
Volume 4 Issue 3|2023| 435 Contemporary Mathematics

Research Article

A Novel Study on the Maize Streak Virus Epidemic Model Using 
Caputo-Fabrizio Fractional Derivative

M. Chandra Malar1, M. Gayathri1, A. Manickam2*

1Department of Mathematics, Marudupandiyar College (Arts & Science), (Affiliated to Bharathidasan University, Tiruchirappalli-620 
024), Trichy Main Road, Vallam Post, Thanjavur-613 403, Tamil Nadu, India

2School of Advanced Sciences & Languages, Department of Mathematics, VIT Bhopal University, Bhopal-Indore Highway, 
Kothrikalan, Sehore, Madhya Pradesh 466114, India

 Email: manickammaths2011@gmail.com

Received: 27 January 2023;  Revised: 14 February 2023;  Accepted: 15 February 2023

Abstract: In this paper, we simulate a maize streak virus (MSV) epidemic model using the Caputo-Fabrizio fractional 
derivative. We solve a nonlinear fractional-order model of the MSV using a recently proposed efficient numerical 
method. We perform several graphical simulations to explore the proposed model dynamics. The proposed investigations 
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generalization of the model and implementation of the method are the key features of this study.
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1. Introduction
Over 80 wild and domesticated grasses are infected by the maize streak virus (MSV), which also affects maize, its 

main host, and causes maize streak disease (MSD). It is a Mastrevirus-related maize disease that is spread by insects 
and is widespread in sub-Saharan Africa and close-by Indian Ocean island nations, including Madagascar, Mauritius, 
and La Reunion. The A-strain of MSV causes infrequent outbreaks of maize stripe disease in Africaʼs maize-growing 
areas. MSV was first reported by South African entomologist Claude Fuller in a 1901 publication under the name “mealie 
variegationˮ [1, 2]. 

The researchers have proposed some studies concerning mathematical modeling of MSV. In [3, 4], the authors 
derived a model of optimal control problems for MSV. In [5], Alemneh et al. proposed an eco-epidemic model of the 
transmission of MSV in maize plants. In [6], the authors investigated a model considering pest invasion for MSV 
pathogen interaction. In [7], the authors proposed a fractional-order model of MSV. 

Fractional derivatives are widely used to describe various real-world phenomena incorporating memory effects in 
systems [8-11]. Recently, fractional derivatives have been used in several areas, such as mechanics [12], ecology [13], 
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neural networking [14], optics [15], chemical reactor theory [16], image processing [17], and concrete research [18]. 
Several deadly epidemics have been modeled by using fractional-order operators. In [19], the researchers modeled the 
spread of Chlamydia in the United States using a Caputo derivative. A novel fractional-order model of the COVID-19 
epidemic was proposed in [20]. In [21], a fractional-order model of ecological disease was considered. In [22], the 
authors modeled the dynamics of tuberculosis. In [23], fractal-fractional derivatives were incorporated to deal with a 
malaria model. In [24], a model of Lassa hemorrhagic fever was proposed. In [25], the authors proposed a fractional 
yellow fever virus model with an efficient numerical approach. In [26], the authors used a modified predictor-corrector 
scheme for the numerical solution of a fractional-order SIR (Susceptible, Infectious, Recovered) model with COVID-19 
outbreaks. In [27], the analysis of the spread of infectious diseases and the effects of consciousness programs by media 
using three fractional operators was proposed. In [28], the authors used Caputo derivatives to propose fractional-order 
models of rabies and the canine distemper virus. In [29], huanglongbing disease in citrus tree populations was modeled 
using Caputo derivatives. In [30], the authors used Atangana-Baleanu and Caputo derivatives to model mosaic disease. 
In order to consider the applications of fractional derivatives in other fields, the authors in [31] used the generalized 
Caputo derivative to investigate a psychological model. The authors in [32, 33] investigated fractional-order chaotic 
systems. In [34], a novel fractional-order Lagrangian was derived. In [35], a fractional-order model of the Stuxnet virus 
was proposed. In [36], a fractional-order model describing wind-influenced projectile motion was proposed. 

The models with integer-order operators do not include memory effects in the system because of their local nature. 
Therefore, we consider a fractional-order model in terms of the Caputo-Fabrizio fractional derivative. The paper is 
organized as follows: In Section 2, we recall some preliminaries. The fractional-order model is proposed in Section 3. 
In Section 4, we derive the numerical solution of the model using a recently proposed numerical scheme [37], where 
we provide proof of stability and error estimation. To explore the dynamics of the proposed model, several graphs are 
plotted in Section 5. In Section 6, we conclude our findings.

2. Preliminaries
Here we recall the following definitions:
Definition 1. Consider q ∈  [1, ∞) and Ω be open subset of 



. The Sobolev space Hq(Ω) is defined by

                                                         ( ) ( ) ( ){ }2 2: , 2 .qH f L D f Lα αΩ = ∈ Ω ∈ Ω ∀ ≤

Definition 2. [38] For the function g ∈  H1(a, b); b > a : β ∈  [0, 1], the Caputo-Fabrizio (C-F) fractional derivative 
of order β is defined by

                                                        
( )( ) ( ) ( ) ( )

exp ,
1 1

tCF
a t a

M t s
D g t g s dsβ β β

β β
− 

′= − − − 
∫

                                                   
(1)

where M(β) is a normalized function with M(0) = M(1) = 1.
The relative C-F fractional integral is defined by

                                                                 
( ) ( ) ( ) ( )1 .

tCF

a
I g t g t g s dsβ β β= − + ∫                                                              

(2)

3. Model dynamics
In the articles [3, 5], the authors derived an integer-order nonlinear model to describe the transmission dynamics 

of MSV. Later, the authors in [7] proposed a Caputo-type fractional-order version of that model. Here we propose the 
same model but consider the Caputo-Fabrizio fractional derivative with an exponential decay-type kernel. The model 
dynamics are given as follows:
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where 0
CF

tDβ  is the Caputo-Fabrizio fractional derivative with order β. The model contains four different classes, which 
are the susceptible maize population class S(t), infected maize I(t), susceptible leafhopper vector H(t), and infected 
leafhopper vector Y(t). The power β is used on the parameters for making equal time dimensions. The reason for 
incorporating the Caputo-Fabrizio derivative is that its kernel is non-singular, while the previous Caputo generalization 
[7] had a singular kernel. The model parameters are described in Table 1 with numerical values.

Table 1. Description of model parameters [3, 5, 7]

Parameters Description Values

g Intrinsic growth rate of maize 0.0005

k Carrying capacity 10,000

Ω1 Infection and predation rate of infected leafhopper on
susceptible maize plant

0.45

a Half saturation rate of susceptible maize with infected plant 0.4

d1 Death rate of infected maize 0.008

α Recruitment rate of susceptible leafhopper 0.02

Ω2 Infection and predation rate of susceptible leafhopper
on infected plants

0.04

c Half saturation rate of susceptible leafhopper
with infected plants

0.6

d2 Mortality rate of susceptible leafhopper 0.0303

b Conversion rate of infected leafhopper 0.45

d3 Mortality rate of infected leafhopper 0.0303

Using the inequalities
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the proposed Caputo-Fabrizio model (3) can be expressed in the following form of initial value problem (IVP)
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K K

β = ∈
=                                                                 (6)

4. Numerical simulations
Here we establish the numerical solution of the given model (3) using the recently proposed scheme given in [37].
In this regard, let us consider the above-given IVP (6)

                                                                    ( )( ) [ ]0 ( ) , , 0, ,CF
tD K t X t K t t Tβ = ∈

                                                                
(7)

                                                                                      ( ) 00 ,K K=                                                                                   (8)

where 00 1, CF
tDββ< <  denote the C-F fractional derivative of order β.

From the definition, the equation (7) can be written as
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Using the fundamental theorem, above expression is expressed by
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We split the interval [0, T] into n-equal sections with step size 0 < h < 1. Consider n ∈    nodes t0; t1; … ; tn and ,tn
nh =

nt nh= . We assume that after the discretization, the solution K(t) is known up to tn and we need to calculate it at t = tn+1. 
Replacing t by tn+1 in equation (10) gives
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Replacing t by tn in equation (10) gives
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Subtracting equation (12) from equation (11) gives
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By applying trapezoidal implicit rule to equation (13), we get
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Then, equation (14) is in the form of K(tn+1) = U(t) + CX(tn+1, K(tn+1)), where
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 is a constant, N = CX and K(tn+1) are unknown parts.

Therefore, from equation (14), we define the predictor formulae for the model (3) by
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Using predictor, we define the corrector by
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4.1 Error analysis

From [37], the truncation error (Tn) is defined by

                                            

( ) ( )
( ) ( ) ( )( )

( ) ( ) ( ) ( )( )1 2

1

1 1

1 ,
2

1 , 1 .
2

n n
n n n

P P
n n n

K t K t
T X t K t

h M hM

X t K t K t
M hM

β β
β β

β β
β β

+

+ +

 − −
= − −  

 
 −

− + + +  
                                        

(24)

From corrector equation,
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From the global errorʼs definition: en = K(tn) – Kn and subtracting equation (25) from equation (24), we have
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Proof: From equation (26), we have
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Using (21) and (22), we get
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Using above inequalities in (28) and resolving it, we arrive at
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where r = 0,···, n and max
0 .r n rT T< <=  Here we see that global error en+1 is bounded by the truncation error T  for M(β) = 1.
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Taking 0 0e = , from (30), we have
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(31)

By taking nh = T in (31), we get the proof.

4.2 Stability analysis

Consider the IVP with perturbed initial condition
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where 0 < β < 1.
The perturbed solution achieved from the scheme is given by
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Theorem 2. Consider the solution Kn derived from the algorithm (15)-(23) at the stage tn with initial condition K(0) = 
K0. Let nK  be the solution investigated from the same algorithm (15)-(23) with changed initial condition 0K  = K0 + δ. If 
X satisfy the Lipschitz condition with Lipschitz constant L > 0, then there exist two positive constants h' and k such that
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Proof: At the nth step
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Taking M(β) = 1 in above inequality, we get
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Using above given inequality, we have
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which proves the stability of the method.
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5. Graphical observations
Here we plot the numerical solution of the proposed model derived from the algorithm (15)-(23). The simulation is 

performed in Mathematica. The initial values are taken as S(0) = 1,000, I(0) = 20, H(0) = 100, and Y (0) = 0. In Figure 
1, the model classes are plotted at fractional orders β = 1, 0.95, 0.90, 0.80. Here we notice from Figure 1b that the 
population of infected maize decreases when the fractional order decreases. Some two-dimensional (2D) plots between 
the model compartments are given in Figure 2.
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Figure 1. Plots of the compartments at β = 1, 0.95, 0.90, 0.80
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Figure 2. Comparative changes in the compartments at β = 1, 0.95, 0.90, 0.80

Figure 3 is plotted by taking Ω1 = 0.85 to explore the influence of the rate of infection and predation of infected 
leafhopper. The variations in the class I(t) can be seen in Figure 3b compared to the previous case (Figure 1b).
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Figure 3. Plots of the compartments at β = 1, 0.95, 0.90, 0.80 for Ω1 = 0.85

Figure 4 is plotted by taking Ω2 = 0.08 to explore the influence of the rate of infection and predation of susceptible 
leafhopper.
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Figure 4. Plots of the compartments at β = 1, 0.95, 0.90, 0.80 for Ω2 = 0.08

Figure 5 is plotted by taking d1 = 0.09 to verify the influence of mortality rate of infectious maize population. In 
Figure 6, all classes are plotted together at particular fractional order values.
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Figure 5. Plots of the compartments at β = 1, 0.95, 0.90, 0.80 for d1 = 0.09
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Figure 6. Plots of the model classes at random values of β

From the numerical and graphical simulations, we justify that the Caputo-Fabrizio fractional derivative worked 
well to analyze the given disease dynamics. Also, the given numerical scheme is fully suitable to solve such types of 
nonlinear models.

6. Conclusion
In this article, we have considered a nonlinear mathematical model of MSV disease using the Caputo-Fabrizio 

fractional derivative. The numerical solution of the proposed model has been derived using a recently published 
numerical method. Several graphs have been plotted to justify the solution obtained. In this study, we have justified 
the applicability of the given scheme for solving epidemic models. In the future, the given scheme can be utilized to 
simulate other types of problems. Moreover, the given MSV model can be proposed in the sense of any other derivative.
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