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1. Introduction
Controllability phenomenon is widespread in lots of real time models and well developed by employing different 

types of approaches [1-5]. The exact and approximate controllability concepts are notable in the view of mathematical 
points. Approximate controllable systems are perfectly suitable and frequently appeared in many practical systems [6-11]. 
Actually, it is crucial to analyze weaker notion of approximate controllability for nonlinear systems whereas the exact 
controllability idea has constrained appropriateness and is too robust. By employing generalized open mapping theorem, 
Klamka [12] attained some sufficient conditions for semilinear delay systems to explore constrained controllability.

Fractional calculus extends the concept of derivatives and integrals to non-integer orders. Fractional order systems 
have more advantages compared to the integer order systems. Fractional order derivatives and integrals offer a more 
flexible and nuanced way to describe complex phenomena, especially in systems exhibiting non-local or memory-
dependent behavior. Moreover, fractional derivatives are more generalized forms of integer derivatives and hence many 
higher order systems can be modeled as low order model. Also, precise and more adequate models in state space can 
be modelled using fractional derivative rather than integer derivatives. Compared with past few years, the study related 
to fractional derivative developed in a rapid manner and attracts remarkable consideration by reason of both theoretical 
and practical aspects of applied sciences [13, 14]. Consequently, a lot of noteworthy achievements have been discussed 
for linear and nonlinear systems involving fractional derivatives [15, 16]. In the current scenario, many researchers 
concentrated on examining the analysis of approximate controllability involving fractional derivatives [17-22]. In [23], 
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the author examined partial approximate controllability concept for the fractional evolution systems. Wen and Zhou [24] 
proposed the approximate and complete controllability approach for semilinear fractional systems with control. The 
problem of approximate controllability of fractional systems with multiple delays has been addressed in [25].

An impulsive phenomenon has been broadly examined and used in different areas since its occurrence has wide-
ranging physical circumstances [26]. After some years of progresses, the incorporation of impulsive effects into 
fractional system has made considerable attention. However, fractional order system with impulsive effects has not been 
much discussed and various characteristic of these equations are still to be analysed. Moreover, stochastic perturbation 
has attained more concern due to its existence in real time applications. Consequently, many efforts have been attempted 
for the control design of stochastic system with several structures [27-29]. The controllability analysis for stochastic 
fractional system with impulsive effect has been studied by many researchers [30-32]. In [33], the authors studied the 
approximate controllability results for second order neutral differential evolution inclusions with nonlocal. Approximate 
controllability criteria for neutral stochastic integro-differential system involving state-dependent delay and impulsive 
effects have been examined in [34, 35]. In [36], approximate controllability of fractional stochastic differential inclusions 
has been analyzed. Approximate controllability issue of fractional stochastic differential systems with nonlocal has been 
reported in [37]. In [38], approximate controllability result for fractional stochastic Sobolev-type Volterra-Fredholm 
integro-differential system has been investigated.

After the success of theory and applications of fractional calculus for both deterministic and stochastic systems, 
how to extend them to the case of involving various delays, naturally became a predominant research field. In the 
previous literature, a small number of results have been examined on the issue of approximate controllability for 
fractional impulsive stochastic systems, especially with finite and infinite delays. However, to the author’s knowledge, 
the approximate controllability concept for impulsive fractional stochastic neutral integro-differential systems involving 
SDD and nonlocal condition has not examined yet. Motivated by these statements, it is essential to consider this type of 
interesting problem. The analysis includes the contributions can be specified below:

• Most of the earlier investigations on fractional systems have been reported with delay like finite, infinite or 
without delay. Consequently, it is essential to pay consideration to the analysis of fractional stochastic systems with state 
dependent delay.

• Many of the previous results on fractional stochastic integrodifferential systems are reported without nonlocal and 
impulsive effect. It is more essential to study the approximately controllability of fractional system involving nonlocal 
and impulsive behavior.

• Analytic semigroup theory with Caputo fractional derivative and Krasnoselskii’s fixed point technique are 
employed to derive the suitable conditions to impose that the nonlinear fractional stochastic impulsive control SDD 
system is approximately controllable.

The paper is structured as below: Necessary facts and problem formulations are briefly given in Section 2. 
Approximate controllability results are obtained and proved in Section 3. To emphasize the derived results an example 
is stated in Section 4. In Section 5, the paper is concluded as a final point.

2. Preliminaries and problem statement
Consider the impulsive fractional stochastic system with SDD,

0
[ ( ) ( , )] ( ) ( ) ( ) ( , )
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t tD y t p t y y t u t t h y d dtα
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Here, Caputo derivative cDt
α with order α ∈ (0, 1), state variable y(t) in Hilbert space H, K denoted as seperable 

Hilbert space with || · ||K. Let  (t)t ≥ 0 be a Wiener process involving covarience operator Q ≥ 0 and K-valued, which is 
described on the space (Ω, F, P) with filtration Ft, t ∈  generated by Wiener process involving probability measure P 
on Ω. Here  denoted an infinitesimal generator of compact semigroup T (t) for t ≥ 0 on H, control function u ∈ L2( , 
U ), U is a Hilbert space and  is a bounded linear operator from U to H. The symbol yζ : (0, ∞] → H on phase space B 
denoted by yζ (θ ) = y(ζ + θ) and ρ :  × B → (−∞, b] is a continuous function. p :   × B → H, h :   × B → H, g :   × 
B → LQ(K, H) are suitable functions and (γ( t)) t ≥ 0 is a bounded linear operator. Let PC ( , L2(Ω, F, P; H)) = { y(t) be 
continuous throughout except for some tk where y (tk

+) & y ( tk
−) exist with y ( tk

−) = y(tk), k = 1, 2, ..., m including || y ||PC  
= supt ∈ | y(t)| < ∞}. Also, k : B → H and 0 = t0 < t1 < ... < tm < tm +1 = b. Moreover, Br( y) denotes the closed-ball with 
center at y and radius r > 0.

At this instant, let B be a phase space which is standard for measurable functions F0- : 0 = (−∞, 0] → H with 
|| · ||B and fulfills the succeeding conditions:

(a) On [0, b), if z : (−∞, b) → H is continuous and z0 ∈ B, then the subsequent constrains are fulfilled for each t ∈ [0, 
b):

(i) zt ∈ B;
(ii) || z (t) || ≤ K1|| zt ||B;
(iii) || zt ||B ≤ K2(t) ||z0 ||B + K3(t) sup || z(ζ ) ||; 0 ≤ ζ ≤ b, where K1 > 0 is a constant, K2 : [0, ∞) → [0, ∞) is a locally 

bounded function, K3 : [0, ∞) → [0, ∞) is a continuous function. Besides, K1, K2 and K3 are independent of y.
(b) B be a complete space.
Assume the F-adapted measurable process y : (−∞, b] → H such that F0-adapted process y0 = φ̃ (t) ∈ L2(Ω, B) 

gives

2 2 2
2 3 sup{ ( ) },t

t
E y E E yφ ζ
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≤ +‖ ‖ ‖ ‖ ‖ ‖B B


K K

where 2 2 3 3sup ( ),  sup ( ).t tt t∈ ∈= = K K K K
Lemma 2.1 [39] For each t ∈ D, let us assume D = (−∞, 0] and φ̃  ∈ B with φ̃ t ∈ B. Also assume there exist Hφ̃  : 

D → [0, ∞) for t ∈ D such that E ||φ̃ t||B
2 ≤ Hφ̃ (t)E ||φ̃ ||B

2 . Assume the function y : (−∞, b] → H such that y0 = φ̃  and y ∈ 
PC ( , L2) gives

2 2 2
2 3( ) sup{ ( ) ;  [0, {0, }]}, ( , ).E y E E y  max  bζ φ θ θ ζ ζ≤ + + ∈ ∈ −∞‖ ‖ ‖ ‖ ‖ ‖B BnH H

Here 
2 2 3 3sup ( ),  sup ( ) and sup ( )t D t tt K t K tφ

∈ ∈ ∈= = =


n  H H H .
Definition 2.2 [14] The fractional integral of order κ > 0, with the lower limit 0 for a function l can be written as

10

1 ( )( ) , 0,
( ) ( )

t lI l t d t
t

κ
κ

ζ ζ
κ ζ −= >

Γ −∫

where Γ(·) is the gamma function.
Definition 2.3 [14] The Caputo derivative of order κ > 0, with the lower limit 0 for a function l is denoted by

10

1 ( )( ) , 0.
( ) ( )

ntc
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n t

κ
κ

ζ
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Definition 2.4 A stochastic process y :  × B → H is known as mild solution for system (1)-(3) if the following 
conditions are satisfied:

(i) y(t) is Ft -adapted and measurable for each t ≥ 0.
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(ii) For y(t) ∈ H,
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(iii) y0(·) = φ̃  ∈ B on (−∞, 0] with ||ϕ ||B < ∞. Here
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Let the fractional system

0

( ) ( ) ( ), ;
(0) ,

c
tD y t y t u t t

y y

α = + ∈


=

  

be approximately controllable. Then the controllability operator Γ 0
b related with (4) as

1 * *
0 0

( ) ( ) ( ) ,
bb b V b V b dαζ ζ ζ ζ−Γ = − − −∫ 

where * & V * are adjoint of  & V .
Definition 2.5 System (1)-(3) is known as an approximately controllable on   if the closure of reachable set 

( ; , )b   uφℜ   = L2(Ω, F, H).
The reachable set of system (1)-(3) is denoted as the set R(b; φ̃ , u) = {y(b; φ̃ , u) : u ∈ L2([0, b], U )}.
Lemma 2.6 [1] For any 2 ( , , )y L   ∈ Ω F H , there exist 2 ( , ( , ))z L  L  ∈ ΩF

Q K H  such that 
0

( ) ( ) ( )
b

y E y z dζ ζ= + ∫  .
Lemma 2.7 (Krasnoselskii fixed point theorem) Let S be a Banach space, let Ŝ be a bounded closed and convex 

subset of S, and let F1, F2 be maps of Ŝ into S such that F1x + F2 y ∈ Ŝ for every pair x, y ∈ Ŝ . If F1 is a contraction and 
F2 is completely continuous, then the equation F1x + F2x = x has a solution on Ŝ .

Remark 2.8 The Krasnoselskii’s fixed point theorem is applicable to a wide range of problems defined in Banach 
spaces, Hilbert spaces, and more general metric spaces. It provides conditions under which a self-mapping on a closed, 

(4)
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convex, and bounded subset of a Banach space has a fixed point. Unlike the Banach fixed point theorem, which 
requires a contraction mapping, Krasnoselskii’s theorem applies to more general mappings. It can handle cases where 
the mapping is not necessarily a contraction but still possesses certain desirable properties, such as compactness or 
monotonicity. So, in this paper we will use the well-known Krasnoselskii’s fixed point theory approach for solving the 
considered system.

3. Main results
To achieve the main result, we state
(H1) Infinitesimal generator  of an analytic semigroup of bounded linear operators T(t ) in H, there exist 

constants Mβ, M and M1−β such that ||−β|| = Mβ, ||T(t) || ≤ M and ||1−βT(t)|| ≤ M1−β, ∀t ∈  .
(H2) p is continuous and there ∃Mp > 0 such that

2 2( , ) (1 ),H pE p t y  M   y β ≤ +‖ ‖ ‖ ‖

2 2
1 2 1 2 1 2( , ) ( , ) , , , , .H pE p t y p t y M y y y y y tβ β− ≤ − ∈ ∈‖ ‖ ‖ ‖ B  

(H3) h is continuous and there ∃Mh > 0 such that
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2 2
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(H4) µ is continuous and there ∃Mµ such that
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(H5) K : H → H is continuous and there ∃MK > 0 such that ∀y ∈ H

2 2( ) ( ),k kE y  M E y ≤‖ ‖ ‖ ‖

( )
lim , 1, ..., . k

kr

M r
i   nf k n

r
η

→∞
= < ∞ =

(H6) From R(ρ− ) = {ρ(ζ, ψ); (ζ, ψ) ∈  × , ρ(ζ, ψ) ≤ 0} into B, t → φ̃ t is well defined. Also, there exists a 
bounded and continuous function H φ̃ (t) : R(ρ− ) → (0, ∞) such that E|| yt ||

2
B ≤ H φ̃ (t)E|| φ̃ || 2

B, ∀ t ∈ R(ρ− ).
(H7) g :  × B → H fulfills the following:
(i) Let y : (−∞, b) → H be such that y0 = φ̃  and y| ∈ PC. Also t → g(t, yρ(t, yt )) is measurable on  , and for every ζ 

∈  , t → g(ζ, yt) is continuous on R(ρ− ) ∪  .
(ii) The continuous non-decreasing function Mg : [0, ∞) → (0, ∞) and there ∃m :   → [0, ∞) such that

2 2( , ) ( ) ( ), ( , ) .gE g t y m t M y t y≤ ∈ ×‖ ‖ ‖ ‖B B
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(iii) g is continuous and there ∃ Mg ∈ L1( , R+) such that

2 2
1 2 1 2 1 2( , ) ( , ) , , , .gE g t  y g t  y M y y t y  y− ≤ − ∈ ∈‖ ‖ ‖ ‖B B

(H8) On  , stochastic linear system (4) is approximately controllable.
For ȳ ∈ L2 and any λ > 0, the control state as
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Theorem 3.1 If the hypotheses (H1)-(H8) are satisfied, then for each λ > 0, the operator R has a fixed point in Br 
provided that

* 3 1.rr
L H L+ <

Proof. Let Br = {y ∈ PC (, L2)} be the space furnished with uniform convergence topology and for λ > 0, the 
operator R : Br → Br state as

(5)
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Now, the proof is separated into various steps.
Step 1: R(Br) ⊂ Br.
Suppose the statement is not right for any r > 0, then there ∃yr ∈ Br such that r < ||Ry r(t)|| 2, t ∈  . Now Lemma 2.1 

yields that E || yt ||
2
B ≤ (H2 + η)E || φ̃ || 2
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Taking limit as r → ∞, we obtain
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which contradicts the assumption. Hence, R(Br) ⊂ Br, ∀ r > 0.
Then define
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respectively. Then prove that (R1y)(t) validates a contraction condition whereas (R2y)(t) is completely continuous.
Step 2: R1 satisfies the contraction condition. For each t ∈  , consider c, d ∈ Br ,

2
1 1( )( ) ( )( )E R c t R d t−‖ ‖
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2
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where L0 < 1, which implies R1 satisfies the contraction condition on Br.
Step 3: R2 maps bounded sets to bounded sets in Br. Now we have

2
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Therefore, E||(R2 y)(t)||2 is bounded ∀x ∈ Br .
Step 4: The map R2 is equicontinuous.
Let t1, t2 ∈  , t1 < t2, then we get

2
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Here Ĩ 2, Ĩ 3, Ĩ 5,  Ĩ 6,  Ĩ 7 → 0 as t2 → t1 which is independent of y ∈ Br , for any ε > 0, we have
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ε
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−
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Here Ĩ 1 → 0 as t2 → t1, ε → 0 independent of y ∈ Br . Similarly the same procedure for Ĩ 4, Ĩ 4 → 0 as t2 → t1, ε → 0 
independent of y ∈ Br .

Step 5: Let S( t) = (R2 y)(t), y ∈ Br  is relatively compact in Br.
Now, for any δ > 0 and  ∈ (0, t ), we define
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and we have
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Hence, we get that , S δ (t) = ( ,
2

 R yδ )( t), ∀ , 0 <   < t, y ∈ Br is relatively compact from the compactness of 
T( αδ). Besides, S(t) = (R2 y)(t), y ∈ Br is relatively compact while ( ,

2
 R yδ )(t) → (R2 y)(t) as   → 0 and δ → 0. Thus 

R2 becomes completely continuous in view of Arzela-Ascoli theorem. The operator R has a fixed point by utilizing 
Kranoselskii fixed point theorem. Hence, Ry( t) is the mild solution to (1)-(3).

Theorem 3.2 Assume that (H1)-(H8) are satisfied, then the fractional stochastic system (1)-(3) is approximately 
controllable on  .

Proof. Assume y λ is a solution to (1)-(3), then we can easily get that

1
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By (H2)-(H7), the considered functions are uniformly bounded and the subsequence 
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weakly to g(ζ). Moreover, as λ → 0+, λ(λI + Γ 0

b)−1 → 0 by (H8). Also, || λ(λI + Γ 0
b)−1|| ≤ 1. 

On the other hand, by assumption (H8), the operator λ(λI + Γ 0
b)−1 → 0 as λ → 0+ and ||λ(λI + Γ 0

b)−1 || ≤ 1. Thus by 
Lebesque dominated convergence theorem,
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0 0as λ +→ →

So y λ(b) → ȳb holds. This implies that (1)-(3) is approximately controllable.
Remark 3.3 When the absence of stochastic fractional derivatives, the system (1)-(3) reduces to the system studied 

in [7]. Comparing with [24, 25], the results in this paper are new and original, as they have not considered the stochastic 
effects. Moreover, the occurrence of delay effect is a crucial one in any control process and unavoidable. When the 
absence of fractional derivatives with SDD, the considered system (1)-(3) is reduced to the system studied in [19, 34, 
36]. So the derived results are generalization to the above results and can be regard as a special case of our result.

4. Example
Example 4.1 Consider the stochastic fractional integro-differential equations with impulses and SDD,

0
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υ υ
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∫

□



Contemporary Mathematics 354 | G. Arthi, et al.

1 2( ) ( ( ) ( ( ) ), ) ( ), [0, ],
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∆ = − = …∫

where ρi : [0, ∞) → [0, ∞), i = 1, 2. Here a, b : R → R are continuous, 0 < t1 < t2 < ... < tm < b are prefixed numbers. One 
dimensional Wiener process β(t) ∈ H = L2[0, π] described on (Ω, F, P) and φ̃  ∈ B, see [40]. Define ξ = ξ ” involving 

D() = {ξ ∈ H : ξ and 
y

ξ∂
∂

 are absolutely continuous, 
2

2 ξ
υ
∂

∂
 ∈ H, ξ(0) = ξ(π) = 0}.  generates a compact analytic 

semigroup T(t), t ≥ 0 given by 

2

1
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is orthogonal set of eigenvectors of . Also,  : U → H denoted by

( )( ) ( , ), 0 , ,u t t      uυ µ υ υ π= ≤ ≤ ∈ U

where µ : [0, 1] × [0, π] → [0, π] is continuous.
Define the operator p, g, ρ :  × B → H and Ik : B → H by

0
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−∞
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Based on above considerations, we can symbolize (7) in abstract form (1)-(3). Besides, p, g, Ik are bounded linear 
operators, || p || 2 ≤ Mp, ||g ||2 ≤ Mg and ||k ||2 ≤ Mk , for every k = 1, 2, ..., n. All the conditions of Theorem 3.2 are fulfilled. 
So, system (7) is approximately controllable.

5. Conclusion
This paper is concerned with the approximate controllability of control systems described by fractional order 

neutral impulsive stochastic integrodifferential systems involving SDD and nonlocal conditions. The results are attained 
and the approximate controllability is constructed and established by semigroup theory, fractional derivatives, fixed 

(7)
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point approach and stochastic analysis techniques. To illustrate the significance of developed result, an example is 
included. Furthermore, the contribution of this paper can be extended to damped dynamical systems with different delay 
effects.
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