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Abstract: The proof of uniqueness of an orthogonal 2-handle pair on a surface-link is given from the viewpoint of 
a normal form of 2-handle core disks. A version to an immersed orthogonal 2-handle pair on a surface-link is also 
observed.
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1. Introduction
A surface-link is a closed oriented (possibly disconnected) surface F embedded in the 4-space R4 by a smooth (or a 

piecewise-linear locally flat) embedding. When F is connected, it is also called a surface-knot. Two surface-links F and F′ 
are equivalent by an equivalence f if F is sent to F′ orientation-preservingly by an orientation-preserving diffeomorphism 
(or piecewise-linear homeomorphism) f : R4 → R4. A trivial surface-link is a surface-link F which is the boundary of 
disjoint handlebodies smoothly embedded in R4, where a handlebody is a 3-manifold which is a 3-ball, a solid torus or 
a boundary-disk sum of some number of solid tori. A trivial surface-knot is also called an unknotted surface-knot and a 
trivial disconnected surface-link is also called an unknotted and unlinked surface-link. A trivial surface-link is unique up 
to equivalences (see [1]). A 2-handle on a surface-link F in R4 is an embedded 2-handle D × I on F with D a core disk 
such that D × I ∩ F = ∂D × I, where I denotes a closed interval containing 0 and D × 0 is identified with D. Let F(D × 
I) denote the surface-link obtained from F by surgery along D × I. If D is an immersed disk, then call it an immersed 
2-handle. Two (possibly immersed) 2-handles D × I and E × I on F are equivalent if there is an equivalence f : R4 → R4 
from F to itself such that the restriction  f |F : F → F is the identity map and f (D × I ) = E × I. An orthogonal 2-handle 
pair (or simply, an O2-handle pair) on F is a pair (D × I, D′ × I ) of 2-handles D × I, D′ × I on F such that

D × I ∩ D′ × I = ∂D × I ∩ ∂D′ × I

and ∂D × I and ∂D′ × I meet orthogonally on F, that is, the boundary circles ∂D and ∂D′ meet transversely at one point q 
and the intersection ∂D × I ∩ ∂D′ × I is homeomorphic to the square Q = q × I × I (see Figure 1).
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Figure 1. An orthogonal 2-handle pair(=: an O2-handle pair)

Then the three kinds of surface-links F(D × I, D′ × I), F(D × I) and F(D′ × I) obtained by surgeries on (D × I, D′ × I) 
are all equivalent (see [2, Lemma 2.2]).

An important property of an O2-handle pair (D × I, D′ × I) on a surface-link F is the following property (see [2, 
Lemma 2.3, Corollary 2.4] for the proof):

Common 2-handle property. Let F be a surface-link in R4, and (D × I, D′ × I) and (E × I, E′ × I) O2-handle pairs 
on F in R4 with ∂D × I = ∂E × I and ∂D′ × I = ∂E′ × I. If D × I = E × I or E′ × I = D′ × I, then the O2-handle pairs (D × I, D′ 
× I) and (E × I, E′ × I) on F are equivalent by an equivalence obtained by 3-cell moves on the unions D × I ∪ D′ × I and 
E × I ∪ E′ × I which are 3-balls.

In this paper, the following uniqueness theorem of an O2-handle pair on a surface-link is shown by using a 
normal form of 2-handle core disks discussed in [3] and Common 2-handle property stated above repeatedly which is 
announced in [2, Section 3] with incomplete proof although the tools of the present proof appear there.

Uniqueness Theorem. Let F be a surface-link in R4, and (D × I, D′ × I) and (E × I, E′ × I) O2-handle pairs on F 
in R4 with ∂D × I = ∂E × I and ∂D′ × I = ∂E′ × I. Then the O2-handle pairs (D × I, D′ × I) and (E × I, E′ × I) on F are 
equivalent.

This theorem for a trivial surface-link is heavily used for confirming the smooth unknotting conjecture of a surface-
knot in [2] and the smooth unknotting-unlinking conjecture for a surface-link in [4], whose confirmations are completed 
by this theo-rem (see [2, Lemma 2.5]). For an immersed O2-handle pair, the following lemma is provided:

Recovery Lemma. If (D × I, D′ × I) is an immersed O2-pair on a surface-link F in R4 with D × I immersed and 
D′ × I embedded, then there is an embedded 2-handle D* × I with ∂D* × I = ∂D × I such that (D* × I, D′ × I) is an O2-
handle pair on F.

For the proof of Recovery Lemma, Finger move canceling operation is used to cancel a double point of an 
immersed core disk D of the immersed 2-handle D × I on F, which is explained in Section 3. By Uniqueness Theorem 
and Recovery Lemma, we have the following corollary.

Corollary. Let F be a surface-link in R4, and (D × I, D′ × I) and (E × I, E′ × I) immersed O2-handle pairs on F in 
R4 with ∂D × I = ∂E × I and ∂D′ × I = ∂E′ × I.

(1) If D′ × I and E′ × I are embedded, then there are embedded 2-handles D* × I and E* × I on F with ∂D* × I = ∂D 
× I and ∂E* × I = ∂E × I such that (D* × I, D′ × I) and (E* × I, E′ × I) are equivalent O2-handle pairs on F, so that the 
surface-links F(D′ × I) and F(E′ × I) are equivalent.

(2) If D′ × I and E × I are embedded, then there are embedded 2-handles D* × I and E*′ × I on F with ∂D* × I = ∂D 
× I and ∂E*′ × I = ∂E′ × I such that (D* × I, D′ × I) and (E × I, E*′ × I) are equivalent O2-handle pairs on F, so that the 
surface-links F(D′ × I) and F(E × I) are equivalent.

The proof of Uniqueness Theorem is done in Section 2 and and the proof of Recovery Lemma is done in Section 3. 
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Throughout the paper, the notation

XJ = {(x, t) ∈ R4| x ∈ X, t ∈ J} 

is used for a subspace X of R3 and a subinterval J of R.

2. Proof of uniqueness theorem
The proof of Uniqueness Theorem is divided into the proof of the case of a trivial surface-knot F and the proof of 

the case of a general surface-link F. In the argument, the O2-handle pair (D × I, D′ × I) is fixed in the 3-space R3[0] and 
consider normal forms of the core disks E, E′ of the 2-handles E × I, E′ × I in R4. To avoid the complexity of handling 
the intersection point q = E ∩ E′, a sufficiently small boundary-collar n(∂E′) of E′ is fixed in R3[0] and consider a 
normal form of the disk

E′n = cl(E′ \ n(∂E′))

in R4 together with a normal form of E.
Proof of Uniqueness Theorem in the case of a trivial surface-link F. Assume that the trivial surface-knot F is 

embedded standardly in R3[0] with a standard O2-handle pair (D × I, D′ × I) on F. By [3], the disk union G = E ∪ E′n is 
deformed into a disk union G1 in the following form by an isotopy of R4 keeping the boundary ∂G = ∂E ∪ ∂E′n (which is 
a trivial link in R3[0]), n(∂E′) and F fixed:
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where the notations o, o′ denote trivial links in R3, the notations d, d′ denote disjoint disk systems in R3 bounded by o, 
o′, respectively, the notations b, b′ denote disjoint band systems in R3 spanning o, o′, respectively, and the notation ℓ 
denotes a link in R3. To obtain this disk union G1, start the argument of [3] with the assumption that the intersection G ∩ 
R3[0] is a link ℓ[0] ∪ ∂G in R3[0] and a boundary-collar n(∂G) of ∂G in G is in R3[0, c] so that

n(∂G) ∩ R3[t] = ∂G[t], t ∈ [0, c]

for a small number c > 0, where ∂G is regarded to be in R3 under the canonical identification R3[0] = R3. Then pull 
down a minimal point of G in R3(0, ∞) to R3(−∞, 0) and pull up a maximal point of G in R3(−∞, 0) to R3(0, ∞). In 
these deformations, trivial components are increased in the intersection link G ∩ R3[0]. After these preparations, do 
normalizations of G ∩ R3[0, ∞) and G ∩ R3(−∞, 0] keeping G ∩ R3[0] fixed. The band systems b, b′ are made disjoint 
by band slide and band thinning and the band system b is made disjoint from ∂G by a band move keeping the attaching 
part fixed. By denoting the deformed disks of E and E′n by E and E′n again, let G1 = E ∪ E′n. The following notation is 
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used.
Notation. The disk subsystems of the disk system d belonging to E or E′n are denoted by d(E) or d(E′n), respectively. 

The band subsystems of the band system b belonging to E or E′n are denoted by b(E) or b(E′n), respectively.
A next deformation of G1 is to change the level of the band system b(E)[−1] into b(E)[1] and the level of the disk 

system d(E)[−2] into d(E)[0.5]. To do so, it is observed that in R3, the boundary ∂G and the band system b(E′n) meet the 
disk system d(E) in finite interior points and in finite interior simple arcs, respectively. For a point x ∈ d(E) ∩ ∂G, find 
a point y ∈ ∂d(E) \ ∂E and a simple arc α from x to y in d(E) which does not meet the band systems b, b′ by band slide 
and band thinning. Let n(α) be a disk neighborhood of α in d(E). Deform the disk system d′(E) so that n(α) ⊂ d′(E). 
Then the intersection e(α) = n(α)[−2, 2] ∩ G1 is a disk in the interior of G1. Let ẽ(α) = cl((∂(n(α)[−2, 2])) \ e(α)) be the 
complementary disk of the disk e(α) in the 2-sphere ∂(n(α)[−2, 2]). The disk union

 G̃1 = cl(G1 \ e(α)) ∪ ẽ(α)

induces a normal form of the union of a deformed disk Ẽ of E and the disk E′n with ∂ G̃1 = ∂G1. Note that the disk Ẽ 
may meet with the surface F and the topological position of Ẽ in  G̃1 may be changed from G1, although the disk E′ = 
E′n ∪ n(∂E′) is unchanged and the level configuration of  G̃1 is similar to G1. Do this deformation for all points of the 
finite set d(E) ∩ ∂G. Further, for an arc β in the finite arc set d(E) ∩ b(E′n), find a simple arc α in d(E) extending this 
arc β to a point y ∈ ∂d(E) \ ∂E which does not meet the band systems b, b′ by band slide and band thinning. For a disk 
neighborhood n(α) in d(E), do the same deformation as above. Further, do this deformation for all arcs β in the finite arc 
set d(E) ∩ b(E′n). Let  G̃1 = Ẽ ∪ E′n be the disk union obtained from G1 = E ∪ E′n by all these deformations, which is in a 
normal form with a level configuration similar to G1 and we have

d(Ẽ) ∩ (∂E ∪ n(∂E′)) = d(Ẽ) ∩ b(E′n) = ∅

although the disk Ẽ may meet F. Now change the level of b(Ẽ)[−1] into b(Ẽ)[1] and the level of d(Ẽ)[−2] into d(Ẽ)[0.5]. 
The resulting disk union G2 = Ẽ ∪ E′n is in the following form:
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where ℓ(E′n) denotes the sublink of ℓ belonging to the disk E′n. In the configuration of the disk union G2, the pairs (Ẽ × I, E′ 
× I) and (Ẽ × I, D′ × I) are O2-handle pairs on F and hence are equivalent by Common 2-handle property. Since (Ẽ × I, E′ 
× I) and (Ẽ × I, D′ × I) are respectively equivalent to the original O2-handle pairs (E × I, E′ × I) and (D × I, D′ × I) on F 
by Common 2-handle property, the original O2-handle pairs (D × I, D′ × I) and (E × I, E′ × I) on F are equivalent. This 
completes the proof of Uniqueness Theorem in the case of a trivial surface-link F.

Proof of Uniqueness Theorem in the case of a general surface-link F. For a general surface-link F in R4 and O2-
handle pairs (D × I, D′ × I) and (E × I, E′ × I), let F(D × I, D′ × I) = Fδ

c ∪ δD×I,D′×I be the surface-link obtained from F by 
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surgery along (D × I, D′ × I) where Fδ
c denotes the once-punctured surface of F and the plumbed disk δD×I,D′×I induced 

from (D × I, D′ × I) (see [2]). Let F′ be a trivial surface-knot in R4 obtained from the surface-link F(D × I, D′ × I) by 
surgery along 1-handles hj( j = 1, 2, …, s) embedded in a connected Seifert hypersurface W and attached to Fδ

c avoiding 
the plumbed disk δD×I,D′×I and the intersection loops E ∩ W, E′ ∩ W (cf. [1]). Then it is seen from the argument of [2, 
Lemmas 2.2, 2.3] that a trivial torus-knot T and a standard O2-handle pair (D × I, D′ × I) on T are constructed from the 
plumbed disk δD×I,D′×I in R4 so that the connected sum F′#T is a trivial surface-knot in R4 obtained from F by surgery 
along the 1-handles hj( j = 1, 2, …, s) without meeting the connected summand T and the O2-handle pair (D × I, D′ × I). 
By construction, the pairs (D × I, D′ × I) and (E × I, E′ × I) are O2-handle pairs on the connected sum F′#T attached to 
the connected summand T and disjoint from the “2-handles”hj( j = 1, 2, …, s) on F′#T attached to F′. Let h be the core 
disk system D(hj), ( j = 1, 2, …, s) of the 2-handle system hj( j = 1, 2, …, s) on F′#T attached to F′. By the proof for the 
case of a trivial surface-link F, the O2-handle pair (E × I, E′ × I) is equivalent to (D × I, D′ × I) on F′#T. To obtain such 
an equivalence without crossing the core disk system h, the proof is revised as follows: A normal form of the disk union 
Ḡ = G ∪ h = E ∪ E′n ∪ h can be thought of as the following disk union Ḡ1:
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where in addition to the notations on G1, the following notations are also added. Namely, the notations o(h), o′(h) 
denote trivial links in R3 belonging to the disk system h, the notations d(h), d′(h) denote disjoint disk systems in R3 
with ∂d(h) = o(h), ∂d′(h) = o′(h) belonging to the disk system h, the notations b(h), b′(h) denote disjoint band systems 
in R3 belonging to the disk system h and spanning o(h), o′(h), respectively, and the notation ℓ(h) denotes a link in R3 
belonging to the disk system h. The band systems b, b′, b(h), b′(h) are made disjoint by band slide and band thinning. In 
this normal form Ḡ1, the disk system h can be taken as

h ∩ D × I = h ∩ D′ × I = ∅,

because the 3-ball D × I ∪ D′ × I is disjoint from the 2-handles hj( j = 1, 2, …, s) as mentioned before. By a method 
similar to the process from G1 to G2, we have a deformation Ḡ̃1 = Ẽ ∪ E′n ∪ h of Ḡ1 with a level configuration similar to 
Ḡ1 such that

d(Ẽ) ∩ (∂E ∪ n(∂E′)) = d(Ẽ) ∩ b(E′n) = d(Ẽ) ∩ b(h) = ∅,

although Ẽ may meet F′#T. Now change the level of b(Ẽ)[−1] into b(Ẽ)[1] and the level of d(Ẽ)[−2] into d(Ẽ)[0.5]. 
Then the disk union Ḡ2 = Ē ∪ E′n ∪ h obtained from Ḡ̃1 = Ẽ ∪ E′n ∪ h is as follows:
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In the configuration of Ḡ2, the pair (Ē × I, E′ × I) and (Ē × I, D′ × I) are O2-handle pairs on F′#T and hence are 
equivalent under 3-cell moves disjoint from the 2-handles hj( j = 1, 2, …, s) by Common 2-handle property. Since (Ē × 
I, E′ × I) and (Ē × I, D′ × I) are respectively equivalent to the original O2-handle pairs (E × I, E′ × I) and (D × I, D′ × I) 
on F′#T under 3-cell moves disjoint from the 2-handles hj( j = 1, 2, …, s) by Common 2-handle property, the original 
O2-handle pairs (D × I, D′ × I) and (E × I, E′ × I) on F′#T are equivalent under 3-cell moves disjoint from the 2-handles 
hj( j = 1, 2, …, s) by Common 2-handle property. By the back surgery from F′#T to F on the 2-handles hj( j = 1, 2, …, s) 
on F′#T, this means that the O2-handle pairs (D × I, D′ × I) and (E × I, E′ × I) on F are equivalent under 3-cell moves 
disjoint from the 1-handles hj( j = 1, 2, …, s) on F. This completes the proof of Uniqueness Theorem in the case of a 
general surface-link F.                                                                                                                                                          □

This completes the proof of Uniqueness Theorem.

3. Proof of recovery lemma
The following operation is used for the proof of Recovery Lemma.
Finger Move Canceling. Let D be an immersed disk in R4 with ∂D embedded, and S a trivial S2-knot in R4 

meeting the immersed disk D at just one point x different from the double points of D. Let y be a double point of D, 
and α a simple arc in the disk D joining x and y not meeting the other double points of D. Let dx be a disk neighborhood 
of x in the 2-sphere S, and dy a disk neighborhood of y in D, regarding the disks dx and dy as disk fibers of a normal 
disk bundle over D in R4. Let Vα be a disk bundle over the arc α in R4 such that (D ∪ S) ∩ Vα = dy ∪ α ∪ dx. Then an 
immersed disk D1 with ∂D1 = ∂D is constructed from the immersed disk D so that

D1 = cl(D \ dy) ∪ cl(∂Vα \ (dy ∪ dx)) ∪ cl(S \ dx).

The number of the double points of D1 is smaller than the number of the double points of D by 1.
The 2-sphere S in Finger Move Canceling is called a canceling sphere. If there is a canceling sphere S, then the 

immersed disk D is changed into an embedded disk D* by Finger Move Canceling operations of parallel canceling 
spheres of S. By using Finger Move Canceling, the proof of Recovery Lemma is done as follows:

Proof of Recovery Lemma. By assumption, the immersed O2-handle pair (D × I, D′ × I) on a surface-link F in R4 
has D × I as an immersed 2-handle on F and D′ × I as an embedded 2-handle on F. Let d′ be a small disk neighborhood 
of the intersection point q of ∂D and ∂D′ in D′ (cf. Figure 1). By shrinking D′ × I as d′ × I, one finds a trivial S2-knot S 
in R4 such that S meets the immersed core disk D of D × I at just one point x different from the double points of D and 
is disjoint from F and D′ × I. In fact, regard d′ × I as a thin thickening of a boundary arc q × I of D and then take a small 
trivial S2-knot S near q × I meeting D at just one point x which can be constructed from ∂(d′ × I). This 2-sphere S is used 
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for a canceling sphere for the immersed disk D. By Finger Move Canceling, the immersed disk D is changed into an 
immersed disk with double point number 1 less. By continuing this procedure, the immersed disk D is finally changed 
into an embedded disk D*, meaning that the pair (D* × I, D′ × I) is an O2-handle pair on F. This completes the proof of 
Recovery Lemma.                                                                                                                                                                 □
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