2

1.5

0.5 - 0.5

0 0

05 -0.5

-1 -1

-1.5 -1.5

2 -2
2 -1.5 -1 -0.5 0 0.5 1 1.5 2

-2 -1.5 -1 -0.5 0 0.5 1 1.5

(3]

Figure 4. Dynamical plane of the methods (4)(left) and (5)(right) with basins of attraction for the Example 12

Figure 1-Figure 6 demonstrates the basin of attraction corresponding to each root of above Examples (Example
11-Example 13) for the methods (3), (4) and (5). The black regions commonly known as Julia sets which contains all
initial points from which the iterative methods do not converge any of the roots are easily identifiable from these figures.

The experimentation is performed on a 16-core 64 bit Windows machine with Intel Core i17-10700 CPU 2.90GHz
using MATLAB.

Remark 14 From the figures it is easy to understand that method (5) has a larger basins of attraction compared to
methods (3) and (4).
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-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

Figure 5. Dynamical plane of the methods (3) with basins of attraction for the Example 13

-2 -1.5 -1 -0.5 0 0.5 1 L5 2 -2 -1.5 -1 -0.5 0 0.5 1 L5 2

Figure 6. Dynamical plane of the methods (4)(left) and (5)(right) with basins of attraction for the Example 13

7. Conclusions

A process is developed to determine the convergence order of the methods (3), (4) and (5). The analysis involves
only the first and the second derivative in contrast to the earlier works which use the third derivatives [1]. Moreover, the
computable error distances are also provided which are not given before [1]. Hence, the applicability of these methods
stand extended. The new process is independent of these methods. Therefore, this process can also be used to extend the
usage of other higher-order methods using the inverses of linear operators. This is the topic of our future research.
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