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Abstract: In this paper, a new class of fractional boundary value problem with the combined Caputo derivative is 
proposed and the physical interpretation of this new derivative has been explained. Under some assumptions, the 
positive solutions of the fractional differential equation with the help of Leray-Schauder and Krasnoselskii’s  fixed 
point theorems in a cone have been investigated. Moreover, the solution of the fractional Maxwell models involving the 
combined Caputo derivative by using the extended Laplace transform is obtained. Finally, some examples are given to 
support theoretical findings.
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1. Introduction
Recently, fractional calculus has been used very efficiently in various applications and sciences for modelling 

physical phenomena, for example, physics [1], bioengineering [2], and engineering [3-6]. Existence results of positive 
solutions for fractional boundary value problems is particularly one of the fundamental issues of fractional calculus. 
There have been many works devoted to existence of solutions and positive solutions of fractional boundary value 
problems by the use of some fixed-point theorems (see, e.g., [7-13] and references therein). The obtained results in 
these papers were established in the sense of the Riemann-Liouville and Caputo fractional derivative which hold one-
sided memory effects. In [7], the author investigated the existence of solution for a nonlinear boundary value problem 
involving the Caputo fractional derivative subject to the non-homogeneous Dirichlet boundary conditions. The 
existence of solutions of a coupled system of fractional differential equations with p-Laplacian operator involving the 
Caputo derivative and infinite-point boundary condition was presented in [8]. The existence and multiplicity of positive 
solutions for nonlinear fractional differential equation boundary value problem involving the Riemann-Liouville 
differentiation was investigated in [9]. The existence and multiplicity results of positive solutions for the nonlinear 
differential equation of fractional order subject to the fractional boundary conditions by using some fixed point theorems 
were obtained in [13]. Recently, barycentric interpolation collocation algorithm was proposed to solve the fractional 
differential equations involving the Caputo fractional derivative in [14] and [15].
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Differently from aforementioned approaches, we consider a combined Caputo fractional derivatives CDγ
µ1,µ2 which 

is a convex combination of the left Caputo fractional derivative of order µ1 and the right Caputo fractional derivative 
of order µ2. This combined Caputo fractional operator holds two-sided non-local memory effects and it was initially 
introduced in [16]. This property of the combined Caputo derivative is important in the mathematical modelling in 
physical processes of some nonconservative models which have different physical behaviour over a certain time 
intervals. Hence, two-sided fractional operator can better describe fractional modelling. In particular, the Riesz-Caputo 
fractional derivative can be recovered by setting γ = 1/2 in the combined Caputo fractional derivative operator. Extensive 
works on numerical solutions of fractional differential equations with the Riesz-Caputo fractional derivative have 
been discussed in the literature, see. e.g., [17-24] and references therein. However, there is no result about existence of 
positive solutions for fractional differential equations with the combined Caputo fractional derivative.

Viscoelasticity is the tendecy of the materials which show both viscous and elastic behaviour when a stress is acted 
in materials and continuum mechanics [25]. In the classical viscoelastic models, the viscosity coefficient is taken as a 
constant function, however, a time-dependent viscosity coefficient has been proposed in [26-27]. In [27], a integer order 
modified Maxwell model with a time-dependent viscosity is considered as

1 ,
( )

ds dT T
dt E dt tε

= + (1)

where s, T are the strain and stress, E is the elastic modulus of the spring and ε(t) is the time-dependent viscosity 
coefficient.

A special case when the viscosity coefficient is linear in time is presented in [26-27] by taking ε(t) = ε0 + σt, where 
ε0 is the initial viscosity and σ is the strain-hardening coefficient. This leads to following modified Maxwell model

(2)
0

1 ,ds dT T
dt E dt tε σ

= +
+

On the other hand, the fractional differential equations have been commonly proposed and been popular for 
viscoelastic models. The unsteady natural convection flow and heat transfer of fractional Maxwell viscoelastic nanofluid 
in magnetic field over a vertical plate is considered in [28]. We refer the interested readers to [29-30] and the references 
therein.

One of the powerful and frequently used tool for finding exact and numerical solutions of fractional differential 
equations is the Laplace transformation. We extend the domain of the standard Laplace transformation to apply it more 
general problems. This extended transformation is called the extended Laplace transformation [31].

In [32], the existence of solutions for fractional boundary value problems (FBVP) of the combined Caputo 
fractional differential equation has been discussed and presented. In this paper, we will present the positive solution of 
the following FBVP

1 2,
1( ) ( , ( )), [0, 1], (1, 2], 0 1,C u uD Fµ µ

γ τ τ τ τ µ τ= ∈ ∈ ≤ ≤

(3)0 1(0) , (1) ,u u u u= =

where CDγ
µ1,µ2 is the combined Caputo differential operator and F ∈ C([0, T] × R, R), u0 and u1 are nonnegative 

constants. Furthermore, by analogy to the modified Maxwell model (2), we discuss the solutions of the following 
modified fractional Maxwell equation involving the combined Caputo derivative:

(4)1 2 1 2, ,
1 2

1( )  ( ) ( ), [0, 1], , (0, 1], 0 1,C C TD s T
E

Dµ µ µ µ
γ γτ τ τ τ µ µ τ= + ∈ ∈ ≤ ≤



Contemporary Mathematics 204 | Şuayip Toprakseven

where s, T are strain and stress and E is the elastic modulus of the spring. In fact, we take the strainhardening coefficient 
σ in (2) as the Heaviside function H(τ) defined by

(5)
0, 0

( )
1, 0.

H
τ

τ
τ
≤

=  >

Further, we assume that ε0 + t ≡ 1 in this paper.
The paper is outlined as follows. We present the basic preliminaries and definitions which are useful in what 

follows in Section 2. Section 3 is devoted to positive solutions of the fractional boundary value problems with the 
Dirichlet boundary conditions. A modified fractional Maxwell model with the combined Caputo derivative is studied in 
Section 4. Numerical examples are carried out to support the theory for the existence of positive solutions in Section 5.

2. Preliminaries
In this section, we shall give some facts and previous results which will be needed in what follows. These 

definitions and results with their proofs can be found in the recent works [4-6].
Definition 2.1 [4] Let µ1 > 0 be a real number. The left-sided Riemann-Liouville fractional integral of order µ1 of a 

function f ∈ L1([0, 1]) is given by

(6)1 1 1
0 01

1( ) ( ) ( ) , [0, 1].
( )

x
xI f x x s f s ds xµ µ

µ
−= − ∈

Γ ∫

The right-sided Riemann-Liouville fractional integral of order µ1

(7)1 11 1
1

1

1( ) ( ) ( ) , [0, 1].
( )x x

I f x s x f s ds xµ µ
µ

−= − ∈
Γ ∫

Definition 2.2 (Combined Riemann-Liouville Fractional Integral) Let µ1, µ2 ∈ (0, 1], γ ∈ [0, 1]. The combined 
Caputo fractional integral of order µ1, µ2 of a function f ∈ L1([0, 1]) is given by

(8)1 2 21,0
01 1( ) ( ) ( ), [0, 1].x xI f x I f x I f x xµ µ µµ

γ = + ∈

Note that the combined Riemann fractional integral operator is reduced to the Riesz fractional integral when µ1 = 
µ2 and takes the following form

(9)1 11 1
0 1 01

1( ) | | ( ) , [0, 1].
( )

I f x x s f s ds xµ µ
µ

−= − ∈
Γ ∫

Definition 2.3 [4] Let µ1 ∈ (0, 1] be a given real number. The left-sided Caputo fractional derivative of order µ1 of 
f ∈ AC([0, 1]) defined as, respectively

(10)1 1 11
0 001

1( ) ( ) ( ) ( ).
(1 )

C
xD f s f s ds I f x

τµ µ µ
ττ τ

µ
− −′ ′= − =

Γ − ∫
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The right-sided Caputo fractional derivative

(11)1 111 1
1 1

1

1( ) ( ) ( ) ( ),
(1 )

nC
x D f s f s ds I f xµ µµ

ττ
τ τ

µ
+ −− ′ ′−

= − = −
Γ − ∫

where AC([0, 1]) is the space of absolutely continuous functions on [0, 1].
Definition 2.4 [33] Let µ1, µ2 ∈ (0, 1], γ ∈ [0, 1]. The combined Caputo fractional differential operator CDγ

µ1,µ2 of 
order (µ1, µ2) of a function f ∈ AC[0, 1] defined by

(12)2 21 2 1 1 1, 1
0 01 1( ) ( ) (1 ) ( ) ( ) (1 ) ( ).C C

x x x x
C f x D f x D f x ID x I f f xµ µµ µ µ µ

γ γ γ γ γ −− ′ ′= + − = − −

Lemma 2.5 [4-5] The following hold true for f ∈ C 
n[0, 1] with µ1, µ2 ∈ (n, n + 1].

1 1
( )1

0 0
0

(0)( ) ( ) ( 0) ,
!

kn
C k

x x
k

fI D f x f x x
k

µ µ
−

=
= − −∑

2 2
( )1

1 1
0

( 1) (1)( ) ( ) (1 ) .
!

k kn
C k

x x
k

fI D f x f x x
k

µ µ
−

=

−
= − −∑

From the definitions and lemmas above, we are lead to

(13)1 2 21 2 1 1 1, ,
0 0 00 1 1( ) ( ) ( )( )C C

x x x
C

xI f x I DD f x I D f xµ µ µγ µ µ µ µ µ
γ γ= +

(14)2 2 211
0 1 1 1( 1) (1 ) ( ) ( )( )n C C

x x x xI D f x I D f xµ µ µµγ++ − − +

(15)2 21 1 1
0 0 1 1( ) ( 1) (1 ) ( ).C n C

x x x xI D f x I D f xµ µµ µγ γ+= + − −

If µ1, µ2 ∈ (0, 1] then we have the following simplified form

(16)1 2 1 2, ,
0 1 ( ) ( ) (0) (1 ) (1).CI f x f x f fDµ µγ µ µ

γ γ γ= − − −

The Laplace transform of a function u(x) of a real variable x ∈ R+ is defined by

(17)
0

( ) : ( )( ) [ ( )]( ) ( ) : ( )   ( ).sxs u s u x s u s e u x dx s
∞ −= = = = ∈∫   

The integral in (17) converges absolutely for s ∈ C with Re(s) > Re(s0) provided that the integral converges at 
some point s0 ∈ C.

The inverse Laplace transform is defined for x ∈ R+ by

(18)( )1 1 1( ) [ ( )]( ) : ( )   ( ( )).
2

i sx
i

u x u s x e u s ds Re s
i

β

β
β

π
+ ∞− −
− ∞

= = =∫ 
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Based on the standard Laplace transformation, we extend the domain of the integral in (17) to derive the extended 
Laplace transformation as follows.

The extended Laplace transform of a function u(x) of a real variable x ∈ [a, ∞), a ∈ R is defined as [34]

(19)( )( ) [ ( )]( ) ( ) : ( )   ( ).sx
a a a a
u s u x s u s e u x dx s

∞ −= = = ∈∫  

Theorem 2.6 [34] The extended Laplace transformation of the derivatives of a function u is given by

(20)[ ( )]( ) ( )( ) ( ) .as
a au x s s u s u a e′ −= − 

The following two fixed point theorems will be useful in the sequel. The first theorem is Krasnoselskll’s fixed point 
theorem and the second result is Leray-Schauder fixed point theorem in a cone.

Theorem 2.7 [35] Let E be a Banach space and let K ⊂ E be a cone in E. Assume that Ω1 and Ω2 are open subsets 
of E such that 0 ∈ Ω1 and Ω

_ 

1 ⊂ Ω2. Assume also that T : K ∩ (Ω2 \ Ω1) → K is a completely continuous operator. If 
either

(i) ||Tu|| ≤ ||u|| for u ∈ K ∩ Ω1 and ||Tu|| ≥ ||u|| for u ∈ K ∩ Ω2, or 
(ii) ||Tu|| ≥ ||u|| for u ∈ K ∩ Ω1 and ||Tu|| ≤ ||u|| for u ∈ K ∩ Ω2,

then T has a fixed point in K ∩ (Ω2 \ Ω1).
Theorem 2.8 [36] Let E be a Banach space and C ⊂ E be a closed and convex subset of E. Assume that O is a 

relatively open subset of C with 0 ∈ O and T : O → C is a continuous and compact map. Then either
(1) T has a fixed point in O or
(2) There is u ∈ ∂O and λ ∈ (0, 1) such that u = λTu.
Lemma 2.9 [32] The fractional differential equation (3) is equivalent to the following fractional integral equations 

given as

1 1
0 1 01

1( ) (1 ) ( ) ( , ( ))
( )

u u u s F s u s ds
τ µτ γ γ τ

µ
−= + − + −

Γ ∫

(21)21 1

2

1 ( ) ( , ( )) .
( )

s F s u s dsµ
τ

τ
µ

−+ −
Γ ∫

3. Positive solutions of FBVP
Let E = C([0, 1]) be the Banach space with the norm sup norm and K = {u ∈ E : u(x) ≥ 0, x ∈ [0, 1]} be the cone 

defined on E. In view of Lemma 2.9 we define the operator T : K → K as follows

1 1
0 1 01

1( ) (1 ) ( ) ( , ( ))
( )

Tu u u s F s u s ds
τ µτ γ γ τ

µ
−= + − + −

Γ ∫

(22)21 1

2

1 ( ) ( , ( )) .
( )

s F s u s dsµ
τ

τ
µ

−+ −
Γ ∫

We shall show that the operator T : K → K is completely continuous operator in the following lemma.
Lemma 3.1 The operator T : K → K is completely continuous.
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Proof. We first show that T : K → K is continuous operator. Since F ∈ C([0, 1] × [0, ∞), [0, ∞)), for any u1, u2 ∈ [0, 
∞) and given ε > 0, there exists δ > 0 such that whenever |u1(τ) − u2(τ)| < δ, we have

1 2 1 2| ( , ( )) ( , ( )) | min{ ( 1), ( 1)} .
2

F u F u ετ τ τ τ µ µ− < Γ + Γ +

Hence,

(23)1 1
1 2 1 201

1| ( ) ( ) | ( ) | ( , ( )) ( , ( )) |
( )

Tu Tu s F s u s F s u s ds
τ µτ τ τ

µ
−− ≤ − −

Γ ∫

(24)21 1
1 2

2

1 ( ) | ( , ( )) ( , ( )) |
( )

s F s u s F s u s dsµ
τ

τ
µ

−+ − −
Γ ∫

(25)1 1
1 2 01

min{ ( 1), ( 1)} ( )
2 ( )

s ds
τ µεµ µ τ

µ
−≤ Γ + Γ + −

Γ ∫

(26)21 1
1 2

2
min{ ( 1), ( 1)} ( )

2 ( )
s dsµ

τ
εµ µ τ
µ

−+ Γ + Γ + −
Γ ∫

(27)1 2(1 ) .
2 2

µ µτ τε ε ε−
≤ + <

This shows that T is continuous. We next show that T is completely continuous. Let B ⊂ K be bounded subset and 
let M := maxs∈[0,1],u∈B F(s, u(s)) + 1. Then for u ∈ B we have

(28)1 1
0 01

1| ( ) | | | ( ) | ( , ( )) |
( )

Tu u s F s u s ds
τ µτ γ τ

µ
−≤ + −

Γ ∫

(29)21 1
1

2

1(1 ) | | ( ) | ( , ( )) |
( )

u s F s u s dsµ
τ

γ τ
µ

−+ − + −
Γ ∫

(30)1 211 1
0 101 2

| | ( ) (1 ) | | ( )
( ) ( )
M Mu s ds u s ds

τ µ µ
τ

γ τ γ τ
µ µ

− −≤ + − + − + −
Γ Γ∫ ∫

(31)0 1
1 2

| | (1 ) | | ,
( 1) ( 1)

M Mu uγ γ
µ µ

≤ + − + +
Γ + Γ +

which shows T(B) is bounded, that is, T maps bounded sets to bounded sets. Take τ1, τ2 ∈ [0, 1], τ1 < τ2 and u ∈ B. Then 
we have
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1 21 11 1
1 2 1 20 01

1| ( ) ( ) | ( ) ( , ( )) ( ) ( , ( ))
( )

| ( ) |Tu Tu s F s u s ds s F s u s ds
τ τµ µτ τ τ τ

µ
− −− ≤ − −

Γ ∫ ∫

2 2
1 2

1 11 1
1 2

2

1 ( ) ( , ( )) ( ) ( , ( ))
( )

| ( ) |s F s u s ds s F s u s dsµ µ
τ τ

τ τ
µ

− −+ − − −
Γ ∫ ∫

1 21 1 1
1

1 1 1
1 2 201 1

1 1( ) ( ) ( , ( )) ( ) ( , ( ))
( ) ( )

| ( ) |s s F s u s ds s F s u s ds
τ τµ µ µ

τ
τ τ τ

µ µ
− − −= − − − − −

Γ Γ∫ ∫

1 21 1 1
1

1 1 1
1 2 201 1

1 1( ) ( ) ( , ( )) ( ) ( , ( ))
( ) ( )

| ( ) |s s F s u s ds s F s u s ds
τ τµ µ µ

τ
τ τ τ

µ µ
− − −= − − − − −

Γ Γ∫ ∫

22 2 2
2 1

1 1 1 1
1 2 1

2 2

1 1( ) ( ) ( , ( )) ( ) ( , ( ))
( ) ( )

| ( ) |s s F s u s ds s F s u s ds
τµ µ µ

τ τ
τ τ τ

µ µ
− − −+ − − − + −

Γ Γ∫ ∫

1 21 1 1
1

1 1 1
1 2 201 1

( ) ( ) ( )
( ) ( )

( )M Ms s ds s ds
τ τµ µ µ

τ
τ τ τ

µ µ
− − −≤ − − − + −

Γ Γ∫ ∫

22 2 2
2 1

1 1 1 1
1 2 1

2 2
( ) ( ) ( )

( ) ( )
( )M Ms s ds s ds

τµ µ µ
τ τ

τ τ τ
µ µ

− − −+ − − − + −
Γ Γ∫ ∫

1 1 1 2 22 1 1 21 2
1 2

2( ) (1 ) (1 )
( 1) ( 1)

( ) ( )M Mµ µ µ µ µτ τ τ τ τ τ
µ µ

≤ − + − + − − −
Γ + Γ +

The right-hand side of the above inequality goes to zero when τ2 → τ1. This shows that the set T(B) is 
equicontinuous set.                                                                                                                                                               □

Theorem 3.2 Let µ1, µ2 ∈ (0, 1], γ ∈ [0, 1] and F ∈ C([0, 1] × [0, ∞), [0, ∞)). Assume that there are two different 
positive constants r1 and r2 with r1 < 2γu0 + 2(1 − γ)u1 < r2 such that

1 2
1 2 2

21 1
min{ ( 1), ( 1)}

(A1) ( , )  for ( , ) [0, 1] [0, ];
2max{2 , 2 }

r
F x u x u rµ µ

µ µ
− −

Γ + Γ +
≤ ∈ ×

1 1 1
1(A2) ( , ) ( 1)  for ( , ) [0, 1] [0, ].
2

F x u r x u rµ≥ Γ + ∈ ×

Then there exists at least one positive solution for the fractional boundary value problem (3).
Proof. Consider the operator T : K → K defined by (22). From Lemma 3.1, it is clear that T is completely 

continuous.
Now, set Ω1 := {u ∈ K : ||u|| < r1}. Then for u ∈ K ∩ ∂Ω1, ∀x ∈ [0, 1], we have u(x) ∈ [0, r1] such that ||u|| = r1. 

So, for u ∈ K ∩ ∂Ω1, by (A2) one can find

[0,1]max | ( ) | | (1) |xTu Tu x Tu∈= ≥‖ ‖

11 1
0 1 01

1(1 ) (1 ) ( , ( ))
( )

| |u u s F s u s dsµγ γ
µ

−= + − + −
Γ ∫
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11 11 1
0 1 01

( 1)
(1 ) (1 )

2 ( )
r

u u s dsµµ
γ γ

µ
−Γ +

≥ + − + −
Γ ∫

(32)1  .r>

Thus we have shown that ||Tu|| ≥ r1 = ||u|| for u ∈ K ∩ Ω1. On the other hand, we set Ω2 := {u ∈ K : ||u|| < r2}. Then 
for u ∈ K ∩ ∂Ω2, ∀x ∈ [0, 1], we have u(x) ∈ [0, r2] such that ||u|| = r2. So, for u ∈ K ∩ ∂Ω2, by (A1) one can find

1 1
0 1 01

1| ( ) | (1 ) ( ) ( , ( ))
( )

|Tu u u s F s u s ds
τ µτ γ γ τ

µ
−= + − + −

Γ ∫

21 1

2

1 ( ) ( , ( ))
( )

|s F s u s dsµ
τ

τ
µ

−+ −
Γ ∫

1
1 2

11 2 2
0 1 1 1 0

1

min{ ( 1), ( 1)}
(1 ) ( )

2 ( ) max{2 , 2 }
r

u u s ds
τ µ

µ µ
µ µ

γ γ τ
µ

−
− −

Γ + Γ +
≤ + − + −

Γ ∫

2
1 2

1 11 2 2
1 1

2

min{ ( 1), ( 1)}1 ( )
( ) 2max{2 , 2 }

r
s dsµ

µ µ τ
µ µ

τ
µ

−
− −

Γ + Γ +
+ −
Γ ∫

1
1 2

11 2 2
0 1 1 1

1

min{ ( 1), ( 1)}
(1 ) 2

2 ( 1) max{2 , 2 }
ru u µ

µ µ
µ µ

γ γ
µ

−
− −

Γ + Γ +
≤ + − + +

Γ +

2
1 2

11 2 2
1 1

2

min{ ( 1), ( 1)}
2

2 ( 1) max{2 , 2 }
r µ

µ µ
µ µ

µ
−

− −
Γ + Γ +

+
Γ +

(33)2.r<

Thus we have shown that ||Tu|| ≤ r2 = ||u|| for u ∈ K ∩ Ω2. So, Theorem 2.7 implies that the operator T has a fixed 
point. This means that the problem (3) has a positive solution, call it by up, with r1 ≤ ||up|| ≤ r2.

This completes the proof.                                                                                                                                             □
Theorem 3.3 Let µ1, µ2 ∈ (0, 1], γ ∈ [0, 1] and F ∈ C([0, 1] × [0, ∞), [0, ∞)). Further assume that
(A3) there exists a continuous and nondecreasing function h : [0, ∞) → [0, ∞) such that F(x, u) ≤ h(u) for (x, u) ∈ [0, 

1] × [0, ∞);

(A4) there is r with 
1 22 2

0 1

1 2

( (1 ) ) 2 2max{ , }.
( ) ( 1) ( 1)

r u u
h r

µ µγ γ
µ µ

− −− + −
>

Γ + Γ +
Then the problem (3) has at least one positive solution.
Proof. Put V := {u ∈ K : ||u|| < r}, so that V ⊂ K. In view of Lemma 3.1 T : V

_
 → K is completely continuous. 

Assume that u ∈ ∂V is a solution of

(34),u Tuλ=

for each λ ∈ [0, 1]. Then by (A3) and (34) and for each τ ∈ [0, 1] we have



Contemporary Mathematics 210 | Şuayip Toprakseven

(35)1 1
0 1 01

( ) ( ) (1 ) ( ) ( , ( ))
( )

u Tu u u s F s u s ds
τ µλτ λ τ λγ λ γ τ

µ
−= = + − + −

Γ ∫

(36)21 1

2
( ) ( , ( ))

( )
s F s u s dsµ

τ
λ τ
µ

−+ −
Γ ∫

(37)1 1
0 1 01

1(1 ) ( ) ( , ( ))
( )

u u s F s u s ds
τ µγ γ τ

µ
−≤ + − + −

Γ ∫

(38)21 1

2

1 ( ) ( , ( ))
( )

s F s u s dsµ
τ

τ
µ

−+ −
Γ ∫

(39)1 1
0 1 01

1(1 ) ( ) ( ( ))
( )

u u s h u s ds
τ µγ γ τ

µ
−≤ + − + −

Γ ∫

(40)21 1

2

1 ( ) ( ( ))
( )

s h u s dsµ
τ

τ
µ

−+ −
Γ ∫

(41)1 1
0 1 01

1(1 ) ( ) ( )
( )

(u u h u s ds
τ µγ γ τ

µ
−≤ + − + −

Γ ∫‖‖

(42)21 1

2

1 ( )
( )

)s dsµ
τ

τ
µ

−+ −
Γ ∫

(43)
1 21 1

0 1
1 2

2 2(1 ) ( ) ,
( 1) ( 1)

( )u u h u
µ µ

γ γ
µ µ

− −
≤ + − + +

Γ + Γ +
‖‖

hence, 
1 21 1

0 1
1 2

2 2(1 ) ( )2max{ , }.
( 1) ( 1)

u u u h u
µ µ

γ γ
µ µ

− −
≤ + − +

Γ + Γ +
‖‖ ‖‖  Consequently, we get

(44)
1 22 2

0 1

1 2

( (1 ) ) 2 2max{ , }.
( ) ( 1) ( 1)

u u u
h u

µ µγ γ
µ µ

− −− + −
≤

Γ + Γ +
‖‖

‖‖

The condition (A4) and (44) lead to ||u|| ≠ r which contradicts to the fact that u ∈ ∂V. This implies that T has a 
fixed point u ∈ V

_
 by Theorem 2.8. Consequently, there exists at least one positive solution of the problem (3). Thus we 

complete the proof.                                                                                                                                                              □

4. A modified fractional Maxwell model
In this section, we examine the solutions of the modified fractional Maxwell model given by (4). We will prove that 

we can recover the fractional modified Maxwell model with the left-sided Caputo derivative presented in [37] by letting 
γ = 1 and the modified Maxwell model with the ordinary derivative studied in [27]. To this end, we need the following 
lemmas.
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Lemma 4.1 The extended Laplace transformation of the left-sided and right-sided Caputo derivatives are given by

(45)1 1 1 1
0( { ( )})( ) ( )( ) (0),C

xD u x s s u s s uµ µ µ −= − 

(46)1 1 1 11 1
1 11( ( ))( ) ( 1) ( )( ) (1) .( )C s

x D u x s s u s s e uµ µ µ µ− − −= − − 

Proof. The proof of (45) can be found in [4]. We shall prove (46). By the definition of the extended Laplace 
transformation (19), we have

1 11
1 11

1

1( ( ))( ) ( ( ) ( ) )( )
(1 )

C
x x

D u x s t x u t dt sµ µ
µ

− ′ −
= − 

Γ − 
∫ 

{ }1
11

1
1

( 1) ( ( ) )( )
(1 )
x u x s

µ
µ

µ

−
− ′  = −  

Γ −  
 

{ }1 11 1
1 1

( 1) ( ( ) )( ) ( ) sx
x

s s u x s u x eµ µ− − −
=

 = − ⋅ − ⋅ 

(47){ }1 1 11 1
1( 1) ( ( ) )( ) (1) ,ss u x s s e uµ µ µ− − − = − ⋅ − 

where we have used (20) in the second equality. The proof is now completed.                                                                   □
Lemma 4.2 The extended Laplace transformation of the combined Caputo derivative is given by

(48)

1 2,( ( ))( ) ( ) ( ) (0) ( ) (1) ( )a
C u x s s A s u B s u C sDµ µ

γ = − − 

2 2 1
0

( 1) (1 ) ( ) ,sts e u t dtµ µγ −+ − − ∫

where

(49)2 21( ) (1 )( 1)A s s sµ µαγ γ −= + − − ⋅

(50)1( )B s sαγ −=

(51)2 21 1( ) (1 )( 1) .sC s s eµ µγ − − −= − − ⋅

Proof. Since the Laplace transform is a linear operator, we can write

{ } { }21 2 1,
0 1( )) ( ) (1 ) ( )C C

a a x x
C u x D u x D u xD µµ µ µ

γ γ γ= ⋅ + − ⋅ 

(52){ } { }210 1 1( ) (1 ) ( ) .C C
x xD u x D u xµµγ γ= ⋅ + − ⋅ 



Contemporary Mathematics 212 | Şuayip Toprakseven

From (45) and (46), we obtain

(53)2 2 2 2 11 1
0

(1 )( 1) (1) ( 1) (1 ) ( ) ,s sts e u s e u t dtµ µ µ µγ γ− − − −− − − ⋅ + − − ∫

2 21 1( ) (1 )( 1) (0)s s s s uµ µα αγ γ γ− − = + − − ⋅ − 

{ }1 2, ( ))a
C xD uµ µ

γ

1 2 2 21 1 1
1( ) (0) (1 )( 1) ( ) (1)ss s s u s s s e uµ µ µ µαγ γ− − − −   = ⋅ − + − − ⋅ −    

where we have used the fact that L1(s) = L(s) − ∫0
1e−stu(t)dt. The result follows. The proof is now finished.                     □

First, we consider the relaxation test by letting the strain be a constant s = s0 for τ > 0 in the equation (4). Thus, we 
have CDγ

µ1,µ2s(τ) = 0 and we get the following relaxation problem

(54)1 2, ( ) ( ).C T ED Tµ µ
γ τ τ= −

From (48) and noting that u is replaced with T, we have

(55)2 2 1
0

( ) ( ) (0) ( ) (1) ( ) ( 1) (1 ) ( ) ( ),stT s A s T B s T C s s e T t dt ET sµ µγ −− − + − − = −∫

where T̄ (s) = (LT)(s). For simplicity, we take E = 1 from now on. A little algebra reveals that

(56)2 2 1
0

1( ) (0) ( ) (1) ( ) ( 1) (1 ) ( )
( )

( )stT s T B s T C s s e T t dt
A s

µ µγ −= + + − − ∫

(57)
1 2 2

2 2 2 2

1 1 1

1 1
(1 )( 1)(0) (1)

(1 )( 1) (1 )( 1)

ss s eT T
s s s s

µ µ µ

µ µ µ µα α
γ γ

γ γ γ γ

− − − −

− −
− − ⋅

= +
+ − − ⋅ + − − ⋅

(58)
2 2

2 2

1
0
1

( 1) (1 ) ( )
.

(1 )( 1)

sts e T t dt

s s

µ µ

µ µα

γ

γ γ

−

−

− −
+

+ − − ⋅

∫

Applying the inverse Laplace transformation (18) to above equation gives that

2 1 2 1 2 1 2
1 2 1 2 1 22 2

( )
, ,1

1 1 1( ) ( 1) (0)
( 1) ( 1)

T E T Eµ µ µ µ µ µ µ
µ µ µ µ µ µµ µ

γ γτ τ τ τ
γ γ γ

− − − −
− − −

   − −
≈ − + ⋅      − −   

(59)
2

1 2 1 2
1 2 1 2 2

1

,1
0

(1)(1 )( 1) ( 1) 1 ,
! ( 1)

n
n

n
n

T E
n

µ
µ µ µ µ

µ µ µ µ µ
γ γτ τ
γ γ

− ∞
− − −

− + − −
=

 − − − −
+ ⋅   − 

∑



Contemporary MathematicsVolume 4 Issue 2|2023| 213

where we have used the fact that 2 1 2 1
1 2

1 1 1
,( { ( )})( ) (1 )x E x s s sµ µ µ µ

µ µ λ λ− − − −= −  and that

(60)1 1
0 0

( ) | ( ) || |st ste T t dt e T t dt ε− −< <∫ ∫

since the Laplace transformation converges absolutely for large s. Here,

1 2,
1 20

( )
( )

k

k

zE z
kµ µ µ µ

∞

=
=

Γ +∑

is a generalized Mittag-Leffler function with two parameters with z ∈ C, µ1 and µ2 are arbitrary positive constants [4]. 
If µ2 = 1, then we have the classical Mittag-Leffler function Eµ1,1(z) = Eµ1

(z) [38]. We plot the stress response T(τ) with 
various parameters in Figure 1.
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Figure 1. The stress response T(τ) with various parameters

5. Numerical examples
We give several examples to illustrate applications of the main findings in this paper.
Example 1 Consider the following fractional boundary value problem

0.5,0.4 2
1/2 ( ) exp( ( )) 1, [0, 1],C u u xD τ τ τ= − + + ∈

(61)(0) 1, (1) 2.u u= =

Here µ1 = 0.5, µ2 = 0.6, γ = 1/2 and F(s, u(s)) = exp(−u(s)) + s2 + 1. We take r1 = 1 and r2 = 8. We compute 

1 2
1 2 1

1 1
min{ ( 1), ( 1)} ( 1)

0.2853 and 0.4431.
22max{2 , 2 }µ µ

µ µ µ
− −

Γ + Γ + Γ +
≈ ≈  We get r1 < 2γu0 + 2(1 − γ)u1 < r2 and
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(62)
1 2

1 2
21 1

min{ ( 1), ( 1)}
( , ( )) 2  for ( , ) [0, 1] [0, 8], 

2max{2 , 2 }
F s u s r s uµ µ

µ µ
− −

Γ + Γ +
≤ ≤ ∈ ×

(63)1
1

( 1)
( , ( )) 1  for ( , ) [0, 1] [0, 1].

2
F s u s r s u

µΓ +
≥ ≥ ∈ ×

Theorem 3.2 guarantees that there is at least one positive solution up of the problem (61) with 1 ≤ ||up|| ≤ 8. 
Example 2 Consider

0.8,0.9 2 3
1/5 ( ) ( 1/ 2) ( ), [0, 1],CD u u xτ τ τ= − ∈

(64)(0) 0.2, (1) 0.2.u u= =

Here µ1 = 0.8, µ2 = 0.9, γ = 1/5, u0 = u1 = 0.2 and F(s, u(s)) = (s − 1/2)2u3(s). We take h(s) = s3 which is a 

continuous, nondecreasing function and r = 0.4. We compute 
1 22 2

1 2

2 2max{ , } 2.4666.
( 1) ( 1)

µ µ

µ µ

− −
≈

Γ + Γ +

(65)2 3 3( , ( )) ( 1/ 2) ( ) ( ) ( ) for ( , ) [0, 1] [0, ),F s u s s u s u s h s s u= − ≤ = ∈ × ∞

and 
1 22 2

0 1
3

1 2

( (1 ) ) 0.4 0.2 2 23.125 max{ , }.
( ) ( 1) ( 1)0.4

r u u
h r

µ µγ γ
µ µ

− −− + − −
= ≈ >

Γ + Γ +
 Theorem 3.3 guarantees that there exists at 

least one positive solution of the problem (64).

6. Conclusion
In this work, we first presented new results on the existence of positive solutions for the fractional boundary value 

problems involving the combined Caputo fractional derivative by making use of the Leggett-Williams norm-type 
theorem for coincidences. We provided some examples to illustrate the main results of the paper.

Secondly, we considered the Maxwell model using the combined Caputo fractional derivative operator. With 
the help of the extended Laplace transformation and Laplace transform inversion, we observed the behaviour of the 
stress response with respect to the time τ ∈ (0, 1). We will consider viscoelastic models using other type of fractional 
derivative operator involving non-singular kernel in ongoing study.
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