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Abstract: We analyzed the classical problem of decomposing the Hilbert space of holomorphic functions, especially 
their splitting into the product or sum of domain-separated components. For the Bergman space of analytical functions, 
we obtained a special decomposition satisfying the assigned growth degree properties. Concerning a general Hilbert 
space of analytical functions on a connected domain, we studied its α-invariant decomposition and related ergodic 
consequences. As an interesting consequence, we obtained the decomposition theorem for an ergodic α-mapping on the 
Bergman space of holomorphic functions.
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1. Introduction: Additive decomposition of holomorphic functions
Decomposition problems in spaces of holomorphic functions are considered by many researchers in different fields

of mathematics and applied sciences. Especially important are the problems of splitting functions into the product or 
sum of two functions separated by the corresponding domains of the complex plane. For instance, the decomposition 
problem of holomorphic functions from the Paley-Wiener and Hardy spaces into the sum of two functions, specified 
by their growth degree, was actively studied in [1-3], solving the important filter identification problem [4-8] subject 
to electrical, optical, and acoustical signals. Especially, mathematically challenging the factorization problem of 
holomorphic functions in Bergman space with assigned growth degree properties proved to have many applications [9-
12], inspired by recent advances in wavelet, co-orbit, control, and coherent state representation theories.

In our work, we are mainly interested both in the additive decomposition of holomorphic functions of Bergman 
spaces on connected domains, subject to the related growth degree problem on suitably separated subdomains, inspired 
by recent studies in [2, 3], and in the Bergman space direct sum invariant decompositions [13-16] with respect to 
isometry operators, defined by means of some invariant measurable mappings, especially ergodic.
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2. Bergman space decomposition and growth degree aspects
2.1 Preliminary statements  

Consider a simply connected domain D ⊂   with a smooth boundary D∂ . In the known classical works [17-19], 
Bers and Nirenberg stated that the continuous ∂ -potential integral operator

1 1 1( )( , ) : ( ) ,
2 D

P g z z g d d
i z

ξ ξ ξ
π ξ ξ
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∫ (1)

which is convergent owing to the Calderon-Zygmund theorem [20, 21] for any ( ; ), 2,rg L D r∈ >  where ( ; )rL D 

denotes the Hilbert space of r - power integrable measurable functions on the region D. In particular, the operator (1) 
possesses the following crucially important projection properties:
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where, by definition, the linear operator
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is bounded on ( ; ), 2,rL D r >  and realizes an isometry of the Hilbert space 2 2 2( ; ) :|| ( ) || || ||L D T g g=   for any 
[1, )r∈ ∞ .
Let [1, )r∈ ∞  define [22, 23] the classical Bergman space ( ) ( )r rA D L D⊂  of holomorphic functions on a connected 

domain ,D ⊂   for which the following norm
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A D
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is bounded for any ( ). If  2,rg A D r∈ =  the Bergman space 2 ( )A D  is called a “reproducing kernel Hilbert space” [22], 
whose kernel 1/ [ (1 )], ,z D Dπ λξ ξ λ− ∈ ∈  realizes the Bergman projection 2

2 2 2: ( ) ( ) ( ), ,D D DP L D A D L D P P→ ⊂ =  via 
the integral expression
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z

ξ ξ ξ
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=
−∫ (5)

whose image 2 ( )A D  is a closed subspace of the Hilbert space 2 ( ).L D  In general case, for any 2 ( )g A D∈  owing to 
the classical Riesz theorem, there exist a mapping 2:DK D →   called the Bergman reproducing kernel, satisfying the 
relationship

( ) ( , ) ( ) ,DD
g z K z g d dξ ξ ξ ξ= ∫                                                                    (6)

where 2( , ) ( , ), ( , )D DK z K z z Dξ ξ ξ= ∈  and ( , ) 0DK z z >  for .z D∈ The latter makes it possible to define the domain 

,D ⊂   the Hermitian metric 
2 ln ( , )) : ,D

D
K z zh (z dz dz
z z

∂
= ⊗

∂ ∂
 subject to which the domain D, as a Riemannian space 

becomes a Kähler manifold: the imaginary part (2) 2Im ( ) : ( ) ( )D zh z z Dω= ∈Λ  is a nondegenerate 2-form on .D ⊂   
Remark 2.1. The weighted Bergman space ( )
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for any ( )
2 ( ),g A µ∈   proves to be a reproducing Hilbert space too [24] with respect 

to the kernel exp( ), , ,z zξ ξ ∈  that is for any function ( )
2 ( ),f A µ∈ 

 there holds the following representation: 



( ) ( ) exp( ) , .f z f z d d zξ ξ ξ ξ= ∈∫



 A related problem of constructing reproducing kernels for the weighted Bergman 

space ( )
2 ( )A Dµ  on a connected domain D ⊂   is, in general, not solved effectively in contrary to the standard Bergman 

space 2 ( ).A D
Observe the following self-mapping (7) satisfies [17] the important property
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∂ ∂ ∂ ∂ =

∂
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for all z D∈  and any 2 ( )f A D∈  from the Bergman space 2 ( )A D of holomorphic functions on D, where a mapping 
1 ( ), 0s Dσ σ+∈ >  is a Hölder continuous on D and such that / ( ; ),  2.s

rf e z L D r∂ ∂ ∈ >  The representation (7) also 
proved very useful [17, 18, 25] for classifying quasiconformal mappings of the complex plane, being reduced to solving 
some nonuniform elliptic differential equations.

2.2 Main growth degree decomposition result

Now, consider two functions: an entire function ( ), 2,pf W p∈ >  and a Hölder continuous function 
1exp ( ),s σ+∈   that the restriction exp | ( ; )D rf s L D∈ 

 f for some r > 2. Then, the potential property (7) makes it 
possible to factorize the function ( )pf W∈   on D the following way:

,f ϕ ψ= +       (8)

where, by definition, the functions
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defined by means of the operator (1) as
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suitably reduced on functions ( )rg L D±∈  and calculated over the subregions :D D+ += ∩  and : ,D D− −= ∩
being the upper and down intersections of the region D with the half-planes +  and −  of the complex plane ,  
respectively.

The obtained above holomorphic functions 2 ( ; )A Dϕ +∈   and 2 ( ; ),A Dψ −∈   owing to the representation (5) and 
(6) on the domains D+ and D– can be naturally analytically continued from D+ and D– respectively, on the whole region D,
giving rise to the functions 2 ( ; )A Dϕ ∈   and 2 ( ; ),A Dψ ∈   respectively, and satisfying, by construction, the expected 
[2, 3] conditions: the reduced function |Dϕ

−
  is “small” on D– subject to the wage function 1exp ( )s Dσ+

−∈  and the 
reduced function |Dψ

+
  is “small” on D+ subject to the wage function 1exp ( ).s Dσ+

+∈
Here, one needs to remark that the functions : Dϕ →

  and : Dψ →
  are not continuous on the joint boundary 

part : ,D D+ −∂ ∩∂ =   that is ( ) ( )t tϕ ϕ+ −≠   and ( ) ( ),t tψ ψ+ −≠   respectively, where lim ( ) ( ), lim ( ) ( )
z t z t

z t z tϕ ϕ ϕ ϕ+ −↓ ↑
= =     

and lim ( ) ( ),
z t

z tψ ψ+↓
=  lim ( ) ( )

z t
z tψ ψ−↑
=   for all t∈  It is also easy to check that the jump ( ) : ( ( ) ( ))f t t tϕ ϕ+ −= − 

( ( ) ( ))t tψ ψ+ −= − ≠   for all t∈, since the generating function ( )pf W∈   is, evidently, continuous on the region D 

giving rise to its zero jump on  , that is ( ) ( ) 0f t f t+ −− =  for all t∈. These properties make it possible to use the 
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well-known Sokhotsky-Plemelj formulas for the possible analytic continuations of the basic functions |Dϕ
+

 on D_ and 
|Dψ

−
 on D+ through the common boundary  :

+

1 ( ) ( )( ) | , (z)| = ,
2 2

1
z D z D

f
z

t dt f t dtz
i t z i t

ϕ ψ
π π−∈ ∈

−
=

− −∫ ∫ 

                        
(12)

applied actually to the corresponding reproducing kernels, which should a priori give rise to the conditions

( ) ( ) ( )z z f zϕ ψ+ = (13)

for z D−∈  and

( ) ( ) ( )z z f zϕ ψ+ = (14)

for .z D+∈  Thus, the following proposition, solving the growth degree problem above, holds.
Proposition 2.2. Let a function ( )pf W∈ 

 and a wage function 1exp ( ), 0,s σ σ+∈ >  be such that for a simply 
connected region D ⊂   the reduction exp | ( ; ), 2.D rf L D rα ∈ >  Then, there exists the additive factorizations (13) 
and (14) on D D+ += ∩  and D D+ += ∩  respectively, satisfying the related growth degree properties.

3. The invariant function decomposition
3.1 Preliminary invariant decomposition statements  

Now, consider the Hilbert space 2 ( )L D  of complex functions on a simply connected region D ⊂   and the 
isometry operator 2 2: ( ) ( ) :T L D L Dα →  

:T f fα α= ° (15)

for any 2 ( )f L∈   subject to some measurable mapping : ,D Dα →  for which the Lebesgue measure λ  is invariant, 
that is 1( ) ( )A Aλ λ α −=  for any Borel measurable set .A D⊂  Then, the following proposition holds.

Proposition 3.1. The Hilbert space 2 ( )L D  is decomposable as the direct orthogonal sum

2 0( ) ( ),n
nL D H T Hα
+∞

− = += ⊕ (16)

where 0 2: ( ( ))n
nH T L Dα
+∞

− == ∩  and 2( ( ))H T L Dα
⊥

+ =  are the orthogonal complements in 2 ( )L D  to the closed subspace 
2 2( ( )) ( ).T L D L Dα ⊂
To state this decomposition, consider the closed subspace 2 2( ( )) ( )T L D L Dα ⊂  and its orthogonal complement 

2: ( ( ))H T L Dα
⊥

+ =  in the Hilbert space 2 ( ),L D  one can write down the following splitting:

2 2( ) ( ( )) .L D T L D Hα += ⊕ (17)

Since the closed subspace ( ) ,T H Hα + +⊥  this splitting can now be applied to the closed subspace 2 ( ),H L D+ ⊂
obtaining

2
2 2 2( ) ( ( )) ( ( )) ( ).L D T L D T L D H T Hα α α+ += ∩ ⊕ ⊕           (18)

Having this process iterated, one yields the following Hilbert space direct sum splitting

2 0( ) ( ),n
nL D H T Hα
+∞

− = += ⊕ (19)



well-known [16, 26] as the Wold decomposition, where the closed subspace 0 2: ( ( )).n
nH T L Dα
+∞

− == ∩  
Remark 3.2. Here, it is important to observe that the orthogonal direct sum 0 2: ( ) ( )n

nH T H L Dα α
+∞
= += ⊕ ⊂  is, by 

construction, an invariant subspace of the Hilbert space 2 ( ),L D  that is

.T H Hα α α⊂   (20)

Let a set { : }j H jβ +∈ ∈  denote an orthonormal basis of the closed subspace 2 ( ).H L D+ ⊂  Then, the decomposition 
(16), in particular, means that for any function ,g Hα∈  there exists a set of numbers ( ){ : , },j

ng j n +∈ ∈ ∈    such 
that the following convergent decomposition

( )j n
n j

n j
g g β α

+∈ ∈

= °∑ ∑
 

(21)

holds. In particular, if the mapping : D Dα →  is ergodic [27, 28], the subspace 2 ( )H L D− ⊂  is trivial, and for any 
function 2 ( ),f L D∈  the decomposition (21) reduces to the orthogonal superposition sum

( )j n
n j

n j
f f β α

+∈ ∈

= °∑ ∑
 

(23)

for a suitable set of coefficients ( ){ : , }.j
nf j n +∈ ∈ ∈  

3.2 Main invariant decomposition result and examples   

Assume that the Bergman space 2 2( ) ( )A D L D⊂  is invariant with respect to the isometry 2 2: ( ) ( ),T A D A Dα →  
that is 2 2( ) ( )T A D A Dα ⊂  for the holomorphic mapping : ,D Dα →  the following direct sum orthogonal decomposition

2 0( ) ( )n
nA D H T Hα
+∞

− = += ⊕                                                                      (23)

holds, where 1 2: ( ( ))n
nH T A Dα
+∞

− == ∩  and 2( ( ))H T A Dα
⊥

+ =  in 2 ( ).A D
In particular, if to take the mapping : D Dα →  to be as both conformal and ergodic, then the subspace is trivial 

and for any holomorphic function 2 ( ),f A D∈  one can write down the additive orthogonal decomposition

( )j n
n j

n j
f f β α

+∈ ∈

= °∑ ∑
 

(24)

for a suitable set of coefficients ( ){ : , },j
nf j n +∈ ∈ ∈    where the basis functions { : }j H jβ +∈ ∈  are holomorphic 

in D.
Example 3.3. Concerning the general Hilbert space 2 ( )L D  case, as an example one can consider the region D =   

and the isometry mapping 2 2: ( ) ( ),T L Lα →   where the mapping :α →   can be given either by the algebraic 
expression

2 2

4( , ) ,ziz z z
z z

α = −
−

(25)

or by the expression

2 2

4( , ) ,
( )

zz z z
z z

α = +
−

(26)

for any 0 .z z± ≠ ∈
Then, the following theorem, based on Proposition 3.1 and the ergodicity results of [15, 29, 30], holds.
Theorem 3.4. The following identity
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( ( , ), ( , )) ( , ) ( , ) ( , )h z z z z d z z h z z d z zα α λ λ=∫ ∫
 

  (27)

holds for any 2 ( ),h L∈   where ( , ) / (2 )d z z dz dz iλ = ∧  is the Lebesgue measure on . Moreover, taking into account 
that the Lebesgue measure λ  on   is also ergodic with respect to the mappings (25) and (26), we obtain that any 
function 2 ( )g L∈   allows the direct sum orthogonal decomposition (22).

Proof. Proof easily follows from the ergodicity property of the Lebesgue measure λ  on   stated in [29] and the  
α-invariance property of Remark 3.2. Consider now a so-called [31] internal function ( , ) :z zϕ + +→  , analytic in the 
upper half plane ,+  and take into account that the following Frobenius-Perron type relationship

( , ) ( , )
( , ) ( , )

( ) ( , ) ( ( , ))z z z z
z z z z

J
α

ϕ ω ω ω ϕ α ω ω
± ±

± ± ±
=

=∑ (28)

ho lds  fo r  a l l  0 ,z z± ≠ ∈  whe re  ( , ) : detJ

ω ω
ω ωω ω
ω ω
ω ω

± ±

± ±
± ±

∂ ∂
∂ ∂=
∂ ∂
∂ ∂

 i s  t he  i nve r se  t o  t he  J acob ian  o f  t he 

α-mapping ( ( , ) ,  ( , )) )α ω ω ω α ω ω ω± ± ± ±= =  at 2( , ) .ω ω± ± ∈  Taking into account now that the fixed points 
,  ( , )α α α αξ α ξ ξ ξ+∈ =  of the α-mapping above produce via the relationship

( )(z,z )( , ) : Im ( ) /(2 )d z z dz dz iαµ ϕ ξ= ∧ (29)

an invariant measure μ on the complex plane  with respect to this α-mapping. Moreover, as for the mappings (25) 
and (26) above the fixed point αξ = ∞  proves to be unique, one obtains that the invariant measure (29) is proportional 
to the usual Lebesgue measure on the complex plane , thus ensuring that the integral identity (27) is satisfied for 
any 2 ( ).h L∈   In addition, owing to the ergodicity of the mappings (25) and (26), one derives that the negative 
invariant subspace 0 2: ( ( ))n

nH T Lα
+∞

− == ∩ 

 is empty, giving rise for any function 2 ( )g L∈   to the direct sum orthogonal 
decomposition (22), proving the theorem.

The obtained above result says, in particular, that the Bergman space countable decomposition 2 0( ) ( )n
nA D T Hα
+∞
= += ⊕  

2 0( ) ( )n
nA D T Hα
+∞
= += ⊕  holds, where 2( ( ))H T A Dα

⊥
+ =  in 2 ( ),A D  being finite dimensional, makes it possible to generate an infinite 

hierarchy of ergodic matrix valued mappings, widely used in modern quantum computer science [32, 33], neural 
networks [34, 35], and artificial intelligence [36-38] studies.

4. Conclusions
In our paper, we studied a holomorphic function decomposition in Bergman space, specified by means of degree

growth on suitably separated sub-domains and having diverse applications in wavelet, co-orbit, control, and coherent 
state representation theories. A complicated and non-elementary open problem left to be studied consists of describing 
a class of Hölder continuous functions on special connected domains of the complex plane with prescribed degree 
growth. There has also been constructed the additive Bergman space direct sum invariant decomposition with respect to 
multiplicative isometry operators, defined by means of some invariant measurable mappings, especially ergodic. Two 
examples of additive Bergman space direct sum invariant decompositions, generated by two-dimensional ergodic Boole 
type mappings, are presented. Subject to this direct sum invariant decomposition problem, one plans a very interesting 
and important study of classifying dual pairs of domains as invariant mappings, for which the corresponding generating 
invariant subspaces are finite-dimensional, presenting the main interest for applications in modern quantum computer 
science, neural networks, and artificial intelligence studies.
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