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Abstract: This paper describes an algorithm for obtaining approximate solutions to a variety of well-known Lane-
Emden type equations. The algorithm expands the desired solution y(x) 


 yN (x), in terms of shifted Chebyshev 

polynomials of first kind such that yN
(i)(0) = y(i)(0) (i = 0, 1, ..., N). The derivative values y( j )(0) for j = 2, 3, ..., are 

computed by using the given differential equation and its initial conditions. This makes approximate solutions more 
consistent with the exact solutions of given differential equations. The explicit expressions of the expansion coefficients 
of yN(x) are obtained. The suggested method is much simpler compared to any other method for solving this initial 
value problem. An excellent agreement between the exact and the approximate solutions is found in the given examples. 
In addition, the error analysis is presented.
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1. Introduction
In recent years, the studies of the Lane-Emden equation model:

0( ) ( ) ( ) ( ( )) ( ), (0) , (0) 0, 0,ky x y x f x g y x h x y y k
x

α′′ ′ ′+ + = = = >

have attracted the attention of many mathematicians and physicists. The name of this model was inspired by the name of 
two famous astrophysicists Lane [1] and Emden [2]. In the neighborhood of singular point x = 0, the analytical solution 
of Eq. (1) is always possible [3]. This model is used to describe some physical applications by considering f (x) = 1, 

h(x) = 0, k = 2 and by various functions 
3

( ) ( ) 2 2( ) ( ),  ,  ,  ( ( ) )m y x y xg y y x e e y x C−= −  as follows:
Case 1 ( g( y) = ym(x)): This equation is known as the ‘‘standard’’ Lane-Emden equation, and it describes 

the temperature variation of a spherical gas cloud under the mutual attraction of its molecules and subject to 

Copyright ©2023 H. M. Ahmed
DOI: https://doi.org/10.37256/cm.4120232254
This is an open-access article distributed under a CC BY license 
(Creative Commons Attribution 4.0 International License)
https://creativecommons.org/licenses/by/4.0/

(1)

http://ojs.wiserpub.com/index.php/CM/
https://orcid.org/0000-0002-5643-8357
https://www.wiserpub.com/


Contemporary MathematicsVolume 4 Issue 1|2023| 133

thermodynamics laws [4] with exact solutions are available for m = 0, 1, 5, which are 
12 2
2sin1 ,  ,  (1 )

6 3
x x x

x
−

− + , 

respectively.
Case 2 ( g( y) = e y(x)): This equation is known as the Poisson-Boltzmann differential equation and it is used to 

model the isothermal gas spheres [5, 6].
Case 3 ( g(y) = e−y(x)): This equation arises in the modeling of heat conduction in human head [7, 8],

Case 4 
3

2 2( ( ) ( ( ) ) )g y y x C= − : This equation is known as the ‘‘white-dwarf equation” and is used to model the 
gravitational potential of a degenerate white-dwarf star [9].

The solution of linear and nonlinear singular initial value problems in quantum mechanics and astrophysics are 
numerically challenging due to the singularity behavior at the origin. The approximate solution to the Lane-Emden 
equation was given by using many methods, like Adomian decomposition method [6, 10], Homotopy analysis method 
[11, 12], Homotopy perturbation method [13, 14], series expansion method [15], optimal Homotopy asymptotic method 
[11], variational iteration method [16], Sinc-Collocation method [17], an implicit series solution [18], spectral methods 
[19-27], Hermite functions collocation method [28] and an optimized pair of hybrid block techniques [29].

In the present paper, the proposed numerical algorithm based on the computations of derivatives of y(i)(0) = 2, 
3, ..., N, by using Eq. (1) and the given initial conditions, then the suggested approximated solution yN (x) is taken as 
an expansion in shifted Chebyshev polynomials of first kind such that yN

(i)(0) = y(i)(0) (i = 0, 1, ..., N ). This process 
generates a linear algebraic triangular system in the expansion coefficients, which is solved exactly. The obtained 
maximum pointwise error between the exact and approximate solutions is near O(10−16). These procedures and the 
obtained error enable us to claim that the suggested method gives an acceptable accuracy, reduces computational effort 
and improves computational accuracy. This partially motivates our interest in developing the proposed algorithm. 
Another motivation is that the suggested method is much simpler than any other method for solving this initial value 
problem, in particular, nonlinear problems. The last motivation is that for singular differential equations, the shifted 
Chebyshev polynomials could be preferable [30].

The current paper is organized as follows: In Section 2, some properties of shifted Chebyshev polynomials of 
the first kind. In Section 3, the proposed numerical method is provided. The error analysis is presented in Section 4. 
Numerical examples are given in Section 5. Finally, Section 6 summarises the findings.

2. Some properties of first kind Chebyshev polynomials and their shifted forms
The Chebyshev polynomials {Ti(x) : i = 0, 1, 2, ...} can be generated by the recursive formula [31]

1 2( ) 2 ( ) ( ), 2, 3, ... ,n n nT x xT x T x n− −= − =

with T0(x) = 1, T1(x) = x. They are satisfying the orthogonality relation

1

2
1

1 ( ) ( ) ,
21

n m nm
n

T x T x dx
x

π δ
−

=
−

∫ 

where ϵ0 = 1/2 and ϵn = 1, n ≥ 1. In order to use these polynomials on the interval (0, 1), we define the so-called shifted 
Chebyshev polynomials Ti

∗(x) = Ti (2x − 1), i = 0, 1, 2, ... . These polynomials are satisfying the orthogonality relation 
[31]

1
* *

0

( ) ( ) ( ) ,
2n m nm

n
w x T x T x dx π δ=∫ 

(2)

(3)

(4)
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where w(x) = (x − x2)−1/2. The shifted Chebyshev polynomial Tn
∗(x) of degree n has the explicit power form

2
*

0

( 1) ( 1)!2( ) , 1.
( )!(2 )!

 
n r rn

r
n

r

n rT x n x n
n r r

−

=

− + −
= ≥

−∑

Also, these polynomials are satisfying the recurrence relation

( )* * *
1 1( ) 2 2 1 ( ) ( ), 1, 2, . ..,n n nT x x T x T x n+ −= − − =

with T0
∗(x) = 1, T1

∗(x) = 2x − 1. Moreover, in view of formula (5), it is easy to see that

2
* ( 1) ( 1)!2 !(0) .

( )!(2 )!

n q q
q

n
n n q qD T

n q q

−− + −
=

−

Lemma 1 Suppose we are given a polynomial Qn(x) of degree n which has the expansion

*

0
( ) ( ) ( ),

n

n k k
k

Q x a n T x
=

= ∑

then the expansion coefficients ai(n) satisfy the equations

2 1
( )

1
2 1

( )

2 2( )( 1) (2 1)!( ) (0) ( ), 0, 1, ..., 1,
! ( )!(2 )!

2( ) (0)

 

,
!

i kn i
i

i n k i
k

n
n

n n

i k i ka n Q a n i n
i k i

a n Q
n

− + −

+
=

− +

+ − + −
= − = − 



= 

∑

and they can be computed either using the backward substitution method or using the explicit form

( )

0

(1/ 2)
( ) 2 (0),  0, 1,..., ,

!(2 )!

n i
r ir i

i i n
r

a n Q i n
r i r

−
++

=

= =
+∑

where ( )( )
( )n

c nc
c

Γ +
=

Γ
 is the Pochhammer’s symbol.

Proof. By using the expansion (8) and formula (7), one can obtain the following linear algebraic system:

2
( )

0

( )( 1) (2 1)!2 !(0) ( ), 0, 1, ..., ,
!(2

 
)!

k in i
i

n k i
k

i k i k iQ a n i n
k i

−

+
=

+ − + −
= =∑

which is a triangular system of (n + 1) equations in the ai(n) (0 ≤ i ≤ n), which can be written in the form (9). Now, we 
need to prove that the solution of (11) has the form (10):

For i = 1, ..., n, we have ϵi+k = 1 (0 ≤ k ≤ n − i), so substituting (10) into the right side of (11) yields

2

0

( )( 1) (2 1)!2 ! ( )
!(2 )!

k in i

k i
k

i k i k i a n
k i

−

+
=

+ − + −
=∑

(5)

(6)

(7)

(8)

(9)

(10)

(11)
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2 1
( )

0 0

(1/ 2)2 ! ( )( 1) (2 1)! (0).
(2 )! ! !(2 2 )!

i kn i n i k
r i kr i k

n
k r

i i k i k Q
i k r i k r

+ − − −
+ ++ +

= =

+ − + −
+ +∑ ∑

By expanding and collecting similar terms at the right-hand side of (12), we obtain

2

0

( )( 1) (2 1)!2 ! ( )
!(2 )!

k in i

k i
k

i k i k i a n
k i

−

+
=

+ − + −
=∑

2 1
( )

0 0

2 ! ( 1) ( )(2 1)!(1/ 2) (0).
(2 )! !( )!(2 )!

i kn i r
r i

i r n
r k

i i k i k Q
i k r k i k r

+ −
+

+
= =

 − + + −
 − + + 

∑ ∑

Set

,
1

( 1) ( )(2 1)!, 1.
!( )!(2 !

 
)

kr

r i
k

i k i kS r
k r k i k r=

− + + −
= ≥

− + +∑

Using Zeilberger’s famous algorithm [32], Sr, i fulfils the following recurrence relation:

1, , 0,
1( 1)(2 1) , 0 .
2r i r i ir i r S S S++ + + − = = −

The exact solution to the preceding recurrence relation is

,
1 (2 )! ,
2 !(2 )!r i

iS
r i r

= −
+

then

, ,
0

( 1) ( )(2 1)! 0, 1.
!( )

 
!(2 )!

kr

r i r i
k

i k i k S S r
k r k i k r=

− + + −
= − = ≥

− + +∑

Using Eq. (14), equation (13) takes the form

2 2
( ) ( )

0

( )( 1) (2 1)!2 ! 2 !( ) (1/ 2) (0) (0).
!(2 )! (2 )!

k i in i
i i

k i i n n
k

i k i k i ia n Q Q
k i i

−

+
=

+ − + −
= =∑

Also, for i = 0, equation (11) takes the form

(0)

0
(0) ( 1) ( ),

n
k

n k
k

Q a n
=

= −∑

then by following the same procedures, it is easy to show that this equation is satisfied by the given coefficients ak(n) (0 
≤ k ≤ n) in (10). This proves that the solution of system (11) has the form (10).

In the following section, Lemma 1 is utilized to construct the proposed algorithm.

(12)

(13)

(14)
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3. Solution of Lane-Emden type equations using Tn
*(x)

A function y(x) ∈ L2
w(0, 1) may be expanded in terms of Tn

∗(x) as (see [31])

1
* *

0 0

2
( ) ( ),  ( ) ( ) ( ) .i

i i i i
i

y x a T x a w x y x T x dx
π

∞

=

= =∑ ∫


In this section, we aim to discuss an algorithm to obtain approximate solutions to the Lane-Emden equation of the 
form (1). An approximation to the solution of (1) may be written as

*

0
( ) ( ) , ( ) 2,

N

N i i
i

y x a N T x N
=

= ≥∑

and according to Lemma 1, we have

0

(1/ 2)
( ) 2 , 0, 1, ..., ,

!(2 )
 

!

N i
r i

i i r i
r

a N i N
r i r

α
−

+
+

=

= =
+∑

where yN
( j)(0) = y ( j )(0) = α j, j = 0, 1, 2, ..., N, (α1 = 0). The following lemma is needed to compute y( j)(0), j = 2, 3, ..., N, 

which enable us to compute the coefficients ai(N ) i = 0, 1, ..., N, and the proposed algorithm is complete.
Lemma 2 The derivatives of solution y ( j )(x), j ≥ 2, at x = 0 can be computed by the formula

1
( 1) ( 1) ( ) ( 1)1

0
0

(0) (0) (0) ( ( ( ))) , 1, 2, ,
(

  ...
)

j
j j i j ij

i x
i

jy h f g y x j
j k

 
 


−
+ −

=


− −−
=

 
 = − =  +  

∑

where (1) ( )
0(0) ,  (0) 0 and ( ( ( ))) ( ( )), 1, 2, ...

q
q

q
dy y g y x g y x q
dx

α= = ≡ = .

Proof. The proof of this lemma depends on applying Leibniz’s rule on Eq. (1).
Now, by the aid of Mathematica, the formula (18) gives the values y ( j )(0) = αj, for j = 2, 3, ..., N.
Note 1 Formula (17) shows that the computations to obtain the coefficients ai(N1) (0 ≤ i ≤ N1) to get an 

approximated solution yN1(x), are still useful to get another one yN2(x) for every 2 ≤ N2 < N1. While that the most other 
methods such as those in [19, 28, 33, 34] must begin new computations to obtain new approximated solution yN(x), 
moreover one must solve a new nonlinear algebraic system at each time. This leads to the conclusion that the suggested 
method reduces the computational efforts rather than such these methods.

Note 2 The proposed approximation is based on computing y ( j )(0) for j = 0, 1, ..., N. With these values, the 
Taylor expansion can be used to obtain a polynomial approximation of the same degree up to order N. But one of the 
preferences of using the truncated Tchebychev series rather than the Taylor one is that the Taylor expansion has slow 
convergence at points far from the origin of expansion. This means that for a desired level of accuracy, the points that 
are not near the origin will need more terms than those close to the origin of expansion [35]. Using the expansions of 
orthogonal functions to obtain numerical solutions for differential equations, such as Chebyshev polynomials, could 
increase the speed of convergence via the so-called economized power series.

The following section examines the convergence of the approximate solution yN(x) to y(x), as well as the proposed 
method’s error estimates.

(15)

(16)

(17)

(18)
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4. Error analysis
In this section, we present a comprehensive study for the convergence analysis of the suggested first kind shifted 

Chebyshev expansion. Two theorems are given and proved, in the first theorem, we prove that the first kind shifted 
Chebyshev expansion of a function y(x) with a bounded second derivative, converges uniformly to y(x), and in the 
second theorem, we give an upper bound for the error (in L2

w and L∞ norms) of the truncated expansion. The following 
lemma is needed.

Lemma 3 [36, p. 742] Let y(x) be a function such that y(k) = ak. Suppose that the following assumptions are 
satisfied:

1. y(x) is continuous, positive, decreasing function for x ≤ n.

2. na∑  is convergent, and 
1

n k
k n

R a
∞

= +

= ∑ ,

then

( ) .n
n

R y x dx
∞

≤ ∫

Theorem 1 (see [37]) A function y(x) ∈ L2
w(0, 1), with | y′′(x)| ≤ M, can be expanded as an infinite sum of shifted 

Chebyshev basis as in Eq. (15), and the series converges uniformly to y(x). In addition, the expansion coefficients in (15) 
satisfy the following inequality

2 2.
2i
Ma i
i

< ∀ ≥

Theorem 2 If y(x) ∈ L2
w(0, 1) satisfies the hypotheses of Theorem 1 and we consider the approximate solution 

yN(x) as in (16), the following errors estimate are obtained

3/2 ,
2N w
My y N −− <

and

1,
2N
My y N −

∞
− <

where 
1

2 2

0 1
0

( ) ( )  and ( ) .w x
y w x y x dx y max y x

∞ ≤ ≤
= =∫

Proof. Using Eq. (15) and the orthogonality relation (4), one can obtain

2 2

1
.

2N kw
k N

y y aπ ∞

= +

− = ∑

In view of Theorem 1, formula (23) takes the form

2
2

4
1

1 ,
8N w

k N

My y
i

π ∞

= +

− < ∑

(19)

(20)

(21)

(22)

(23)
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and the application of Lemma 3 leads to

2 2 2
2

4 3 3
1 ,

8 24 4N w
N

M M My y dx
x N N

π π∞

− < = <∫

and hence (21) is obtained. Similarly, we can prove (22), which completes the proof of the theorem.
In the following section, we give some numerical results obtained by using the algorithm presented in Section 3.

5. Numerical results
In this section, we present some numerical examples and comparisons between the obtained results by using the 

present method and those obtained by other methods proposed in [6, 19, 28, 33, 38, 39]. Tables 1, 2, 3 and 4 show the 
computed errors,

,N NE y y
∞

= −

for various N values obtained in Examples 1-4, demonstrating that the proposed method has an appropriate convergence 
rate.

Example 1 Consider the standard Lane-Emden equation of the first kind

(1)2( ) ( ) ( ) 0,  0 1,  (0) 1,  (0) 0, [0, 5],my x y x y x x y y m
x

′′ ′+ + = ≤ ≤ = = ∈

whose exact solution is 
1/22 2sin( )( ) 1 ,  ,  1

6 3
x x xy x

x

−
 
 
 

= − + , in the three cases m = 0, 1, 5, respectively. Applying 

Lemma 1 (k = 2, f (x) = 1, h(x) = 0, g( y) = ( y(x))m), we obtain y(i )(0), i = 2, ..., 10, which enable us, in view of 
formula (10), to compute the expansion coefficients ai(10), i = 0, ..., 10, as in Table 5. Now, we can compute 

10
*

10
0

( ) (10) ( )i i
i

y x a T x
=

= ∑ , which is an analytical approximation to the solution of (25) and has the form

2
2 4 6 8

10
1 (8 5) (70 183 122 )( ) 1
6 120 3 7! 9 9!

m m m m m my x x x x x− − +
= − + − +

× ×

2 3
10(3150 10805 12642 5032 ) .

45 11!
m m m m x− + −

+
×

This solution is in complete agreement with both the truncated Taylor series expansion 
(

0
0

)
1 (0)

!

k
k

k

y x
k=∑  and the 

result obtained by Horedt [39, Eq. (2.4.24)].
Remark 1 Wazwaz [6, Eq. (39)] provides an analytical approximation for (25) by using Adomian decomposition 

method. I believed that this formula need to be reviewed, the coefficient of x10 should be corrected. This fact can be 

shown by comparing the value of this coefficient when m = 1, and Taylor expansion of the solution 
sin( )( ) xy x

x
= .

Now, we discuss the numerical solutions of (25) corresponding to the three cases m = 0, 1, 5. In the case of m = 0, 
we use N = 2, to obtain

(24)

(25)

(26)
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2
* *

2 1 2
15 1 1( ) ( ) ( ) 1 ,
16 12 48 6

xy x T x T x= − − = −

which is the exact solution. Furthermore, by substituting m = 0, this solution can be obtained directly from (26). Figures 
1 and 2 show the absolute errors between the numerical and analytical solutions when m = 1, 5, respectively. Moreover, 
the approximated solutions correspond to m = 2, 3 are computed by using N = 12, 16, respectively, and these two 
solutions are shown in Figure 3.

Table 1. Comparison of EN values between the presented method, [28] and [19] for Example 1 at m = 1, 5

Presented method [28]

EN EN

N CT(s) m = 1 CT(s) m = 5 m = 1 m = 5

5 0.874 1.68E-09 0.875 8.97E-03 7.87765E-02 3.54822E-01

10 0.969 2.22E-16 0.953 1.89E-14 2.30291E-03 6.61006E-03

15 0.985 2.01E-16 0.985 1.58E-16 2.87683E-04 9.08909E-04

20 1.001 3.33E-16 1.015 7.25E-17 4.78916E-05 1.71788E-05

Presented method [19]

3 0.873 8.14E-03 0.844 3.27E-02 1.43E-03 1.21E-02

6 0.921 4.31E-13 0.891 5.43E-10 9.97E-05 5.55E-03

8 0.958 1.11E-16 0.906 3.11E-12 2.79E-08 -

Table 2. Comparison between yN(x) values between the presented method and the numerical solution given by [39] for Example 1 at m = 2, 3

Presented method [39]

x m = 2 (N = 12) m = 3 (N = 16) m = 2 m = 3

0.0 1.000000000 1.00000000 1.00000000 1.00000000

0.1 0.998334999 0.998335829 0.9983350 0.9983358

0.5 0.959352716 0.959839069 0.9593527 0.9598391

1 0.848654158 0.855057607 0.8486541 0.8550576

Table 3. Comparisons of y8(x) values between the presented method and series solution given by Adomian, HFC and ICSRBF methods for Example 2

x Presented method Adomian HFC ICSRBF Residual error

0.0 1.0000000000 1.0000000000 1.0000000000 1.0000000000 0

0.1 0.9985979274 0.9985979274 0.9986051425 0.9985979436 8.99E-15

0.2 0.9943962649 0.9943962649 0.9944062706 0.9943962892 2.75E-12

0.5 0.9651777802 0.9651777802 0.9651881683 0.9651778048 7.19E-09

1.0 0.8636810942 0.8636810942 0.8636881301 0.8636811302 4.47E-06

(27)
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Table 4. EN values and CPU times for Example 3

N CT(s) EN

10 1.032 6.86686E-02

20 1.062 4.39055E-05

32 20.297 3.31474E-10

40 73.156 3.77087E-14

42 85.121 3.38275E-15

44 91.321 1.70851E-16

Table 5. The values of ai(10), i = 0, ..., 10, for Example 1

i ai(10)

0 15 100928894850 5625762595 26 14119683 812668
42807066624000

( ( ( ) ))
16

m m m m+ − −
+

+

1 89037356770 5323332115 962 374359 219641 ( ( ( )))
23543886612 43200

m m m m+ − − −
− +

+

2 179734314790 13469187705 26 39191929 243801 ( ( ( 04
94175546572800

) ))
48

m m m m
−

+ − −
+

+

3 2195360810 255826495 2 11811443 812668( ( ( ) ))
3923981107200

m m m m+ − + −

4
21814791070 485192205 61098898 48760( ( ))08

23543886643200
m m m m+ − + −

5
2138660350 249310845 49826098 487600( ( ))8

58859716608000
m m m m+ − + −

6 16083050 32593375 2 63360( ( ( ) )83 812668
627836977152

)
00

m m m m+ − + −

7
672350 1904205 2 789737 143412

47087773286400
( ( ( ) ))m m m m+ − + −

8
2121450 366335 347558 9560( ( ))8

94175546572800
m m m m+ − + −

9
3150 10805 2 6321 2( ( ( ) )516

4708777328640
)

0
m m m m+ − + −

10
3150 10805 2 6321 2( ( ( ) ))516

941755465728000
m m m m+ − + −

Note 3 In view of Note 1, the approximate solutions yN(x) for N = 2, ..., 9 can be computed by using the coefficients 
ai(10) (0 ≤ i ≤ 10) given in Table 5, for any value of m ∈ [0, 5].
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Figure 1. Example 1: The maximum absolute errors E15 and E16 for m = 1

Figure 2. Example 1: The maximum absolute errors E57 and E58 for m = 5

Figure 3. Example 1: The solutions y12(x) and y16(x) for m = 2 and 3, respectively

In the cases of m = 1, 2, 3, 5, comparisons between numerical results obtained by the presented method and the 
proposed methods in [19, 28, 39] are given in two Tables 1 and 2. These tables show that our results seem to be either 
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better or close to the results of these methods. Moreover, in the presented method, the expansion coefficients of the 
approximated solution are obtained explicitly, whereas in the other methods, these coefficients are obtained by solving 
nonlinear algebraic systems. So, the computational effort in the presented method is much less than in these methods.

Example 2 Consider the Lane-Emden equation [6]

(1)2( ) ( ) sin( ( )) 0,  0 1,  (0) 1,  (0) 0.y x y x y x x y y
x

′′ ′+ + = ≤ ≤ = =

Applying Lemma 1 (k = 2, f (x) = 1, h(x) = 0, g( y) = sin( y(x))), we get y(2i+1)(0) = 0, i = 1, 2, 3, and the values of 
y(2i)(0) = α2i, i = 1, ..., 4, are given in Table 6. In view of formula (10), we obtain

2 4 2 2 6
8 1 1 2 1 1 2

1 1 1 1( ) 1
6 120 3024 5040

y x k x k k x k k k x = − + + − 
 

2 2 8
1 2 1 2

113 1 ,
3265920 362880

k k k k x− + + 
 

where k1 = sin(1) and k2 = cos(1). Also, Wazwaz [6] provides the same analytical approximation by using Adomian 
decomposition method. Table 3 compares the approximated solution y8(x) to series solutions obtained by Adomian, 
ICSRBF and HFC methods described in [6, 28, 38], respectively. Table 7 displays the maximum residual errors obtained 
by the presented method using various values of N. Additionally, the last column of Table 3 shows that the residual error 
obtained by the presented method is either in agreement with Adomian method or better than that obtained by HFC and 
ICSRBF methods (see Table 4 in [38]). The numerical solutions y2(x) and y8(x) are shown in Figure 4, as well as the 
residual error corresponding to y23(x) and y24(x) is given in Figure 5.

Table 6. The values of y (2i)(0) = α2i, i = 1, ..., 4, for Example 2

i α2i

1 1

3
k

−

2 1 2

5
k k

3 2 3
1 2 121

1
7

5k k k+−

4 3 3
1 2 1 2

113 1
81 9

k k k k−
+

Example 3 [33] The following nonlinear Lane-Emden equation

(1)8( ) ( ) 2 ( )(18 4ln ( )) 0, 0 1  , (0) 1, ( 0) 0,y x y x y x y x x y y
x

′′ ′+ + + = ≤ ≤ = =

has the exact solution y(x) = e−2x2.
Table 4 displays the maximum absolute errors obtained by the presented method using various values of N. In Table 

8, we list the best obtained maximum absolute errors by our method and two methods CS and ACS in Khuri and Sayfy 

(28)

(29)

(30)



Contemporary MathematicsVolume 4 Issue 1|2023| 143

[33]. Figure 6 shows the absolute errors between the numerical and analytical solutions for N = 42, 44. Additionally, 
Figure 7 displays the Log-error for different N to demonstrate the stability of the solutions to Eq. (30).

Table 7. Maximum residual error and CPU times for example 2 at N = 5, 8, 12, 15, 20

N CT Maximum residual error

5 0.735 5.55E-03

8 0.765 4.47E-06

12 0.781 1.69E-07

15 0.797 8.59E-09

20 0.968 4.06E-12

Figure 4. Example 2: The approximated solutions y2(x) and y8(x)

Figure 5. Example 2: The residual errors for N = 23, 24
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Figure 6. Example 3: The maximum absolute errors E42 and E44

Figure 7. Example 3: Log-error of Example 3 for N = 10, 20, 32, 40, 42, 44

Table 8. Comparison of EN between the presented method and [33] for Example 3

Presented method [33]

N = 44 CS ACS

EN 1.70851E-16 2.28651E-06 1.99290E-10

Example 4 Consider Lane-Emden equation in the form

(1)( ) ( ) ( ) 0,  (0) ,  (0) 0,  0.ny x y x g y y y n
x

α′′ ′+ + = = = ≥

Consider g( y) = ( y(x))m and α = 1, by applying the proposed algorithm, the series solution for all real values n ≥ 0 
and m ≥ 0 is expressed in the form:

2
2 4 6

3
1 2( 2) ( 3)( ) 1

2( 1) 8( 1)( 3) 48( 1) ( 3)( 5)
m n m n my x x x x

n n n n n n
+ − +

= − + −
+ + + + + +
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2 3 2 2 2
8

3
(6 32 34) (7 46 63) (2 16 30)

348( 1) ( 3)( 5)( 7)
n n m n n m n n m x

n n n n
+ + − + + + + +

+ + + +
+

4 23840( 1) ( 3) ( 5)( 7)(
1

9)n n n n n+ + + + +
+

3 2 44( 4)(6 55 134 93)n n n n m− + + +× +

4 3 2 3(46 28644 259782 631540 433566)n n n n m+ + + + +

3 2 2 2 10( 3)(29 383 1515 1689) 6( 3) ( 5)( 7)n n n n m n n n m x− + + + + + + + + 

.+

Note 4 In particular, for the special case n = 2, Eq. (26) is obtained as a direct consequence of Eq. (32) by using the 
first ten terms.

For fixed n = 0, the following solutions

21( ) 1 ,
2

y x x= −

( ) cos ,y x x=

2 4 6 8 101 1 1 1 5( ) 1 ,
2 12 72 504 18 4

 
14

y x x x x x x= − + − + − +

can be obtained for m = 0, 1, 2, respectively, where x = 0 is an ordinary point. In addition, for fixed n = 1
2

, we find

21( ) 1 ,
3

y x x= −

2 4 6 8 101 1 1 1 1( ) 1 ,
3 42 1386 83160 7900200

y x x x x x x= − + − + − +

2 4 6 8 101 1 13 23 175( ) 1 ,
3 21 2079 31185 1885275

y x x x x x x= − + − + − +

can be obtained for m = 0, 1, 2, respectively. Moreover, the solutions

21( ) 1 ,
4

y x x= −

(32)

(33)

(34)
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2 4 6 8 101 1 1 1 1( ) 1 ,
4 64 2304 147456 14745600

y x x x x x x= − + − + − +

2 4 6 8 101 1 1 13 7( ) 1 ,
4 32 288 36864 204800

y x x x x x x= − + − + − +

are obtained for n = 1 and m = 0, 1, 2, respectively.
Note 5 All results in this example coincide with the same results obtained by Wazwaz [6, pp. 307-309].
Remark 2 The series solutions of Eq. (31) with specified value of α, can be handled in similar way for other forms 

for g( y), for example:
(i) For g( y) = e y and α = 0, we have

2 4 6
2

1 1 ( 2)( )
2( 1) 8( 1)( 3) 24( 1) ( 3)( 5)

ny x x x x
n n n n n n

+
= − + −

+ + + + + +

2
8

3
(3 16 17)

192( 1) ( 3)( 5)( 7)
n n x

n n n n
+ +

+
+ + + +

3 2
10

4 2
( 4)(6 55 134 93) ,

960( 1) ( 3) ( 5)( 7)( 9)
n n n n x
n n n n n
+ + + +

− +
+ + + + +



(ii) For g( y) = sinh y and α = 1, we have

2 4 2 4 2
2 4 6

2 3 2
1 1 ( 1)(( 1)( 2) 2 )( ) 1

4 ( 1) 16 ( 1)( 3) 192 ( 1) ( 3)( 5)
e e e e n ey x x x x
e n e n n e n n n

− − − + + −
= − + −

+ + + + + +

4 4 2 2 2
8

4 3
( 1)(( 1)(3 16 17) 4 ( 7 8)) .

3072 ( 1) ( 3)( 5)( 7)
e e n n e n n x

e n n n n
− + + + − + +

+ +
+ + + +



Remark 3 The following table demonstrate the steps for the implementation of the presented algorithm. All 
calculations were carried out on a computer that was running Mathematica 12 (Intel(R) Core(TM) i9-10850 CPU at 3.60 
GHz, 3600 MHz, 10 cores, 20 logical processors). The obtained Computational Times (CT) for Examples 1-4 are vitally 
important measurement. The used programme code is fit for purpose and the aimed numerical solution is obtained 
within a reasonable time frame, which is considered a useful signpost for the efficiency of the algorithm.

Algorithm
Step 1. Given α0, f (x), g(x), h(x) and N,
Step 2. Evaluate y ( j)(0) = αj,  j = 2, 3, ..., N defined in Eq. (18)
Step 3. Evaluate ai(N) defined in Eq. (17)
Step 4. Evaluate yN(x) defined in Eq. (16)

Remark 4 It is worth noting that if Eq. (1) is given with x ∈ [0, L], then by using x = Lθ, θ ∈ [0, 1] one can obtain:

0( ) ( ) ( ) ( ) ( ),  (0)  (0) 0, 0.,  ky y f g y h y y kθ θ θ θ α
θ

′′ ′ ′+ + = = = > 

    

Then apply the proposed algorithm to obtain a numerical solution ỹN(θ). The approximate solution yN(x) = ỹN(x/L), 

(35)

(36)

(37)

(38)
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may be successful numerical solution for Eq. (1) only for small values of N. For example, if the reader consider Eq. (22) 
in [29], which is the same Eq. (25) with x ∈ [0, 1000], then the proposed method’s results can be compared to Table 4 in 
[29] as in Table 9. It is clearly that the method in [29] is better when x ∈ [0, 1000]. And it is obvious that the presented 
method works flawlessly when x ∈ [0, 1] is used. Furthermore, when discussing the presented examples, it is worth 
noting that the computational efforts required by using the presented method are lower.

Table 9. Comparison of EN values between the presented method and [29]

Presented method [29]

N CT(s) EN NS CT(s) EN

4 0.421 5.9E-06 114  0.26328 1.70751E-07

6 0.876 4.39E-07 120 0.30774 1.72144E-08

8 0.881 1.52E-08 130 0.33337 2.27624E-09

10 0.956 2.25E-09

6. Results and discussions
We have provided a detailed algorithmic description of how shifted Chebyshev polynomials of the first kind may 

be used to give highly accurate solutions to the Lane-Emden equation (1). We demonstrate the proposed method returns 
a valid solution for the given Lane-Emden equation (1) with less computational effort. The main advantage of the 
presented algorithm is its simplicity and high accurate approximate solutions.
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Probleme. Berlin: B. Teubner; 1907.

[3]	 Davis HT. Introduction to Nonlinear Differential and Integral Equations. New York: Dover; 1962.
[4]	 Roul P, Madduri H, Agarwal R. A fast-converging recursive approach for Lane-Emden type initial value problems 

arising in astrophysics. Journal of Computational and Applied Mathematics. 2019; 359: 182-195.
[5]	 Singh R. Analytical approach for computation of exact and analytic approximate solutions to the system of Lane-

Emden-fowler type equations arising in astrophysics. The European Physical Journal Plus. 2018; 133: 320.



Contemporary Mathematics 148 | H. M. Ahmed

[6]	 Wazwaz AM. A new algorithm for solving differential equations of Lane-Emden type. Applied Mathematics and 
Computation. 2001; 118(23): 287-310.

[7]	 Duggan R, Goodman A. Pointwise bounds for a nonlinear heat conduction model of the human head. Bulletin of 
Mathematical Biology. 1986; 48(2): 229-236.

[8]	 Gray B. The distribution of heat sources in the human head theoretical considerations. Journal of Theoretical 
Biology. 1980; 82(3): 473-476.

[9]	 Chandrasekhar S. An Introduction to the Study of Stellar Structure. 2 Courier Corporation; 1957.
[10]	Wazwaz AM. Adomian decomposition method for a reliable treatment of the Emden-Fowler equation. Applied 

Mathematics and Computation. 2005; 161(2): 543-560.
[11]	Singh R. Optimal homotopy analysis method for the non-isothermal reaction diffusion model equations in a 

spherical catalyst. Journal of Mathematical Chemistry. 2018; 56: 2579-2590.
[12]	Singh OP, Pandey RK, Singh VK. An analytic algorithm of Lane-Emden type equations arising in astrophysics 

using modified homotopy analysis method. Computer Physics Communications. 2009; 180(7): 1116-1124.
[13]	Yildirim A, Özis T. Solutions of singular IVPs of Lane-Emden type by homotopy perturbation method. Physics 

Letters A. 2007; 369(12): 70-76.
[14]	Chowdhurya MSH, Hassana TH, Mawa S. A new application of homotopy perturbation method to the reaction-

diffusion brusselator model. Procedia - Social and Behavioral Sciences. 2010; 8: 648-653.
[15]	Ramos JI. Series approach to the Lane-Emden equation and comparison with the homotopy perturbation method. 

Chaos, Solitons & Fractals. 2008; 38(2): 400-408.
[16]	Yildirim A, Özi T. Solutions of singular IVPs of Lane-Emden type by the variational iteration method. Nonlinear 

Analysis: Theory, Methods & Applications. 2009; 70: 2480-2484.
[17]	Parand K, Pirkhedri A. Sinc-collocation method for solving astrophysics equations. New Astronomy. 2010; 15: 533-

537.
[18]	Momoniat E, Harley C. An implicit series solution for a boundary value problem modelling a thermal explosion. 

Mathematical and Computer Modelling: An International Journal. 2011; 53: 249-260.
[19]	Doha EH, Abd-Elhameed WM, Youssri YH. Second kind Chebyshev operational matrix algorithm for solving 

differential equations of Lane-Emden type. New Astronomy. 2013; 23: 113-117.
[20]	Doha EH, Abd-Elhameed WM, Bassuony MA. On using third and fourth kinds Chebyshev operational matrices for 

solving Lane-Emden type equations. Romanian Journal of Physics. 2015; 60(3-4): 281-292.
[21]	Youssri YH, Abd-Elhameed WM, Doha EH. Ultraspherical wavelets method for solving Lane-Emden type 

equations. Romanian Journal of Physics. 2015; 60(9-10): 1298-1314.
[22]	Bhrawy AH, Alofi AS. A Jacobi-Gauss collocation method for solving nonlinear LaneEmden type equations. 

Communications in Nonlinear Science and Numerical Simulation. 2012; 17: 62-70.
[23]	Abdelhakem M, Fawzy M, El-Kady M, Moussa H. An efficient technique for approximated BVPs via the second 

derivative Legendre polynomials pseudo-Galerkin method: Certain types of applications. Results in Physics. 2022; 
43: 106067.

[24]	Abdelhakem M, Moussa H. Pseudo-spectral matrices as a numerical tool for dealing BVPs, based on Legendre 
polynomials’ derivatives. Alexandria Engineering Journal. 2023; 66: 301-313.

[25]	Abd-Elhameed WM, Youssri Y, Doha EH. New solutions for singular Lane-Emden equations arising in 
astrophysics based on shifted ultraspherical operational matrices of derivatives. Computational Methods for 
Differential Equations (CMDE). 2014; 2(3): 171-185.

[26]	Abd-Elhameed WM. New Galerkin operational matrix of derivatives for solving Lane-Emden singular-type 
equations. The European Physical Journal Plus. 2015; 130(3): 1-12.

[27]	Abd-Elhameed WM, Doha EH, Saad AS, Bassuony MA. New galerkin operational matrices for solving lane-
Emden type equations. Revista Mexicana de Astronomía y Astrofísica. 2016; 52(1): 83-92.

[28]	Parand K, Hemami M. Numerical study of astrophysics equations by meshless collocation method based on 
compactly supported radial basis function. International Journal of Applied and Computational Mathematics. 
2017; 3: 1053-1075.

[29]	Ramos H, Rufai MA. An adaptive pair of one-step hybrid block Nyström methods for singular initial-value 
problems of Lane-Emden-Fowler type. Mathematics and Computers in Simulation. 2022; 193: 497-508.

[30]	Guo B-Y. Jacobi approximations in certain Hilbert spaces and their applications to singular differential equations. 
Journal of Mathematical Analysis and Applications. 2000; 243: 373-408.

[31]	Mason JC, Handscomb DC. Chebyshev Polynomials. New York: Chapman and Hall/CRC; 2010.
[32]	Koepf W. Hypergeometric Summation. 2nd ed. Springer Universitext Series. Berlin/Heidelberg, Germany: 



Contemporary MathematicsVolume 4 Issue 1|2023| 149

Springer; 2014.
[33]	Khuri S, Sayfy A. Numerical solution for the nonlinear Emden-Fowler type equations by a fourth-order adaptive 

method. International Journal of Computational Methods. 2014; 11: 1350052.
[34]	Shiralashetti SC, Kumbinarasaiah S. Hermite wavelets operational matrix of integration for the numerical solution 

of nonlinear singular initial value problems. Alexandria Engineering Journal. 2018; 57(4): 2591-2600.
[35]	Bekir E. Efficient Chebyshev economization for elementary functions. Communications Faculty of Sciences 

University of Ankara Series A2-A3 Physical Sciences and Engineering. 2019; 61: 33-56.
[36]	Stewart J. Single Variable Calculus: Early Transcendentals. Boston: Cengage Learning; 2015.
[37]	Youssri YH, Abd-Elhameed WM, Abdelhakem M. A robust spectral treatment of a class of initial value problems 

using modified Chebyshev polynomials. Mathematical Methods in the Applied Sciences. 2021; 44(11): 9224-9236.
[38]	Parand K, Dehgan M, Rezaei AR, Ghaderi SM. An approximate algorithm for the solution of the nonlinear Lane-

Emden type equations arising in astrophysics using Hermite function collocation method. Computer Physics 
Communications. 2010; 181: 1096-1108.

[39]	Horedt GP. Polytropes: Applications in Astrophysics and Related Fields. Dordecht: Kluwer Academic Publishers; 
2004.


