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1. Introduction

Let A represent family of mappings f of the type
f(z)=z+Zanz" )
n=2

in D= {z € C:|z| <1}, denotes the open unit disc and S is the subfamily of .4, possessing univalent (schlicht)
mappings. Every f € S, has an inverse /' given by

f_l(W)=W+§:an",|W|<Vo(f); (Vo(f)E%)- 2
n=2

When £(D) is a convex region, Libera et al. [1] obtained a linkage between the coefficients of fand /' for every
f of the form (1). On the other hand, Kapoor, and Mishra [2] extended on the findings of Krzyz et al. [3] who studied
bounds on initial coefficients of inverse of starlike functions of order a. Furthermore, Ali [4] investigated sharp bounds
on the early coefficients of inverse functions when the function is a member of the class of strongly starlike functions.

Pommerenke [5] characterized the 7~ Hankel determinant of order n, for f with ,n € N= {1, 2, 3, ...}, namely
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The Fekete-Szegd functional is obtained for » =2 and n = 1 in (3), denoted by /1, ,( f).
In recent years, research on estimation of an upper bound to the third Hankel determinant, namely /75 ,( /) obtained
forr=3 and n=1in (3), as follows:

1 a, a
Hy, (f)=la, ay ay, 4
a, a, as

which has been focused on by many authors [6-13]. The sharp bounds of |H;,(f)| for the functions namely, analytic,
bounded turning, starlike and convex functions, which are the familiar subfamilies of S, symbolized as 7, R, S” and K

respectively fulfilling the analytic conditions Re& >0, Ref'(z) >0, Re {%} >0 and Re {1 + Zj:, (Z)} >0 in the
z 4

(€9)

unit disc D, were proved by Kowalczyk et al. [14-17] and derived the bounds as 4, 1/4, 4/9 and 4/135 respectively. Some
more results on sharp bound on third Hankel determinant for different subclass of an analytic functions are obtain by
many authors (see [18-26]). Very recently, Rath et al. [27] estimated the sharp bound of the third Hankel determinants
for the inverse of starlike functions with respect to symmetric points.

Motivated with the results obtained by the authors specified above, in this paper we are making an attempt to
estimate the sharp bound for the third Hankel determinant namely | ,( |, when £ belongs to the class R.

Let P, be a class of all functions p having a positive real part in I.

p(z) = 1+ic,z’. (5)

t=1

Every such a function is called the Carathéodory function [28]. We apply the technique that has been utilized by
Libera and Zlotkiewicz [29] to derive our result. Further, we use the necessary sharp estimates given below in the form
of lemmas, which applies equally to functions with a positive real part.

Lemma 1 ([30]) For p € P, then |¢,| <2, for t € N, equality occurs for the function p, (z) = i+_z ,ze D.
Lemma 2 Ifp € P, then :

C, :%[clz +t§],

- %[cg $260¢ — ¢ +24(1- 1 £ Py

and
co=get el (¢ -3¢ 43)ra¢]
~4t(1=1¢ P) e (¢ =N+ =(1-1n P )¢ )
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where ¢ := 4 — ¢}, for some ¢, 5 and & with || < 1, || < 1 and |{| < 1. Here for ¢, (see [30], p. 166), ¢, (see [29]) and ¢,
can be found in [31].

2. Main result

Theorem 1If f€ Rand ' (w)=w+ z:; R t,w" is the inverse function of f, then

44

H, (fHls—,
| Hy (f7)] 35

the inequality is sharp for f,(z) =log(1 + z)/(1 —z) — z.
Proof. For f € R, there exists a holomorphic function p € P such that

1'(2)=p(2). ©)

Using the series representation for f'and p in (6), a simple calculation gives

a, =2 n>1. ™
n

Since f < ‘R, using the definition of inverse function of f, we have

W=f(f_1)=f_1(W)+§:an(f—1(W))"- (®)
n=2
Further, we have
we f(Y = we Yo+ g, v+ W) ©)
n=2 n=2 n=2

Simplifying, we obtain
(ty + @)W +(t; +2a,t, +a; )W +(t, +2at; +ayts +3ast, +a, )w'
H(ts +2ayt, +2a,t,t; +3ast, +3ast; +dayt, +a)w’ +.....=0. (10)
Equating the coefficients of like power in (10), upon simplification, we obtain
t, =—a,;t; =—a, +2a;;t, = —a, +5a,a, —5a3;
ty = —as +6a,a, —21aia, +3a; +14a;. (11)

Using the values of a,(n =2, 3, 4, 5) from (7) in (11), yeilds
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t2 = _En
—2c, + 3c12
_ —6c; +20¢c, _15013
! 24
and 1, = ~24c, +90c,c; — 21(2)312% +40c¢; +105¢; _

Now,
L= L 4
-1
H3,1(f) = b AR
A

Using the values of ¢, (j =2, 3, 4, 5) from (12) in (13), it simplifies to

Hy, (f )= 86%(13&16 —540ctc, +720¢]

In view of lemma 2 and equation (14), we have

—540cj'c, =—270[ cf +cft¢ |;
6403 = =80[ ¢f +3c1¢ +3¢7°¢> +£¢7 |
7206365 =180[ cf + 261 + ¢
720c,c,¢; = 90| ¢f +3cit¢ +26¢7 —cltg — P
121(c) + ¢ ) (116 P

~540¢? = %[cf FACHE + AR — 201 — AR

+ P+ AH(C + 2etE — et (A= ¢ P

48 (=1 ¢ Py’ s

'¢3 +576c,c, 432 ¢, +720¢,6,¢, —640c; — 540 ).

(12)

(13)

(14
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576¢,c, —432c2c, = 18[—4” =3cftg —cf (4-3el ) - citg?

~4c)t(1=¢) (1= ¢ Py +4cit (1= 1< ) dn?

“4ct (1= C)(1= 12 1)& +2¢t¢ +6¢i1°¢?

+2(4-3¢0 )¢ +2cl’gt

8¢, (1-¢)(1-1¢ F)n =87 (1= F) IS P

487 (11 F) (1= Pz | (15)

From the expressions (14) and (15), we have

1

H3,1(f‘1)=—(13 ¢

= +t{—33cl44’+ 03 4

e =127 1887 +93¢0 1

8640\ 4

+t[—63c]2§3 +%c344 +144,° —80t§3}

+[(-27+720)¢ + ¢ (54-90) |- 1< P

[ 72608 —1035+91¢ Py Ja-1¢ Po?

+72[2r¢—c5]<l—|:|2)(1—|n|2>é}]. (16)
For ¢, :=cand t := 4 — ¢* in (16), it takes the form

Hy, (f7) :@[%cé +(4—cz){—33c4§+%cz(200—4102)§2 -18¢%¢°

+(4—c2)Bc2§4 —(176—17(:2);3}
+[(27+720)¢ +c(4- )¢ (57-9) |(1-1¢ P

+[ 72670 - (@4-e)135+9 1) Ja- 1< P’
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+12[24-)¢ - Ja-14 Pa-1n hg’}j. (17)

Taking modulus on both sides in expression (17), with |{|=x € [0, 1], |#|=y € [0, 1], ¢,=c € [0, 2] and |{| <1,
we obtain

» ®(c,x,y)
| Hy, (f )|S—8640 , (18)

where ®(c, x, y) : R? — R is defined as

(D(c,x,y) =$cﬁ +(4—cz){33c4x+%c2 (200 -41¢*)x* +18¢*x°
|9 24 2.3
+(4-c )[Zc X' +(176-17¢")x }

+ [(27 +72x)c +c(4—c*)x(57 + 9x)] (1-x»)y

+[72¢:2x+(4—c2)(135+9x2)](1—x2)y2

+72|:2(4—cz)x+cz](1—x2)(1—yz)}. (19)

Now, we will maximize the function ®@(c, x, y) in the region of the parallelepiped formed by [0, 2] x [0, 1] % [0, 1],
where ¢ € [0,2],x € [0, 1]and y € [0, 1].
A. On the vertices of the parallelepiped, we obtain

(0, 0, 0) = 0; d(2, 0, 0) = B2, 1, 0) = D(2, 1, 1) = B(2, 0, 0) = 208,
(0, 0, 1) = 2160, ®(0, 1, 0) = ®(0, 1, 1) = 2816.

B. Now, considering the eight edges of the parallelepiped.
(i) Forx=1andy=0;x=1and y=1in (19) we have

D(c,1, ) =2816—444c” —48c* - <2816, for c € (0,2).
(i) c=0and y = 0.
®(0,x,0)=2304x+512x> <2816, for x & (0, ).

(iii)x=0and y=1.

®(c,0,1)=2160-1080c’ +108¢c” +135¢* —27¢° +$c6
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= 2160+%:6 —27¢*(40—4c—5¢* + )

=2160+%c(’—2702[4(5—C)+5(4—02)+C3]

£2160+$06 <2368.
(iv)c=0andy=1.
®(0,x,1)=2160-2016x" +2816x° —144x* <2816, for x € (0,1).
(v)c=0andx=0.
®(0,x,0)=2160y" <2160, for y  (0,1).

(vi)Forc=0andx=1.

(0,1, ) =2816.
(vijc=2andy=0;c=2andy=1;c=2andx=0;c=2and x = 1.

®(c,x,y)=208.

(viii)x =0 and y = 0.

®(c,0,0)=288¢c* —72¢* +$c6, for c €(0,2)

< 288¢? +%:6 <1360.

C. Now, we consider the six faces of the parallelepiped.
(i) For ¢ = 2, we obtain ®(2, x, y) =208 for x, y € (0, 1).
(i) If ¢ = 0 in (19), then

®(0,x,y) = 4(704;;3 +4(1-2%)(135+9x7)y? +576x(1—x2)(1—y2))
=2304x+512x" +144(15-x)(1-x)*(1+ x)y*
<2304x+512x" +144(15-x)(1-x)*(1+x) < 2816.

(iii) If x = 0 in (19), then
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6
(I)(C,O,y) _ 13¢

+(4—02)[27c3y+135(4—cz)y2 +72c2(1—y2)]

13¢°

+(4—c2)[27c3 y+540)° +c2(72—2o7y2)]

6
< 13¢

+(4—c2)[27c3 +540+ 72c2] <2368.

(iv) On the face x =1, ¢ € (0, 2), y € (0, 1) from (19), we observe that the function ®(c, 1, y) is independent of y,
discussed in B (i).

®(c,1,y) < 2816.

(v) On the face y=0, ¢ € (0, 2),x € (0, 1) from (19), we have
1
®(c,x,0) :?306 +(4—cz){33c4x+%cz(200—4lcz)x2 +18¢*x’
N 24,3
+(4-c )[Zc x"+(176-17¢")x }
+72[2(4—cz)x+cz](l—x2)}
:?c6 +(4—(:2){576x+128x3 +ct (33x—%x3 +35x° —%x“)

+c (72 -144x +228x% —100x° + 9x4)}

S%cé +(4—c2){7o4+72c2 +6c4} <2816.
(vi) On the facey =1, ¢ € (0, 2), x € (0, 1) from (19), we have

®(c,x,1)= %d” +(4—cz){33c4x+%cz(200—4102)x2 +18¢*x°
2 9 2.4 2 3
+(4-c )[Zc x +(176-17¢")x }

+[(27 +72x)¢ +e(d—c?)x(57 + 9x)](1 -x%)
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+[72c2x+(4—c2)(135+9x2)](1—x2)}

=g(c,x), with c € (0,2) and x € (0,1).

Further,
og 2 3 4 39¢° 2 3
6_ =-2160c+324¢” +540¢” —135¢ +T +864x +576¢cx —432¢“x +240¢° x
C
—90c*x —198¢° x + 144x? + 4416cx? —540c*x* — 2688¢°x* +180¢* X2
+369¢°x% —864x° —3936¢x> +432¢%x* +1824¢%x* +90¢*x* —=210° X
5 4
_144x* + 21665 +21662x" —1086 %" —45¢ x4 21X
and

Z—g =864c +288¢* —144¢> +60c* —18¢> —33¢® —4032x + 288cx + 4416¢°x
X

—360c*x —1344c* x + 727 x +123¢%x + 8448x% —2592¢x* — 5904¢% x*
+4323x% +1368c*x? +54c°x2 —105¢8x% —576x° —576cx” +432c%x%°
+288¢°x —108¢*x* =367 x% +9¢°x°.

The solution of the system Z_g =0 and Z—g =0 which belongs to the region (0, 2) x (0, 1), is (¢, x;) = (0.248233,
c X

0.445259).
But at (¢, x,), we observe that

o’g\d’g d’g ’
— || ==1|- <0.
ot )\ ax? Ocox
Therefore, there is no critical pointin y = 1.
D. Now, considering the interior of the parallelepiped: (0, 2) x (0, 1) x (0, 1). We have 0®/0y = 0 if, and only if,

4ex(6+x)+ ¢ (3+2x—x%)
2(? (—23+x)—4(—15+x))(—1+x)’

Yo(e,x) =

for (c, x) € (0, 2)x(0, 1) and ¢’ (—23 + x) # 4(—15 + x). A numerical computation shows that all real solutions of the
system of equation 0®/0c (c, x, yy(c, x)) = 0 and 0D/0x (c, x, y,(c, x)) = 0 are as follows:
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(c=+2, x=—0.241686), (c = +0.884709, x = 16.4392)
(c=+1.54879, x = —0.954118), (c = +2.10388, x = 107.052).

Hence, @(c, x, y) has no critical point in the interior of the parallelepiped.
In review of cases A, B, C and D, we obtain

max {®(c, x, y):c€[0,2],x €[0,1], y €[0,1]} = 2816. (20)
From expression (18) and (20), we get

44

35 21

|1, (| <

From f|(z), we obtain a, = a, = 0, a; = 2/3, a; = 2/5, which inturn gives, t, = 1, 1, =t,=0, t; = —2/3, t; = 14/15 and it
follows the result. |

3. Conclunding remarks and observations

In this paper, we estimate the sharp bound to the third order Hankel determinant for the inverse function of f,
when f'is a member of the class of bounded turning functions. In our research, we have used the connection between
the coefficients of the functions of the considered class and the Carathéodory class. Further, using the relation between
the coefficients of the function fand its inverse /', we expressed the coefficient of /' interms of the coefficient of the
functions belongs to the Carathéodory class. Based on the result obtained in this paper researchers may obtain the results
of same kind for the other familiar subclasses of univalent functions.
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