Contemporary Mathematics

http://ojs.wiserpub.com/index.php/CM/ UNIVERSAL WISER
PUBLISHER

Research Article

Approximate Controllability of Nonlinear Fractional Stochastic
Systems Involving Impulsive Effects and State Dependent Delay

G. Arthi", N. Suriyapriya

Department of Mathematics, PSGR Krishnammal College for Women, Coimbatore-641004, India
E-mail: arthimath@gmail.com

Received: 30 December 2022; Revised: 10 June 2023; Accepted: 10 June 2023

Abstract: This paper studies the analysis of approximate controllability for the fractional order neutral stochastic
impulsive integro-differential systems involving nonlocal condition and State Dependent Delay (SDD). Sufficient
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protocol can explicitly drive the results by Krasnoselskii’s fixed point technique and semigroup theory. As a final point,
the derived scheme is validated through an example.
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1. Introduction

Controllability phenomenon is widespread in lots of real time models and well developed by employing different
types of approaches [1-5]. The exact and approximate controllability concepts are notable in the view of mathematical
points. Approximate controllable systems are perfectly suitable and frequently appeared in many practical systems [6-11].
Actually, it is crucial to analyze weaker notion of approximate controllability for nonlinear systems whereas the exact
controllability idea has constrained appropriateness and is too robust. By employing generalized open mapping theorem,
Klamka [12] attained some sufficient conditions for semilinear delay systems to explore constrained controllability.

Fractional calculus extends the concept of derivatives and integrals to non-integer orders. Fractional order systems
have more advantages compared to the integer order systems. Fractional order derivatives and integrals offer a more
flexible and nuanced way to describe complex phenomena, especially in systems exhibiting non-local or memory-
dependent behavior. Moreover, fractional derivatives are more generalized forms of integer derivatives and hence many
higher order systems can be modeled as low order model. Also, precise and more adequate models in state space can
be modelled using fractional derivative rather than integer derivatives. Compared with past few years, the study related
to fractional derivative developed in a rapid manner and attracts remarkable consideration by reason of both theoretical
and practical aspects of applied sciences [13, 14]. Consequently, a lot of noteworthy achievements have been discussed
for linear and nonlinear systems involving fractional derivatives [15, 16]. In the current scenario, many researchers
concentrated on examining the analysis of approximate controllability involving fractional derivatives [17-22]. In [23],
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the author examined partial approximate controllability concept for the fractional evolution systems. Wen and Zhou [24]
proposed the approximate and complete controllability approach for semilinear fractional systems with control. The
problem of approximate controllability of fractional systems with multiple delays has been addressed in [25].

An impulsive phenomenon has been broadly examined and used in different areas since its occurrence has wide-
ranging physical circumstances [26]. After some years of progresses, the incorporation of impulsive effects into
fractional system has made considerable attention. However, fractional order system with impulsive effects has not been
much discussed and various characteristic of these equations are still to be analysed. Moreover, stochastic perturbation
has attained more concern due to its existence in real time applications. Consequently, many efforts have been attempted
for the control design of stochastic system with several structures [27-29]. The controllability analysis for stochastic
fractional system with impulsive effect has been studied by many researchers [30-32]. In [33], the authors studied the
approximate controllability results for second order neutral differential evolution inclusions with nonlocal. Approximate
controllability criteria for neutral stochastic integro-differential system involving state-dependent delay and impulsive
effects have been examined in [34, 35]. In [36], approximate controllability of fractional stochastic differential inclusions
has been analyzed. Approximate controllability issue of fractional stochastic differential systems with nonlocal has been
reported in [37]. In [38], approximate controllability result for fractional stochastic Sobolev-type Volterra-Fredholm
integro-differential system has been investigated.

After the success of theory and applications of fractional calculus for both deterministic and stochastic systems,
how to extend them to the case of involving various delays, naturally became a predominant research field. In the
previous literature, a small number of results have been examined on the issue of approximate controllability for
fractional impulsive stochastic systems, especially with finite and infinite delays. However, to the author’s knowledge,
the approximate controllability concept for impulsive fractional stochastic neutral integro-differential systems involving
SDD and nonlocal condition has not examined yet. Motivated by these statements, it is essential to consider this type of
interesting problem. The analysis includes the contributions can be specified below:

* Most of the earlier investigations on fractional systems have been reported with delay like finite, infinite or
without delay. Consequently, it is essential to pay consideration to the analysis of fractional stochastic systems with state
dependent delay.

» Many of the previous results on fractional stochastic integrodifferential systems are reported without nonlocal and
impulsive effect. It is more essential to study the approximately controllability of fractional system involving nonlocal
and impulsive behavior.

» Analytic semigroup theory with Caputo fractional derivative and Krasnoselskii’s fixed point technique are
employed to derive the suitable conditions to impose that the nonlinear fractional stochastic impulsive control SDD
system is approximately controllable.

The paper is structured as below: Necessary facts and problem formulations are briefly given in Section 2.
Approximate controllability results are obtained and proved in Section 3. To emphasize the derived results an example
is stated in Section 4. In Section 5, the paper is concluded as a final point.

2. Preliminaries and problem statement

Consider the impulsive fractional stochastic system with SDD,

DO~ ey =| AO)+ Bu(0)+ [ 7(t= OBy )¢ |

+g(t9yp(t,yl))dw(t)3tEjz[o’b]i (1)
Ay |t:tk =Z,(y(®)), (2
y(0)+u(y) =y, =§B. 3)
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Here, Caputo derivative ‘D," with order o € (0, 1), state variable y(¢) in Hilbert space H, X denoted as seperable
Hilbert space with || - ||c. Let W(¢),-, be a Wiener process involving covarience operator Q > 0 and K-valued, which is
described on the space (Q, §, P) with filtration §,, ¢ € J generated by Wiener process involving probability measure P
on Q. Here A denoted an infinitesimal generator of compact semigroup 7'(¢) for > 0 on H, control function u € L,( 7,
U), U is a Hilbert space and B is a bounded linear operator from ¢ to . The symbol y, : (0, o] — H on phase space B
denoted by y-(0) =y({+ ) and p : J* ‘B — (—oo, b] is a continuous function.p : TxB - H, h: T*xB - H,g: Jx
B — Ly(KC, H) are suitable functions and (y(?)),s, is a bounded linear operator. Let PC(J, L,(L2, §, P; H)) = {y(¢) be
continuous throughout except for some #, where y (¢, ) & y(#,) exist with y(¢,) = »(t), k= 1, 2, ..., m including || y ||
=sup,c;|y(t)| <o} . Also, Z, : B — Hand 0 =1, <t <..<t,<t,., =b. Moreover, B,(y) denotes the closed-ball with
center at y and radius » > 0.

At this instant, let 8 be a phase space which is standard for measurable functions §,- : J, = (—», 0] — H with
|| -]l and fulfills the succeeding conditions:

(a) On [0, b), if z : (—oo, b) — H is continuous and z, € B, then the subsequent constrains are fulfilled for each ¢ € [0,
b):

(i) z, € B;

(i) 120 < Kz

@il) ||z, |l < KO ||zolls + IC5(t)sup || z(£)]]; 0 < < b, where IC, > 0 is a constant, /C, : [0, ©) — [0, ) is a locally
bounded function, K : [0, ) — [0, ) is a continuous function. Besides, /C,, &, and K5 are independent of .

(b) B be a complete space.

Assume the F-adapted measurable process y : (—oo, b] — H such that F,-adapted process y, = ¢(¢) € L,(Q, B)
gives

Ell y, 12 < IGEN §I + K, sup{Ell y(O)IP,
teJ

where K, =sup,_, K, (t), K, =sup,_; K, ().

Lemma 2.1 [39] For each ¢ € D, let us assume D = (—o0, 0] and ¢ € B with §, € B. Also assume there exist H
D — [0, o) for ¢ € D such that E||§,||3 < H”;(t)E||¢5||%. Assume the function y : (-0, b] — H such that y,=¢ and y €
PC(J, L,) gives

El y 1B < (H, +n)Ell gIB, + 7, sup{Ell y(O)I; 6 €[0,max{0,{}1}, ¢ € (~o0,b).

Here n =sup,_,, HY ), 7-_L2 =Ssup, ., E(t) and E =sup,., E(t) .
Definition 2.2 [14] The fractional integral of order x > 0, with the lower limit 0 for a function / can be written as

Ikz(t):Lj’&d(; >0
L(x)?0 (=&)< 7 ’

where I'(+) is the gamma function.
Definition 2.3 [14] The Caputo derivative of order x > 0, with the lower limit 0 for a function / is denoted by

N S G ()
D=0 ) vk

Definition 2.4 A stochastic process y : J % ‘B — H is known as mild solution for system (1)-(3) if the following
conditions are satisfied:
(1) »() is §,-adapted and measurable for each 7> 0.
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(i1) For y(¢t) € H,
y(O) =U)(p, — u(y) - p(0, ) + p(t, »,)

=)A= Op(&y s + [ =0V (- Bu)dS
=0 V=0T ¢ = om )z g

H = V(=08 Y YAV

+ 3 U@—1)T,(0(t,), teJ.

0<t <t

(iii) yo(-) =@ € B on (—oo, 0] with ||| < 0. Here

1 1

U= [ &, O 0)d0.&,0) = ée"% (0) “.&,0)20,0€(0,), ["&,(0)d0=1
and V(¢) = aj: OF (DT (t“60)d0,

where @, (0) = lz:(—l)”flgw"*l Msin(nﬂa), 0 € (0, ).
5 n!

Let the fractional system
‘D y(t) = Ay(1) + Bu(t), 1€ J;

_ “4)
y(0) = vy,

be approximately controllable. Then the controllability operator I') related with (4) as
b _ * ok
o=, 6=V b-OBBV (b-¢)dg,

where B° & V" are adjoint of B & V.

Definition 2.5 System (1)-(3) is known as an approximately controllable on 7 if the closure of reachable set
Rb; b, u) =L,(Q, F, H).

The reachable set of system (1)-(3) is denoted as the set R(b; ¢, u) = {y(b; ¢, u) : u € L,([0, b], U)}.

Lemma 2.6 [1] Forany y € L,(Q,§, H) , there exist z € L} (Q, L, (K, H)) such that 3 = E(¥)+ Iohz(C)dW(g) .

Lemma 2.7 (Krasnoselskii fixed point theorem) Let S be a Banach space, let S be a bounded closed and convex
subset of S, and let F,, F, be maps of S into S such that F\x + F,y € § for every pair x, y € S. If F, is a contraction and
F, is completely continuous, then the equation F,x + F,x = x has a solution on 3.

Remark 2.8 The Krasnoselskii’s fixed point theorem is applicable to a wide range of problems defined in Banach
spaces, Hilbert spaces, and more general metric spaces. It provides conditions under which a self-mapping on a closed,
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convex, and bounded subset of a Banach space has a fixed point. Unlike the Banach fixed point theorem, which
requires a contraction mapping, Krasnoselskii’s theorem applies to more general mappings. It can handle cases where
the mapping is not necessarily a contraction but still possesses certain desirable properties, such as compactness or
monotonicity. So, in this paper we will use the well-known Krasnoselskii’s fixed point theory approach for solving the
considered system.

3. Main results

To achieve the main result, we state

(H1) Infinitesimal generator A of an analytic semigroup of bounded linear operators 7(¢) in H, there exist
constants Mj, M and M, , such that [|A™|| = M, || T(¢)|| < M and [|A" " T(¢)|| <M, 5, Vt € J.

(H2) p is continuous and there 3M, > 0 such that

El A2 p(e, ), <M, A+ 1),

El A p(t,y,)-A” p(t, p,)II} <My, =»lg vy, 9, €B, ted.
(H3) h is continuous and there 3 M, > 0 such that

Ell ht, )P <M, A+ y ),

Ell h(tay1)_h(t,y2)”2 SM/;” Y —)/’2”2%, Yy, €B, te.
(H4) u is continuous and there 3 M, such that

Ell p(t, )P <M, 1+ y 1),

Ell u(y) = ()P <M Ny, = 0,5, v, 31,9, €B.
(H5) Zy : H— H is continuous and there I M, > 0 such that Vy € H

EIT.(»IF <M (ElyIP),

. M
}Lniinf# =n, <o, k=1,..,n.

(H6) From R(p ) = {p({, w); (§, w) € T x B, p(¢, w) <0} into B, t — ¢, is well defined. Also, there exists a
bounded and continuous function H“;(t) :R(p~) — (0, ) such that £|| y,||% < H‘;(t)EH Bl V€ R(p).

(HT) g : J* B — H fulfills the following:

(i) Let y : (-0, b) — 'H be such that y, = ¢ and y|7 € PC. Also t — g(1, . v) 18 measurable on 7, and for every
e J,t— g({ y,) is continuous on R(p ) U J.

(ii) The continuous non-decreasing function M, : [0, c0) — (0, o0) and there Im : J — [0, o0) such that

Ell g(t,y)P < m(OM (I y %), (t,y)eJ xB.
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(iii) g is continuous and there I M, € L'(J,R") such that

Ell g(t, ) =g, y)IF <M Iy, =y, €T, y,y, €B.

(H8) On J, stochastic linear system (4) is approximately controllable.
For y € L, and any 4 > 0, the control state as

u'(t.y) =BV (b —t)E{R(ﬂ,FS)[w [} 2w -U@, - 1) - p(0.9) - p@, xhﬂ
[ - O RATDAV (- O)p(C. v, )dE
[} - R b0 [ & -0y )7 dg
[ = T RATV (b-O)2(. 3y, JAWE)

—R(ﬂ,rg) Z U(b_tk)z-k(y(tk))}a

0<t; <b

where R(A,T'))=(AI+T{)". For our convenience, we take

v =sup [l y(¢ ~)Pd¢, M =1l B,

0<r<h

_ 2 2
L0—4[M M, +M M, +

M27 M2t2a Mztza
IZﬁ 2 MP + ’nZ 2 Mg 2
I''o)a (oo

n 10M M h*
L =9M*n) n, [H " ,
k=1

AT (a)a?

M? M2b20! 272a, * 272a LOM M 4p2
Ve VO Ve V= il Ve e A0 VL LA g DY P il
r “ T (e)a T (a)a @a® ¢ ATHa)a

Theorem 3.1 If the hypotheses (H1)-(H8) are satisfied, then for each 4 > 0, the operator R has a fixed point in B,
provided that

L.H,+L <l (6))

Proof. Let B, = {y € PC(J, L,)} be the space furnished with uniform convergence topology and for 4 > 0, the
operator R : B, — B, state as
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U0, = u(y) = pO.9)+ p(t,,)
H =) AV = Op Ly )dE

[ (=) V=B & )d¢
+f <z—§)<“">V(z—:)(jjy(;—r)h(r,y,)dr)dg“

+J.0t =) (e- OIE(E, Y pic ) AW(S)
+Zo<t,( <tU(t - tk )Ik (y(tk ))s te j

(Ry)(@) = (6)

Now, the proof is separated into various steps.

Step 1: R(B,) < B,.

Suppose the statement is not right for any » > 0, then there 3y" € B, such that » <||Ry"(¢)||*, t € J. Now Lemma 2.1
yields that E|| y,||5 < (H, + ) E|| $ 1% + Er =r", we have

Ell (¢, y )P <10E HB"V* (b—r)R(A,rz){[w Jy 2O ~U @)y~ (1)~ pO.F) - plo.x,)|
[ (b= " RATD AV (-0 p(C v, )L
[} - RATY G- [; 1 = Db )z g

—I; (b= PRATV (0=, V., AW

2

~R(A.T0) 2, U(b—fk)Ik(y(tk))}

0<t; <b

10M2M?
<
AT (a)

[Eu VI + [ Bl 2 Pdg + MPEl I+ MEl p(o, )P

M*M (1+r)+M*M (1+7 My ZzaMl :
+ L)+ My, p(+r)+W ,(+7)

My o MM R
+——M (1+r ) +———M _(l+r )+ M°'n) M,r
I'’(@)a’ a ) I'’(a)a’ s ) ,; g

and

r < Ell Ry" (t)IP
<9E|U@, ()= pO.8)+ ple.37)= [ 1= )
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XAV (t=)p(&, YIS + [ (=) V(- OB (£,57)dg

[ =0 V= [ ¢~ yde g

2

AW+ X Ut=1)ZL, (v (1)

O<yy <t

=) v a-Oxey

P&VE)

<SOMIl P +9M>M , (1+ ") +9M |l p(0, ) +9M M, (1+7")

OME,M™ e IMEM D [10M M i
* 2 2 l'( )+ 2 2 212 |: y
(a)a (e’ | AT (@)
LBl 2(0PdS + MPEIl y, P + MEll p(0.6)F
MZ 212a
+MPM,(1+ 1)+ MM, (1+ 7 )+—F1;‘Ea)a2 M, (1+7")
MZbZD(}/* . mMZbZa . s n .
+——M,(+r ) +————M _ (A+r)+M°n) M, r
I'’(a)a’ a ) I'(a)a? s ) Z‘ k }
232a, * 272a n
MM;,(1+I’*)+%M A+ )+9M* Y M,
I'(a)a raa ¢ pam
Taking limit as » — oo, we obtain
M2 M2b2a Mzbza * mM2b2a o u
1<9|| M>M |+ M2M, +—= Y M, + M, [H,+Mn
|:{ Iz B p rz(a)az P rz(a)az h rz(a)az g ,HA ;ﬂk
10M ;M *b**
X I+ — -
AT (@)

which contradicts the assumption. Hence, R(B,) € B,, V r> 0.
Then define

(Ry)(®) = U0y, = 1(3)(0) = p(0,$) + p(t,y,)

[ =y AV =Hp¢ .y, )ds
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- O V=g, JAWE)
R0 = [ (=Y V=B (S
N R (R R e

+ z Ut-1)Z,(»())

0<t <t

respectively. Then prove that (R, y)(¢) validates a contraction condition whereas (R,y)(¢) is completely continuous.

Step 2: R, satisfies the contraction condition. For each ¢ € 7, consider ¢, d € B,,
El(Rc)@®)— (Rd)()I?

<AE|U ) (p(c) - p(@d))| +4E|p(t.c,) - pe,d)|[

2

HE|[ =" AV A=l ) & d N

2

+4EH'[; ="V - é’)(g(é’,c(gvc:)) -8(¢; d(c,dg))dW(é’)

MM M e
2 2 » T2 2 Mg c—d
I''o)a I''o)a

< 4(M2M# + MM, +

<L)l c—dfF,

where L, < 1, which implies R, satisfies the contraction condition on B,.
Step 3: R, maps bounded sets to bounded sets in B,. Now we have

2

EIR O <3E [/ (1= Ve~ OB €. 0)dg

2

+3E J; =)V (-¢) (Ij 7(& —T)h(z,y, )dr)dg

2

+HE| > Ut-t)I,(»(1,))

O<ty <t
3M2M2t20( 2 2a, * . n .
MM T e s 2T v Y30 M
oo I (a)a =1
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Therefore, E||(R,y)(?)|]* is bounded Vx € B, .
Step 4: The map R, is equicontinuous.
Lett, t, € J,t, <t, then we get

E”(Rzy)(tz )= (Ry)(t, )H2

2

<TE|[" (6, - [V (t, =) -V (4, = )] Bu (€, y)dg

2

E|[ [ -0 =67 P ~O)Bu ()¢

2

HTE|[" (6 =)Vt =B’ (€S

2

FIE|[ (- [V -0 -V - g“)](jj ¥(& —D)h(z, yr)dr)dé’

2
L}

B[ [~ 0 =6 ([ e —ente, v pa o

2

+1E L t, -V, -¢ )(fj 7(¢& - D)h(z, yr)df)d;

2
n

HTE(D (U@, —4)=U(t, —t))L (¥(,))

k=

<L+L+L+1,+1+1 +1,

Here /,, 14, I, I, 1; — 0 as t, — ¢, which is independent of y € B,, for any ¢ > 0, we have

2

I 7E|[! 60" 6 -V 6 - OB (€.

2

< 7EH jo =)'V, - -V, -O)Bu’ (¢, »)d¢

2

t7E HI (6 =) [V, =) =Vt =) Bu* (5, »)d¢

<7 0= e o] s e-6-re-of
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2

+7E HI 6= [V (6, =)=Vt =) Bu’ (¢, »)d¢

Here I, — 0 as t, — t,, ¢ — 0 independent of y € B,. Similarly the same procedure for /,, I, — 0 as t, — t,, ¢ — 0

independent of y € B,.
Step 5: Let S(¢) = (R, y)(¢), y € B, is relatively compact in B,.

Now, for any 0 >0 and € € (0, ¢), we define

(R y)(1) = aIOH =) I: O (DT ((t— <) O)Bu’ (&, y)dOds

vaf -oy [ 0g, O (-4 9)(]04 y(& =0z, y,)df)dedg

+ 3 [T05,OT (-1, T, (v(t,))dO

0<ty <t

and we have

(R 9)(0) = aT( 8| (=) [ 05, OT (1= )" 0~ 8)Bu* (&, y)d0dS
+al(e8)[ " (=) [ 05, (OT(1-¢) 0-e"5)
([} ¢ - e, y,)dr)dedc;

T ) Y, [ 02, (O)T((t—1,)" 0=€"S)T, (3(t,)dO.

O<yy <t

Hence, we get that S°°(¢) = (RS°y )(¢), Ve, 0 < € <t,y € B, is relatively compact from the compactness of
T(€"9). Besides, S() = (R,)(t), y € B, is relatively compact while (R;°y )(¢) — (R,y)(¢) as € — 0 and § — 0. Thus

R, becomes completely continuous in view of Arzela-Ascoli theorem. The operator R has a fixed point by utilizing
O

Kranoselskii fixed point theorem. Hence, Ry (¢) is the mild solution to (1)-(3).
Theorem 3.2 Assume that (H1)-(H8) are satisfied, then the fractional stochastic system (1)-(3) is approximately

controllable on 7.
Proof. Assume y” is a solution to (1)-(3), then we can easily get that
— - R ~
VA B) =3, - AL+ | EG)+ [} 26)dW(s) U000, = ()= pO.9) + plb.3,) |

+] 0=\ P AAL T AV (b =) p& v VS

O R T P (R (T VS B e
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H 0= ATV (=), AW

+ 2, Ub=1)AAL +T5) L (v(1,))

0<ty <b

By (H2)-(H7), the considered functions are uniformly bounded and the subsequence g(¢, yj)(;’,yé)) converges
weakly to g(0). Moreover, as . — 0, AW + T'2) " — 0 by (H8). Also, [[A(A[+T{) 7' < 1.

On the other hand, by assumption (H8), the operator A(Al + T'y)"' — 0 as A — 0" and ||A(AI + T'y)""| < 1. Thus by
Lebesque dominated convergence theorem,

Elly* () -5, < EH/WHFS 7| B+ [[ 2O~V = (1) - p0.5) + p(biy) |
+H 0= AR+ T AV (b =) p(L.y,)dS
L 0= AT VG- [ 1 - Db e g

+I0b (b= DA AT V(0= e, AV

2

+ Y UG-t AAI+T) ' T, ()

0<t; <b

-0 as A0

So y“(b) — ¥, holds. This implies that (1)-(3) is approximately controllable. ]

Remark 3.3 When the absence of stochastic fractional derivatives, the system (1)-(3) reduces to the system studied
in [7]. Comparing with [24, 25], the results in this paper are new and original, as they have not considered the stochastic
effects. Moreover, the occurrence of delay effect is a crucial one in any control process and unavoidable. When the
absence of fractional derivatives with SDD, the considered system (1)-(3) is reduced to the system studied in [19, 34,
36]. So the derived results are generalization to the above results and can be regard as a special case of our result.

4. Example

Example 4.1 Consider the stochastic fractional integro-differential equations with impulses and SDD,

| yieo)- [ [T b= ndnd¢ |

: { oyt o) o) [ b= )+ y(c,md:}dt
v 0 ov
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+ [ a@-00¢ = p0p.ll 0,01 |apa, 1.7 =10,8),

y(t,0) = y(t, 1) =0, y(t,0)=@(t,0), —a<t<0,

Ayt 0) = [ K, (1, - (& o)do, k=1.2,....n, )

where p; : [0, ©) — [0, ), i =1, 2. Here a, b : R — R are continuous, 0 < ¢, <t, <...<t, < b are prefixed numbers. One
dimensional Wiener process B(#) € H = L,[0, z] described on (Q, §, P) and § € % see [40]. Define A¢ = &” involving

D(A)={¢eH:¢and —5 are absolutely continuous, a—f e H, &0) = &) = 0}. A generates a compact analytic
oy
semigroup 7(t), t > 0 given by

T(E=Y." e""(f.e)e, EcH,
and

e, (V)=2/x)"?sin(m), n=1,2,...,
is orthogonal set of eigenvectors of .A. Also, B : U — H denoted by

Bu(t)(v) = u(t,v), 0<v<r, uecl,

where u : [0, 1] % [0, z] — [0, 7] is continuous.
Define the operator p, g, p: J* B — Hand [, : B — H by

PP =] [ b(s,v,0)p(s,v)dvdS

g(t.p)w) = a(s)p(s.v)d¢
pt,)v) = p, (), (I (0,0)l)
L) = K (-9)p(s.0)dv, k=1.2,....n

Based on above considerations, we can symbolize (7) in abstract form (1)-(3). Besides, p, g, I, are bounded linear
operators, ||p||> <M, ||g|* <M, and || Z,||" < M,, for every k=1, 2, ..., n. All the conditions of Theorem 3.2 are fulfilled.
So, system (7) is approximately controllable.

5. Conclusion

This paper is concerned with the approximate controllability of control systems described by fractional order
neutral impulsive stochastic integrodifferential systems involving SDD and nonlocal conditions. The results are attained
and the approximate controllability is constructed and established by semigroup theory, fractional derivatives, fixed
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point approach and stochastic analysis techniques. To illustrate the significance of developed result, an example is
included. Furthermore, the contribution of this paper can be extended to damped dynamical systems with different delay
effects.
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