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Abstract: To unify and extend the study of various subclasses of starlike and convex functions, here we introduce a new 
subclass of λ-pseudo starlike symmetric functions. To add more versatility to our study, we have defined a new class of 
functions subordinate to a conic region impacted by the well-known Janowski functions. This study extends well-known 
results and unifies the studies of various subclasses of α-convex functions. Coefficient estimates of the inverse function 
and the Fekete-Szegő result for the function class are the main results. Some interesting special cases of our main results 
are also presented here.
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1. Introduction and motivation
We let   denote the class of analytic functions defined in  , having a series of the type 

                                                                                
( )

2
.n

n
n

f z z a z
∞

=

= +∑                                                                            
(1)

Also, we let   to denote the class of all functions in  , which are univalent in  . It is well-known that every function 
f ∈  has a function 1f − , defined by

                                                                             1[ ( )] ; ( )f f z z z− = ∈

and
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1

0 0
1[ ( )] ; ( ( ); ( ) ).
4

f f w w w r f r f− = < ≥

In fact, the inverse function 1f −  is given by

                                              1 2 3 3 4
2 2 3 2 2 3 4( ) (2 ) (5 5 ) .f w w a w a a w a a a a w− = − + − − − + +

Lewin in [1] introduced the so-called class of bi-univalent functions, which consists of functions f analytic in unit 
disc { }; 1z z= <  such that both f and 1f −  are univalent in   Here we let   to denote the class of bi-univalent 
functions. Examples of functions belonging to the class   include

                                               1 2 3
1 1( ) , ( ) log(1 ), ( ) log , .

1 2 1
z zf z f z z f z

z z
+ = = − − = … − − 

Figure 1 is the mapping of f1 and 1f − , respectively, if the domain is unit disc. On the other hand, the function 

21
z
z−

 belongs to class   but does not belong to  . Recently several researchers introduced and studied various 

subclasses of bi-univalent functions, see [2-16].
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Figure 1. Mapping of 
(1 )

zw
z

=
−

 and its inverse 
(1 )

wz
w

=
−

 

We let   to be the class of functions with positive real part which has a power series representation of the form 

1
( ) 1 .n

n
n

z p z
∞

=

= +∑  Ma and Minda [17] considered a function ψ ∈  satisfying

(ii)  (0) 1, (0) 0;ψ ψ ′= >
(iii) ψ  maps the open unit disc   onto a region starlike with respect to 1 and symmetric with respect to the real 

axis.
Also, they assumed that 2

1 2( ) 1 ,z L z L zψ = + + +…  with L1 > 0, and introduced the classes:

                                                                    

( )( ) : : ( )
( )

zf zf z
f z

ψ ψ
′

∗  
= ∈ 
 

 

and
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( )( ) : :1 ( ) .
( )

zf zf z
f z

ψ ψ
′′

′

 
= ∈ + 
 

 

Well-known special case of * ( )ψ  and ( )ψ  which have been dealt with in detail by various researchers, are the 
so-called Janowski starlike functions and Janowski convex functions (see [18]) which is defined by

                                                
* 1

1 2 2 1
2

1( )( , ) : : , 1 1 ,
( ) 1

zzf zf
f z z

′ +Θ
Θ Θ = ∈ − ≤ Θ < Θ ≤ 

+Θ 
 

and

                                               
1

1 2 2 1
2

1( )( , ) : :1 , 1 1 .
1( )

zzf zf
zf z

′′

′

 +Θ
Θ Θ = ∈ + − ≤ Θ < Θ ≤ 

+Θ 
 

Here,   denotes the subordination of analytic function, refer to any standard text for its definition and properties. For 
arbitrary fixed numbers 1 2 1 2 1, , 1 1, 1 ,Θ Θ − < Θ ≤ − ≤ Θ < Θ  we denote 1 2( , )ℵ Θ Θ  by the family of functions ( )p z ∈  
satisfying the condition

                                                                        
1 1

2 2

(1 ) ( ) 1( ) .
(1 ) ( ) 1

zz
z

+Θ + −Θ
+Θ + −Θ



 



This so-called Janowski class [18] was studied by several authors, see [19-21]. Extending the Janowski class of 
functions [18], Aouf [19] (equation 4) defined the class 1 2( ) ( , , , )z p α∈ Θ Θ   if and only if

                                     

[ ]
[ ]

2 1 2
2 1

2

( )( ) ( )
( ) , ( 1 1,0 1),

1 ( )
p p p w z

z
w z

α
α

+ Θ + Θ −Θ −
= − ≤ Θ < Θ ≤ ≤ <

+Θ


                                 
(3)

where w(z) is the Schwartz function and {1,2, }.p∈ = …  Recently, Breaz et al. [22] (equation 4) used the following 
expression to study a new class of multivalent function

                                                                                                                                                                                            (4)
                                 

[ ] [ ]
[ ]

1 2 1 1 2 1
1 2

2 2

(1 ) ( ) ( ) (1 ) ( )
( ; , ; ; ; ) .

( 1) ( ) (1 )
p z p

p z
z

α ψ α
α ψ

ψ
+Θ + Θ −Θ + −Θ − Θ −Θ

ℵ Θ Θ =
Θ + + −Θ

1 2( ; , ; ; ; )p zα ψℵ Θ Θ  is an extension of the class 1 2( , , , ).p αΘ Θ
The function , ( )kp zσ  plays the role of an extremal functions related to the conic domain and is given by

                                                                                                                                                                                            (5)
                               

2

2

,
2

2

( )

2 20 2 2

1 (1 2 ) , if 0
1

2(1 ) 11 log , if 1
1

ˆ ( ) 2(1 ) 21 sinh arccos arctanh , if 0 1
1

2(1 ) 1 11 sin , if 1
2 ( )1 11 1 ( )

k

u z
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z k
z

z k
z

p z
k z k

k
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R tk kx tx

σ

σ

σ
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σ
π
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  − +
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  −  + + >  − −− −  

∫

where ( ) , (0,1)
1
z tu z t

tz
−

= ∈
−

 and t is chosen such that ( )cosh ,
4 ( )
R tk
R t

π ′ 
=  

 
 with R(t) is Legendre’s complete elliptic 
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integral of the first kind and R′(t) is complementary integral of R(t). Clearly, is in   with the expansion of the form

                                                
2

, 1 2ˆ ( ) 1 , ( ( , ), 1,2,3, ),k j jp z z z p k jσ τ τ τ σ= + + + = = …                                             (6)

we get

                                                                                                                                                                                            (7)
                                                              

2

2 2

1 2

2

2 2

8(1 )(arccos ) , if 0 1,
(1 )

8(1 ) , if 1

(1 ) , if 1.
4 ( 1) ( )(1 )

k k
k

k

k
t k R t t

σ
π
στ

π
π σ

 −
≤ < −

 −
= =

 −

>
− +

Noor and Malik [23] studied a class functions involving ( )1 2 ,ˆ1; , ;0; ; .kp zσℵ Θ Θ  Thereafter several authors studied 
various subclasses impacted by Janowski functions, refer to [22-28].

Motivated by [29] (also see [30, 31]), here we study a new class of functions omitting the additional stringent 
criterion of 1f −  to be one-one.

Definition 1.1. For 10 1, 0;
3

α λ λ≤ ≤ > ≠  and | | 1, 1,t t≤ ≠  a function f ∈  of the form (1) is said to be in the 

class 1 2( ; , ; ( ))tV zλ α ψΘ Θ  if it satisfies:

                                           

( ) ( )
[ ]

1

1 1

2 2

(1 ) ( ) (1 ) ( ) ( 1) ( ) ( 1)
( ) ( ) ( 1) ( ) ( 1)( ) ( )

t z f z t zf z z
f z f tz zf z f tz

ααλ λ
ψ
ψ

−

′

  ′ ′− − Θ + − Θ −  
   − Θ + − Θ −−   



                                      (8)

where 2
1 2( ) 1 .z L z L zψ = + + + ∈ 

Remark 1.2. Now we will present some special cases of our class.
(i) Let λ = 1 and ,ˆ( ) ( )kz p zσψ =  (see 5) in Definition 1.1, then the class 1 2( ; , ; ( ))tV zλ α ψΘ Θ  reduces to classes 

1 2( , , , )k tσ− Θ Θ  and 1 2( , , , )k tσ− Θ Θ  for α = 0 and α = 1, respectively. The classes 1 2( , , , )k tσ− Θ Θ  
and 1 2( , , , )k tσ− Θ Θ  were defined by Arif et al. [32].

(ii) If we replace λ = 1, t = 0 and ,0ˆ( ) ( )kz p zψ =  in 1 2( ; , ; ( )),tV zλ α ψΘ Θ  where ,0ˆ ( )kp z  is defined as in (5), we 
can get 1 2[ , ]k − Θ Θ  and 1 2[ , ]k − Θ Θ  classes defined by Noor and Malik [23] (Definitions 1.3 and 
1.4) by choosing α = 0 and α = 1, respectively. Note that 1 2 1 2 2 11 [ , ] [ , ]( 1 1)UP− Θ Θ = Θ Θ − ≤ Θ < Θ ≤  was 
recently studied by Malik et al. [33].

(iii) If we let 11, 1λ = Θ =  and t = Θ2 = −1 in 1 2( ; , ; ( )),tV zλ α ψΘ Θ  we can get * ( )s ψ  and * ( )s ψ  classes defined 
by Shanmugam et al. [34] by choosing α = 0 and α = 1, respectively.

(iv) If we let Θ1 = 1, t = Θ2 = −1 and 
2 2

2 2

1( ) ,( (1 5) / 2)
1

zk z
z z
τ τ

τ τ
+

= = −
− −

 in (8), then 1 2( ; , ; ( ))tV zλ α ψΘ Θ  reduces 
to

                                         

( ) ( )
[ ]

1
2 ( ) 2 ( )

( , ) ; ( ) ,
( ) ( ) ( ) ( )

z f z zf z
f k z

f z f z f z f z

ααλ λ

λ α τ

−

′

   ′ ′   = ∈    − − − −     

 

the class ( , )λ α τ  was recently introduced by Güney et al. [29], but with an addition criterion for inverse function.

2. Coefficient estimates of inverse in 1 2( ; , ; ( ))tV zλ α ψΘ Θ  
For all 1 2( ; , ; ( ),tf V zλ α ψ∈ Θ Θ  we have (0) 1 0f ′ = ≠  for all z∈  and f(0) = 0. Then, there exists an inverse 

function in some small disk with the center at w = 0. Now we will obtain the coefficient estimates of an inverse function 
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belonging to 1 2( ; , ; ( )).tV zλ α ψΘ Θ
Now, we will discuss the prerequisite results that are required to obtain our main results.

Lemma 2.1. [17] If 
1

( ) 1 ,k
k

k
p z p z

∞

=

= + ∈∑   and v is complex number, then

                                                                        { }2
2 1 2max 1;| 2 1| ,p vp v− ≤ −

and the result is sharp for the functions

                                                                   

2

1 2 2

1 1( ) and ( ) .
1 1

z zp z p z
z z

+ +
= =

− −

Theorem 2.2. Let 1 2( ; , ; ( ))tf V zλ α ψ∈ Θ Θ  is given by (1), then the inverse coefficients estimates of g = 1f −  

(provided 1f −  exists) is given by

                                                                             

( )1
2

1 2

2 1 2 2
b

L
t λ α
Θ −Θ

≤
+ − −                                                                         

(9)

and

                                                    

( )
( )( ) ( )

1 1 2
3 2

2 1
4

1
6 1 4

max ;
3 6

L
b v

t tα λ α
≤   +

Θ −Θ
−

− + + +                                               
(10)

with

                                                                                                                                                                                          (11)
                                                               

2
1 2

1

1: ( 1) 2 1 ,
4

Lv L
L

  
= Θ + + − + +  

   
 

where

                                                                                                                                                                                          (12)
                                             

1 2 1 1 1 1 2 2
2 2 2 2

( ) ( ): and : ,
2( 2) (1 2 ) 2( 2) (1 2 )

L k L k
t tα λ α λ

− Θ −Θ Θ −Θ
= =

− + − − + −
 

with

                                

2 2 2 2
1

2
2

(8 7 )(1 2 ) 4 ( ) 16 (1 )( ) 4 (8 7 )
(4 6)(1 ) 3 (6 4 ).

k t t t t
k t t

α α α λ λ λ λ α λ λ α
α λ α
− + + + − + − + − − − −
− + + + +

=
=                           (13)

Proof. If 1 2( ; , ; ( )),tf V zλ α ψ∈ Θ Θ  then there exists a Schwartz function such that

                                           

( ) ( )
[ ]

1

1 1

2 2

(1 ) ( ) (1 ) ( ) ( 1) ( ) ( 1) .
( ) ( ) ( 1) ( ) ( 1)( ) ( )

t z f z t zf z z
f z f tz zf z f tz

ααλ λ
ψ
ψ

−

′

  ′ ′− − Θ + − Θ −   =
   − Θ + − Θ −−                                       (14)

Let ( )z ∈   be of the form 
1

( ) 1 n
n

n
z p z

∞

=

= +∑  and it is defined by

                                                                               
1 ( )( ) , .
1 ( )

w zz z
w z

+
= ∈

−
  �
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On simple computation gives

                                  
2 3 3

1 1 2 1 3 1 2 1
( ) 1 1 1 1 1 1( ) ,
( ) 1 2 2 2 2 4
zw z p z p p p p p p z z
z
−    = = + − + − + + ∈   +    









and considering

                                                                                                                                                                                          (15)

                                 

1 1

2 2

2
2 1

12 21 1 1 2 1 2 1
2 1

( 1) ( ) ( 1)
( 1) ( ) ( 1)

( 1) 2 1
( ) ( )1 .

4 4 4

z
z
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LL p z L p p z

ψ
ψ

Θ + − Θ −
Θ + − Θ −

   
Θ + + −   

Θ −Θ Θ −Θ    = + + − +  
      



Left hand side of (14) is given by

                                                                                                                                                                                          (16)
                       

( ) ( )
[ ]

1

2 2
3 2 1 2

(1 ) ( ) (1 ) ( ) 11 ( 2)(1 2 ) ,
( ) ( ) 2( ) ( )

t z f z t zf z
t z a k k a z

f z f tz f z f tz

ααλ λ

α λ

−

′

  ′ ′− −
     = + − + − + − +    − −   



where k1 and k2 are given by (13). From (2) and (16), we obtain

                                                                                                                                                                                          (17)
                                                                            

1 1 1 2
2

( )
4( 2)(1 2 )

L pa
tα λ

Θ −Θ
=

− + −

and

                                                                                                                                                                                          (18)

                                    

2

121 2 1 1 2 1 2 1 1
3 2 1 2 2

2

1
( ) ( 1) ( )

2 4 2 8( 2) (1 2 )

L
LL L L ka p p

k tα λ

   
−   

Θ −Θ Θ + Θ −Θ   = − + −  − + −
      

From (2), we see that b2 = −a2 and applying 2, ( 1)np n≤ ≥  in (17), we obtain the inequality (9). Also, from (2) we have

                                                                                                                                                                                          (19)
                 

4
2 2

3 2 3
2 2

2
2 2 2

121 1 1 2 1 2 1 1 2 1 2 1 1
2 12 2 2 2
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21 1 2 2
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3 1( 1) 2
6 43!

1
( ) ( ) ( 1) ( )

2 4 216( 2) (1 2 ) 8( 2) (1 2 )

( ) 1 ( 1) 2 1
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b a a

a a
L
LL p L L L kp p

kt t

L Lp p L
k

α λ α λ

 
 
 
 
 

 −
= = − 

 
  

−  
Θ −Θ Θ −Θ Θ + Θ −Θ  = − − + − − + − − + −

 
  

− Θ −Θ
= −



Θ +




−



+
1

,
L

   
+ +        
 

where   and   are given by (12). Applying Lemma 2.1 to (19), we get (10) which is the assertion of the theorem.
An interesting generalization of a class of starlike functions is the so-called class of starlike functions associated 

with the vertical domain, which is defined as follows:
Definition 2.1. [35] f ∈  is said to be in ( , )δ ε  if it satisfies
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                                                                                                                                                                                          (20)
                                                                            

( )Re , ,
( )

zf z z
f z

δ ε
′

< < ∈

where 0 1 .δ ε≤ < <
Letting 1 20, 1, 1, 1t α λ= = = Θ = Θ = − , and

                                                               

( )2 (1 )/ ( )1( ) 1 log
1

ie zz i
z

π δ ε δε δψ
π

− − − −
= +   −                                                           

(21)

in Theorem 2.2, we have
Corollary 2.3. [36] Let * ( , ),f δ ε∈  then the coefficient estimates of the inverse function are

                                                                         2
2( ) (1 )sinb ε δ π δ

π ε δ
− − ≤  − 

and

                                    

12

3
2( ) (1 ) 1 1| | sin max 1; 3 3 .

2 2
i

b i i e
δπ

ε δε δ π δ ε δ ε δ
π ε δ π π

−
−

 − − − −    ≤ − + +    −     

Letting α = t = 0, λ = 1 and 1,0ˆ( ) ( )z p zψ =  in Theorem 2.2, we get
Corollary 2.4. [33] Suppose that 1 2 2 1[ , ]( 1 1)f UP∈ Θ Θ − ≤ Θ < Θ ≤  (see Remark 1.1), then

                                                                                  
1 2

2 2

2( )b
π

Θ −Θ
≤

and

                                                                                  
1 2

3 2

4( )| | .
6

b
π

Θ −Θ
≤

3. Fekete-Szegő inequality for the function of 1 2( ; , ; ( ))tV zλ α ψΘ Θ   
Here, we will present the Fekete-Szegő inequality for the functions belonging to the class 1 2( ; , ; ( )).tV zλ α ψΘ Θ  

Theorem 3.1. Let 1 2( ; , ; ( )),tf V zλ α ψ∈ Θ Θ  then for all µ ∈  we have

                                                           

( )
( )( )

1 1 22
3 2 2max 1;

2
1

3 1 3 2
L

a aµ τ
λ λ

≤   
Θ −Θ

− −
− −                                                     

(22)

with

                                                              
2

1 2
1

1: ( 1) 2 1 ,
4 2

LL
L

µτ
  

= Θ + + − + +  
   




                                                     
(23)

where   and   are given by (12). The inequality is sharp for .µ ∈  
Proof. If 1 2( ; , ; ( )),tf V zλ α ψ∈ Θ Θ  in the view of relation (17) and (18), for µ ∈  we have
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                                                                                                                                                                                          (24)
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µ
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−
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− −
− + −

  Θ −Θ Θ −Θ
− = − Θ + + − + +  − + −    
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   = + −  
      

 
  
 




1 1 2 2 2
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2 2

2
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L Lp L
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µ Θ
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−
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now if 2
1 2

1

( 1) 2
2

L L
L

µ
− Θ + − − ≤


  in the above inequality, we obtain

                                                                            
1 1 22

3 2
2

(
.

)
2

L
a a

k
µ

Θ −Θ
≤−

                                                                    
(25)

Further, if 2
1 2

1

( 1) 2
2

L L
L

µ
− Θ + − − ≥


  in the same inequality, we obtain

                                                   

1 1 22 2
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( .1

22
)

L La a L
k L

µµ
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− −
 

≤   


−Θ −
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(26)

Following the steps in [25], we can establish that inequality (22) will be sharp if

                                          

( ) ( )
[ ]

1
2
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2
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(1 ) ( ) (1 ) ( ) ( 1) ( ) ( 1)
( ) ( ) ( 1) ( ) ( 1)( ) ( )
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and

                                         

( ) ( )
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1

1 1 1
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(1 ) ( ) (1 ) ( ) ( 1) ( ) ( 1) ,
( ) ( ) ( 1) ( ) ( 1)( ) ( )
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′

  ′ ′− − Θ + − Θ −   =
   − Θ + − Θ −−                                       (28)

and the proof of the theorem is complete.
Letting 1 20, 1, 1, 1t α λ= = = Θ = Θ = −  and ( )zψ  is of the form (21) in Theorem 3.1, then we have the following 

result obtained by Sim and Kwon [36].
Corollary 3.2. [36] Let * ( , ).f δ ε∈  Then, for any µ,

                                   

2
3 2

12

(1 )sin

1 1                           max 1; (1 2 ) (1 2 ) .
2 2

i

a a

i i e
δπ

ε δ

ε δ π δµ
π ε δ

ε δ ε δµ µ
π π

−
−

− − − ≤  − 
 − −  + − + − −  

   

Letting t = 0, α = λ = 1, Θ1 = 1, and Θ2 = −1 in Theorem 3.1, then we have the following result obtained by Tu and 
Xiong [37].

Corollary 3.3. [37] Suppose *( ) ( ) ( ).f z zψ∈ ∈  , then
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2 1 2

3 2 1 1
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L
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The inequality is sharp for the function given by

                                                   

[ ] 2
1 10

1

2 2
1 10

1

1exp ( ) 1 , if 2 1
( )

1exp ( ) 1 , if 2 1.

z

z

Lz t dt L L
t L

f z
Lz t dt L L

t L

ψ µ

ψ µ


− + − ≥

= 
  − + − ≤ 


∫

∫

4. Conclusion 
We have defined a new family of pseudo-starlike functions that connect the convex combinations of analytic 

functions. To make this study more comprehensive, we have defined the class of functions with respect to symmetric 
points, which amalgamates the study of several classes of well-known analytic functions. Solutions to the Fekete-Szegő 
problem and coefficient estimates of an inverse function are the foremost results of this paper. Also, we have pointed out 
appropriate connections and applications of our main results, which are mostly presented in the form of corollaries and 
remarks. Refer to [5, 23, 25, 38-40], for studies closely related to the results presented here.

This study can be further extended by replacing the superordinate function in (8) with a function that is not 
Carathéodory (see [41]). Further, this study can be extended by taking a trigonometric hyperbolic function, Gegenbauer 
polynomial, Laguerre polynomial, Chebyshev polynomial, Fibonacci sequence, or q-Hermite polynomial instead of 
considering ψ(z) as in (8).
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