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Abstract: This paper’s major purpose is to evaluate the local convergence of the parameter-based sixth- and seventh-
order continuation iterative approach for solving nonlinear equations in R. This analysis assumes that the Fréchet 
derivative of the first order satisfies the Lipschitz continuity condition. Under these circumstances, we explore 
convergence analysis in order to investigate the existence and uniqueness region for the solution of our proposed 
strategies. Thus, we also offered the theoretical concept of the radii of convergence balls for the proposed approach. By 
determining the radii of the convergence balls and solving many numerical problems, we can verify the significance of 
our convergence study.
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1. Introduction
Our main objective of this research is to consider the problem of approximating a solution ϱ* of the equation

( ) 0ϕ =

where φ : Ω ⊆ R → R is a non-linear operator on an open convex subset Ω. There are numerous difficult issues in 
physics, numerical analysis, engineering, and applied mathematics that involve finding the roots of an equation (1) for 
solving such problems, we frequently use iterative methods. In literature, we find many higher order iterative methods. 
Beginning with an initial approximation of a solution ϱ* of the equation (1), a sequence {ϱα, n} of approximations is 
generated such that {|ϱα,n − ϱ*|} decreases and a better approximation to the solution ϱ* is obtained at every step. There 
are numerous iterative approaches to solving (1). The most commonly used approach is the quadratically convergent 
Newton’s method, which is provided by
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( ) 1
, 1 , , ,( ) ( ) 0,1, 2,3,....n n n n nα α α αϕ ϕ

−
+ ′= − =   

where, ϱα,0 is the initial point.
The Newton method and the Newton-like method are well-known iterative techniques for solving nonlinear 

equations. These techniques quickly converge from any sufficient initial guess. If you can see in the literature, 
Kantorovich [1] and Rall [2] established the convergence analysis of Newton’s technique in a Banach space. Many 
researchers discussed three types of convergence analysis to prove the convergence of iterative methods those are semi-
local convergence, local-convergence, global convergence. Several researchers have generalized and produced local 
and semilocal convergence analyses of the Newton method Equation (2) under various conditions i.e., lipschitz, Holder, 
and ω continuity conditions. Various researchers examined the local convergence analysis of several Chebyshev-Halley 
type schemes, including improved Chebyshev-Halley type methods. In a Banach space, the study of local convergence 
of iterative methods of higher order can be analyzed under various continuity assumptions. Semilocal convergence 
of continuation method between chebyshev and Halley method under different continuity conditions discussed in [3-
5]. The local convergence of iterative methods of higher order mentioned in [6-12]. In an iterative method the radii of 
convergence ball plays an important role because choosing initial guess for iterative method is not so easy. The global 
convergence is of many methods discussed in [13, 14].

Inspired by ongoing research, we design the four-step sixth and seventh order continuation method between 
Halley and super-Halley for solving non linear equations and discuss the local-convergence under Lipschitz continuity 
condition. This manuscript divided into four sections.

In section 1, Introduction formed. In Section 2, we present a new continuation approach for solving the nonlinear 
equation (1) and demonstrate convergence theory of the proposed method. Several numerical examples are examined in 
Section 3 to validate the theoretical results. lastly, the concluding observations discussed in Section 4.

2. Local convergence
This section describes the local convergence analysis of the proposed iterative method. Consider the proposed 

family of iterative methods as follows,
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Theorem 1 Let L0 > 0, L > 0, M > 0, α ∈ S and φ : Ω ⊂ R → R be the given parameters and differentiable function 
respectively. Suppose, there exists ϱ* ∈ Ω such that the following holds true for every ϱ, ς ∈ Ω:

( ) 1* *( ) 0,  ( , ),L S Sϕ ϕ
−

′= ∈ 

(2)

(3)

(4)
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| | 1,MLα <

( ) 1* * *
0( ( ) ( )) ,Lϕ ϕ ϕ

−
′ ′ ′− ≤ −    

( ) 1* ( ( ) ( )) ,Lϕ ϕ ϕ ς ς
−

′ ′ ′− ≤ −  

( ) 1* ( ( )) ,Mϕ ϕ
−

′ ′ ≤ 

*( , ) ,U r ⊆ Ω

where r is given by r = min{r1, r4, r14, r15}. Then by using the method (3) for ϱα,0 ∈ U(ϱ*, r) | {ϱ*} the sequence {ϱα,n} is 
well defined, remains in Ū(ϱ*, r) for each n = 0, 1, 2, 3, ... converges to ϱ*. In addition, the following estimates hold true.

( )* * * *
, 1 , , , ,n n n ng rα α α ας − ≤ − − < − <      

( )* * * *
, 4 , , , ,n n n ng rα α α ατ − ≤ − − < − <      

( )* * * *
, 14 , , , ,n n n ng rα α α αϖ − ≤ − − < − <      

( )* * * *
, 1 15 , , , ,n n n ng rα α α α+ − ≤ − − < − <       

where the g functions are defined above. Furthermore, there exist 
0

2,R r
L

 
∈ 
 

 such that Ū(ϱ*, r) ⊆ Ω, then the limit 

point ϱ* is the only solution of (1) in Ū(ϱ*, r).
Proof. Let, φ : Ω ⊆ R → R be a differentiable function. Suppose ϱ* is the solution that belongs to the domain Ω. 

That is ϱ* ∈ Ω. ϱα,0 is the initial-point in the domain Ω. From the condition (6)

( ) 1* * *
0( ( ) ( )) .Lϕ ϕ ϕ

−
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and, ϱα,0 ∈ Ω, we get
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From the first step of the method (3), for n = 0, we get

* * 1
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* 1
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From this, we get

1* 1 * * *
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1 * *
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( )* *
,0 1 ,0( )g rα ας − ≤ − ≤  

For n = 0, we conclude that, ςα,0 ∈ U(ϱ*, r), where

1
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 → ∞. According to the Intermediate Value Theorem (IVT), h1 has the 

smallest zero r1 in the interval (0, 1/L0). The result is 0 < r1 < 
0

1
L

 and 0 ≤ g1(t) < 1∀t ∈ (0, r1). Now, consider second 
step of method (3) for n = 0,
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in the interval (0, r1). The result is 0 < r < r4< r1 and 0 ≤ g4(t) < 1∀t ∈ (0, r4). From step three of the method (3),
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1,<

(36)
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where

1
9

0 2 3

1 ( )1( ) 3 | 3 |1 2 .
1 1 ( ) 1 ( )

g tMtg t M M
L t g t g t

α α
 −

= + − + − − − 
∣ ∣

2
,0 ,0 ,0 ,0 ,0( ) (3 2 )A α α α α ας τ ς τ= − − −

2
7 8( ( )) ( ( ))g t g t≤

10 ( ),g t=

where

2
10 7 8( ) ( ( )) ( ( )),g t g t g t=

where

2
11 6 9( ) ( ( )) ( ).g t g t g t=

2
12 7 5 6( ) ( ( )) ( ) ( )).g t g t g t g t=

* * 2
,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0( )( )( ) ( )α α α α α α α α αϖ τ ϕ τ τ ς ς τ− = − − − − −   

( ) 1
,0 ,0 ,0 ,0( ( ) ( ) ( ) ( ) .A B C Dα α α αϕ ϕ ς ϕ τ ϕ

−
′+ + + 

30
13 10 5 1 11 4 12

( )
( ) ( ) ( ( )) ( ) ( ) ( ) ( ) .

2
L t

g t g t g t Mg t t g t Mg t g t M= + + +

( ) ( )
1 *

,0 ,0 ,0 ,0 * *
,0 13 ,0

1( ) ( ) ( ) ( ) ( ) .
1

A B C D
g

α α α α
α α

ϕ ϕ ς ϕ τ ϕ ϕ
−

′ ′+ + + ≤
− − −

  
   

* * 2
,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0( )( )( ) ( )α α α α α α α α αϖ τ ϕ τ τ ς ς τ− = − − − − −   

( ) 1
,0 ,0 ,0 ,0( ( ) ( ) ( ) ( )A B C Dα α α αϕ ϕ ς ϕ τ ϕ

−
′+ + + 

( ) ( ) ( )( )2
* * * *

4 ,0 ,0 5 ,0 6 ,0  1g g gα α α α≤ − − +
− −       

( ) ( )
*

7 ,0 * *
,0 13 ,01

Mg
g

α
α α

−
− −



− 

 
   

(37)

(38)

(39)

(40)

(41)

(42)
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( )* *
14 ,0 ,0g α α= − −   

*
,0α< − 

.r<

( )2
14 4 5 6 7

13

1( ) ( ) 1 ( ) ( ) .
(1 ( ))

g t g t g t g g t M
t g t

 
= + − 

then, h14(t) = g14(t) − 1, with h14(0) = −1, h14(r4) > 0. Then we say that the function h14 have smallest zero r14 in the 
interval (0, r4) by the intermediate value theorem . Then we get 0 < r < r14 < r4 < r1 and 0 ≤ g14(t) < 1∀t ∈ (0, r14)

,0* *
1 ,0

,0

( )
( )

x α
α

α

ϕ ϖ
ϖ

ϕ
− = − −

′
 



,0*
,0

,0

( )
( )

α
α

α

ϕ ϖ
ϖ

ϕ
≤ − +

′




( ) ( )
* *

14 ,0 ,0 *
0 ,0

11
1

g M
L

α α
α

≤ − − + +
 
 
 
  − − 

   
 

( )* *
15 ,0 ,0g α α= − −   

*
,0α< − 

,r<

where

15 14
0

1( ) ( ) 1 .
1 ( )

g t g t M
L t

 
= + − 

then, h15(t) = g15(t) − 1, with h15(0) = −1, h15(r14) > 0. According to the Intermediate Value Theorem, h15 has the smallest 
zero r15 in the interval (0, 1/L0). The result is 0 < r15 < r14 < r4 < r1 and 0 ≤ g15(t) < 1∀t ∈ (0, r). This conclude that for n = 0, 
and x1 ∈ U(ϱ*, r).

Now, we will prove the uniqueness part.
Suppose, there is another solution ς*. Since, ς* is a solution, that implies φ(ς*) = 0. Let ς* ∈ U(ϱ*, r), that implies |ϱ* 

− ς*| < r, and ς* ≠ ϱ*.
Let us consider

(43)

(44)
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1 * * *
0

( ( ))T dϕ ς θ ς θ′= + −∫ 

* *( ) ( )ϕ ϕ ς= −

0 0= −

0.=

But T can never be equal to 0, which contradicts our hypothesis. That implies ϱ* = ς*.

3. Numerical examples
In this section, numerical examples are provided to illustrate the effectiveness of the method and analysis under 

consideration. All numerical examples were executed by Mathematica 11.3.
Example 1 Let κ = R, Ω = [−1, 1], ϱ* = 0 and φ be the function defined on Ω by φ(ϱ) = sin(ϱ).
For α = 0.75, we get L0 = 1, L = 1, M = 1. Then, by using the ‘‘g” functions, we obtain r1 = 0.666667, r4 = 0.569514, 

r14 = 0.568376, r15 = 0.249122. This gives, r = min(r1, r4, r14, r15) = 0.249122.

Table 1. Radius of convergence for α = 0.75  

α r1 r4 r14 r15 r = min(r1, r4, r14, r15)

0.75 0.666667 0.569514 0.568376 0.249122 0.249122

Therefore, from Table 1 we can assure the convergence of the proposed strategy with α = 0.75 by using the 
Theorem 1.

Example 2 Let κ = R, Ω = [−1, 1], ϱ* = 0 and φ be the function defined on Ω by φ(ϱ) = eϱ − 1.
Then, for α = 0.125, we get L0 = e − 1, L = e, M = e. Then, by using the ‘‘g” functions, we get r1 = 0.382692, r4 = 

0.366058, r14 = 0.0883582, r15 = 0.0874554. Hence, we get r = min(r1, r4, r14, r15) = 0.0874554.

Table 2. Radius of convergence for α = 0.125 

α r1 r4 r14 r15 r = min(r1, r4, r14, r15)

0.125 0.382692 0.3660588 0.0883582 0.0874554 0.0874554

Therefore, from Table 2 we can assure the convergence of the proposed strategy with α = 0.125 by using the 
Theorem 1.

Example 3 Let, X = Y = R. Define φ on Ω = [1, 3] by

3
22( ) .

3
ϕ = −  

□
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Then, ϱ* = 
9
4 , φ′(ϱ*)−1 = 2, L0 = L = 1 and, α = 0.9870. Then, by using the ‘‘g” functions, we obtain r1 = 0.666667, 

r4 = 0.457978, r14 = 0.0846284, r15 = 0.0839528. hence, we get r = min(r1, r4, r14, r15) = 0.0839528.

Table 3. Radius of convergence for α = 0.0987  

α r1 r4 r14 r15 r = min(r1, r4, r14, r15)

0.09870 0.666667 0.457978 0.0846284 0.0839528 0.0839528

Therefore, from Table 3 we can assure the convergence of the proposed strategy with with α = 0.9870 by using the 
Theorem 1.

Example 4 Let φ be a function defined on X = Y = R, Ω = Ῡ(0, 1) by

3 2 5 4
1 2 3 , 0( )

0,                                   0,
c ln c c

ϕ
 + + ≠= 

=

    




where c1 ≠ 0, c2, c3 are the real parameters. Then, we have

3 2 4 3 2
1 2 3 1( ) 3 5 4 2 ,c ln c c cϕ′ = + + +     

2 3 2
1 2 3 1( ) 6 20 12 10 ,c ln c c cϕ′′ = + + +     

and

2 2
1 2 3 1( ) 6 60 24 22 .c ln c c cϕ υ′′′ = + + +   

Also, we have

0 146.6629073, 101.5578008.L L M= = =

Choose α = 0.00006.
Then, by using the ‘‘g” function, we obtain r1 = 0.00454557, r4 = 0.00454546, r14 = 0.0000147588, r15 = 

0.00000147587.
Thus, we get r = min(r1, r4, r14, r15) = 0.00000147587.

Table 4. Radius of convergence for α = 0.00006  

α r1 r4 r14 r15 r = min(r1, r4, r14, r15)

0.00006 0.00454557 0.00454546 0.0000147588 0.00000147587 0.00000147587

Therefore, from Table 4 we can assure the convergence of the proposed strategy with α = 0.00006 by using the 
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Theorem 1.
Example 5 (Continuous Stirred Tank Reactor (CSTR))
Let us consider the isothermal CSTR.
A = Component fed to the reactor at the rate Q.
R = Component fed to the reactor at the rate q-Q.
Then we obtain the following reaction schemes in the reactor
A + R → B
B + R → C
C + R → D
D + R → E
Douglas designed the simple expression for transferring function of the reactor

2
2.98( 2.25) 1

( 1.45)( 2.85) ( 4.35)cρ
+

= −
+ + +


  

Where,
ρc = The gain of the proportional controller.
The control system is stable for values of ρc that yields roots of the transfer function having negative real part. We 

will get poles of the open-loop transfer function as the roots of the non-linear equation if we will choose ρc = 0.
The non-linear equation is

4 3 2( ) 11.50 47.49 83.06325 51.23266875ϕ = + + + +    

The function has 4 approximate roots ϱ* = −1.45, −2.85, −2.28, −4.35. We are choosing −4.35 as the approximate 
root.

Let us consider, Ω = [−4.5, −4]. Then, we obtain L = L0 = 2.760568793, M = 2.

Table 5. Radius of convergence for α = 0.3  

α r1 r4 r14 r15 r = min(r1, r4, r14, r15)

0.3 0.241496 0.228665 0.228298 0.228297 0.228297

Therefore, from Table 5 we can assure the convergence of the proposed strategy with α = 0.3 by using the Theorem 
1.

Example 6 In the study of the multi-factor effect, the trajectory of an electron in the air gap between two parallel 
plates is given by:

( )0 0
0 0 0 0 02( ) sin( ) ( ) cos( )) sin( )

( )
E E

s e s s s e s s
m m

λ ω µ ω µ ω µ
ω ω

 = + + + − + + + + 
 

 

Where,
m = Mass of the electron at rest.
e = Charge of the electron at rest.
ϱ0 = Position of the electron at time s0.
λ0 = Velocity of the electron at time s0.
E0 sin(ωs + µ) = Radio Frequency (RF) electric field between the plates.

(45)

(46)

(47)
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We choose the particulars parameters in the expression (47) in order to get the simpler form which is defined as

cos( )( )
2 4

πϕ = − +


 

The required root of the function is ϱ* = −0.30909327154179.
Then we have L0 = 1.523542095,
L = 1.523542095,
M = 1.523542095.
Choose α = 0.3, then by using the ‘‘g” function, we obtain

Table 6. Radius of convergence for α = 0.3 and 0.5  

α r1 r4 r14 r15 r = min(r1, r4, r14, r15)

0.3 0.437577 0.39003 0.388295 0.388294 0.388294

0.5 0.437577 0.381151 0.380218 0.126173 0.126173

Therefore, from Table 6 we can assure the convergence of the proposed strategy with α = 0.3, α = 0.5 by using the 
Theorem 1.

Example 7 (Kepler Equation)
Consider the Kepler equation f : D ⊆ R → R defined by

1 2 3( ) sin( ) ,f λ λ λ= − −  

where, λ1 = 1, 0 ≤ λ2 ≤ π, and 0 ≤ λ3 ≤ π.The parameters involve for evaluating the radius of convergence ball are given 

by L = L0 = 3
0 *

1 2 cos( )
L L

λ
λ λ

= =
− 

. So using theorem 1 we have different radii of convergence.

Table 7. Radius of convergence for α = 0.5  

λ1 λ2 λ3 ϱ∗ r1 r4 r14 r15 r = min(r1, r4, r14, r15)

1 0.4 0.2 0.329386 2.07168 1.18804 1.17822 0.302895 0.302895

1 0.5 0.3 0.569682 1.28569 0.725293 0.265648 0.261504 0.261504

1 0.6 0.4 0.851271 1.00674 0.752373 0.711516 0.708659 0.708659

1 0.7 0.5 1.134395 0.938831 0.676173 0.675523 0.672947 0.672947

1 0.8 0.6 1.386444 0.948169 0.660695 0.236703 0.233603 0.233603

Therefore, from Table 7 we can assure the convergence of the proposed strategy with α = 0.5 by using the Theorem 
1.

(49)

(48)
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Example 8 Let us consider a non-linear equation which is defined as, φ : Ω ⊆ R → R by

3 2 5 1( )
6 6 6 3

ϕ = + − +
  



The required approximate root of the above equation is ϱ* = 0.46259 and φ′(ϱ*) = 0.572135. Then we get, L0 = 
0.45653, L = 0.42385. So by using theorem 1 we have different radii of convergence

Table 8. Radius of convergence for α = 0.5 

α r1 r4 r14 r15 r = min(r1, r4, r14, r15)

0.5 1.49599 0.95156 0.94551 0.272882 0.272882

Therefore, from Table 8 we can assure the convergence of the proposed strategy with α = 0.5 by using the Theorem 
1.

4. Conclusion
In this research work, we present the local convergence analysis of the of sixth and seventh order derivative free 

continuation method. Our proposed work will be described only if the first-order fréchet derivative meets the Lipschitz 
continuity assumption. We have presented the existence and uniqueness for the proposed method given by convergence 
ball. To check the efficacy of theoretical analysis several numerical examples were carried out.
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