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Abstract: Mathematics and statistics have a significant impact on the advancement of most trending sciences like 
machine learning, artificial intelligence, and data science. In this article, we use the Stacking Ensemble Machine 
Learning Algorithm (SEMLA) to predict heart disease, considering accuracy (acc), diagnostic odds ratio (Dor), F1_
score, Matthews correlation coefficient (Mcc), receiver operating characteristics-area under curve (roc-auc), and log-
loss (log_loss). The data is analyzed using classification learning techniques. We have considered sex, age, cholesterol, 
fasting blood sugar, the highest rate of heartbeat, type of chest pain, resting electrocardiogram (ECG), angina, depression 
induced by exercise, peak exercise measurement, major vessel number, a disorder in the blood, and a target attribute to 
represent the presence and absence of disorders. The approach used allows for the prediction of heart disease and the 
management of worst-case scenarios. In comparison with the existing models, our proposed model has outperformed 
other models with an accuracy of 97.28%.
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Nomenclature

Acc	 Accuracy
Dor		 Diagnostic odds ratio
kNN	 k-nearest neighbors
LDA	 Linear discriminant analysis
LR		 Logistics regression
Lr+		 Positive-likelihood ratio
Lr–		 Negative-likelihood ratio
Mcc	 Mathews correlation coefficient
MLP	 Multi-layer perceptron
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Nsvc	 Nu-support vector machine
roc-auc	 Receiver operating characteristics-area under curve
SEMLA	 Stacking Ensemble Machine Learning Algorithm

1. Introduction
Computing technology has made inroads into a variety of industries, including healthcare. As a result, electronic

health data could be viewed as a valuable resource in the field of education. Advancements in digital learning 
techniques are incorporated to better understand possible hidden concerns. Any computational methods used to 
process healthcare data should be approached with caution. Mathematics is the fundamental foundation of theoretical 
computer science. Studying and interpreting data pertaining to medical diagnostic processes requires this imperative 
method [1]. Real experiments are challenging to conduct, as in these instances. These models’ and analyses’ outputs 
aid in the understanding of diagnostic techniques and statistically depict various intervention plans and their expected 
consequences. It is a universally acknowledged fact that important and delicate items handled with care last a long 
time. Machine learning algorithms can be efficiently utilized in the early diagnosis of diseases to assist doctors in 
providing the best possible care [2-4]. Machine learning is divided into three categories: supervised, unsupervised, 
and semi-supervised techniques of learning from data. The goal of being supervised is to achieve the desired result by 
implementing what has been learned. As the name implies, the second category classifies data without supervision and 
operates by recognizing patterns in the training data. Finally, the semi-supervised approach combines a few first-type 
techniques with a large number of second-type techniques to take advantage of both.

The heart is a vital organ in the anatomy of living creatures, and it is important for maintaining a healthy lifestyle. 
As per data compiled from 1999 to 2020, heart disease is rated as the number one cause of death [5]. According to WHO 
figures, roughly 17.9 million individuals died in the year 2019 as a result of heart-related problems [6]. A closed fist-
sized organ is the first functioning portion of the remnant in the embryo. Blood must be pumped from the most amazing 
organ in the body to all other key systems in order for the entire body to work as it should. The high fatality rate, even 
in advanced nations, is explained by its malfunction. For the human body to function properly, the heart must be in 
good health. Smoking, obesity, high blood glucose, and a lack of physical activity are a few major risk factors for heart 
disease. Unlike in ancient times, when there was a scarcity of anatomical and pathological information on issues relating 
to the heart, there are now a plethora of tests and tools available to assess the organ’s health. Specialists diagnose 
cardiac illness based on a patient’s medical history and the results of tests such as 2Decho and ultrasound. The disease 
could be caused by a variety of factors, including fat in the arteries, an irregular heartbeat, a flaw in the organ itself, its 
muscles, or infections, as well as abnormalities in the heart regions. Symptoms will vary depending on the problem. One 
illness’s symptoms may or may not be the same as another’s. A person with chest pain, breathing problems, or fainting 
should hurry to the hospital since prompt medical attention could save their lives. Cardiac biomarkers are also used to 
assess the health of the heart. When myocardial necrosis occurs, such as in myocardial infractions, cardiac enzymes are 
released into the circulation. The most notable cardiac biomarkers include myoglobin, troponin, and creatinine kinase. 
Troponin I and Troponin II are released into the bloodstream between 3 and 4 hours after a myocardial infarction, which 
can be detected approximately 10 days before the damage to the heart occurs.

This study aims to utilize learning approaches and propose a model based on patient data to allow the prediction 
of heart disease and the management of worst-case scenarios. The proposed model receives the set of attributes as input 
and processes it to automate the target variable, giving better results in comparison to the other learning methods.

2. Materials and methods
2.1 Dataset and preprocessing

The public data on heart disease [7] is utilized to apply the models, confirming that all methods were performed 
according to relevant guidelines or regulations and applying machine learning models, which are briefly discussed. 
The data comprises 1,025 records, which are preprocessed to be complete without any missing data. By choosing a 
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subset of a population at random, simple random sampling is used to draw statistical conclusions about the population. 
Each person in the population has an exactly equal probability of being chosen using this sampling technique. Using 
the fact that the data considered in this paper is complete and a sample size calculator with a 99% confidence level, 
the ideal size of the sample was 822 records. So, we proceed with a simple random sample of 820 of 1,025 records 
comprising 80% of the data with 14 features: chest pain type, age, sex, fasting blood sugar (FBS), serum cholesterol 
(S.cholesterol), resting blood pressure (resting-BP), exercise-induced angina, achieved maximum heart rate (max. HR), 
resting electrocardiogram (resting-ECG), number of major vessels, thalassemia, the slope of peak exercise segment 
(slope), segment-depression, and target. The target distribution contains 47.9% with no disease and 52.1% with a 
disease, indicating that the data is balanced. The entries for each attribute are listed below. In the chest pain type, 1 
indicates conventional angina, 2 atypical angina, 3 non-anginal pain, and 4 non-symptomatic pain. The feature age is 
the number of years in the attribute sex, where male is represented by 1 and female is represented by 0. The slope values 
are 1 (upsloping), 2 (flat), and 3 (downsloping). The values for S.cholesterol and resting BP are in mg/dl and mmHg, 
respectively. When the FBS value exceeds 120 mg/dl, it is 1; otherwise, it is 0. The resting-ECG value is 0 for normal, 
1 for abnormal, and 2 for definite left ventricular hypertrophy criteria. The exercise-induced angina value is 1 for yes 
and 0 for no, while the number of major vessels displays 0-3 colored by fluoroscopy. Finally, thalassemia values denote 
defects with 1 fixed fault, 2 normal defects, and 3 reversible flaws. The variable target is set to 0 if the patient has no 
disease and 1 otherwise. Figure 1 shows a block diagram of the methodology used in this study.

Stacking on train 
data

Base models
and comparison 

metrics

Comparison of 
stacking and base 

models

Stacking 
ensemble

70% train 
data 

30% test 
data 

Problems 
objective

Feature 
association

Information 
gathering

Data 
preprocessing

Figure 1. Block diagram

Table 1 shows the descriptive statistics for the dataset’s integer and float-type data observations. Each numeric 
feature’s mean, maximum, minimum, standard deviation, and standard error were included.

Table 1. Descriptive statistics of numeric features of data

  Mean Std. deviation Max.  Min. Std. error

Age 54.45 9.2 77 29 0.32

Resting-BP 131.72 17.88 200 94 0.62

S.cholesterol 247.36 52.65 564 126 1.84

Max. HR achieved 149.13 23.02 202 71 0.8

Segment-depression 1.06 1.18 6.2 0 0.04

No. of major vessels 0.76 1.04 4 0 0.04

The statistics of categorical features (binary and multi-category) are shown in Table 2.
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Table 2. Descriptive statistics of categorical features of data

  Mean Std. deviation Max.  Min. Std. error

Sex 0.68 0.47 1 0 0.016

Chest pain type 0.97 1.02 3 0 0.036

FBS 0.16 0.36 1 0 0.013

Resting-ECG 0.51 0.52 2 0 0.018

Exercise-induced angina 0.34 0.47 1 0 0.017

Slope (peak exercise segment) 1.39 0.62 2 0 0.022

Thalassemia 2.3 0.62 3 0 0.022

The 14 data attributes are classified as numerical, binary, and category features during preprocessing. Age, 
S.cholesterol, resting-BP, max. HR achieved, segment-depression, and the number of major vessels are all numerically
grouped attributes. The binary features are sex, FBS, exercise-induced angina, and target, whereas the categorical
features are the rest. With only two categories, the binary features are likewise essentially categorical. The features
are classified using the data binning technique [8]. To determine the relationship between the properties of the chosen
data, the correlation is explored. Point-biserial correlation is used for numerical features, whereas Cramer’s V [9] is for
categorical data. Figure 2 shows that numerical features have a weak association with the target.
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We utilized a Jupyter notebook to implement the chosen methods in the Python programming language. The Scikit-
Learn library was used to get the result of the metric under evaluation.

2.2 Classification methods

Classification is an important branch of machine learning to categorize data and use it effectively and efficiently. 
On the classified data, complex and varied actions in many different fields can be performed to get better insights for 
further analysis [10]. We chose the strategies from a vast variety of classification algorithms [11, 12]. They are LR [13], 
kNN [14], Nsvc [15], LDA [16], and MLP [17].

2.2.1 Proposed SEMLA

A meta-model linearly pools the results from many base models to be able to advance the functioning of machine 
learning [18]. A top blending layer is extended to the voting ensemble technique to acquire the superlative aggregation 
of the models in consideration. Ensemble-learning predictive models improve poor classifiers’ efficiency, statistics, 
and computation performance. Stacking can be utilized to increase performance in approaches including optimal 
feature selection, incremental and nonstationary learning, mistake detection, error correction, and decision confidence 
improvement [19]. The basic process of stacking is to train and make predictions on the original training dataset using 
first-level learners. These predictions are then combined and make up the training data for the meta-learner. That is, the 
meta-learner uses the output of the first-level learners as input. Although it is feasible to generate stacked ensembles out 
of the same learning algorithms, first-level learners are frequently made up of various and diverse learning algorithms. 
As depicted in Figure 3, the selected five base models are implemented on the partitioned heart data. The predicted 
values are represented as P1 of LR, P2 of kNN, P3 of LDA, P4 of Nsvc, and P5 of MLP. The five predictions are 
aggregated in SEMLA to produce the final predicted value (P).

Heart dataset

Train (70)%

Test (30)%

SEMLA (Stacking Ensemble Machine Learning 
Algorithm)

MLPNsvcLDAkNNLR

P5P4P3P2P1

P (Final 
prediction)

Models

Predictions

Figure 3. SEMLA-model
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2.2.2 Pseudocode 

Input: Training data
Output: Final prediction
1. Start
2. Step 1: Read the dataset
3. Step 2: Univariate feature selection (point-biserial, Cramer’s V)
4. Step 3: Partition the data
5. Step 4: Build level-0 models
6. for each model in base models
7. Append it to the level-0 classifier
8. end for
9. Step 5: Define level-1 classifier
10. Step 6: Build the stacking classifier using level-0, and level-1 estimators, and cross-validation
11. Step 7: Fit the model on train data
12. Step 8: Predict the model on train and test data
13. Step 9: Go to Step 3 (for categorical data)
14. Step 10: Else stop

2.2.3 Basic code for SEMLA  

level0 = list()
level0.append((‘LR’, LogisticRegression()))
level0.append((‘kNN’,KNeighborsClassifier()))
level0.append((‘LDA’, LinearDiscriminantAnalysis()))
level0.append((‘Nsvc’, NuSVC()))
level0.append((‘MLP’, MLPClassifier()))
level1 = RandomForestClassifier() # meta learning model
model = StackingClassifier(estimators = level0, final_estimator = level1, cv = 5)
predict_st = model.predict(X_train)
accuracy_st = metrics.accuracy_score(y_train, predict_st)
print(“Accuracy :train- Stacking = ”, accuracy_st)
pred_prob_modt = model.predict_proba(X_train)
predict_s = model.predict(X_test)
accuracy_s = metrics.accuracy_score(y_test,predict_s)
print(“Accuracy :test- Stacking = ”, accuracy_s)
pred_prob_mod = model.predict_proba(X_test)

3. Results
3.1 Metrics for model evaluation

The performance of the model is evaluated using metrics. It is very important to select the appropriate metric [20, 
21]. The following measures have been used to evaluate the efficiency of the base model and the proposed model.

3.1.1 Confusion matrix 

It is also known as a contingency table and is used to summarize the chosen five classifiers’ performance [22]. 
Table 3 shows the tabulated confusion matrix for the train and the test set following data preprocessing. The following 
notations are used: 

TP (True_Positive): heart disease is anticipated in patients who have it. 
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TN (True_Negative): patients without heart disease are anticipated to be free of disease. 
FP (False_Positive): the patients without heart disease are anticipated to develop it.
FN (False_Negative): heart disease patients are anticipated to be free of the condition. 
It is evident from the values in Table 3 that the classification summary of SEMLA is better in comparison to other 

models on both train and test data. SEMLA has correctly classified training data as 278 patients having heart disease 
and 294 as patients not having the disease. The summarized classification result on test data for SEMLA, with 109 
true-positives and 130 true-negatives, is better than other models. The performance of the MLP is also quite good in 
comparison with LR, LDA, and kNN. Model Nsvc is a poor classifier among all the models on training and testing data.

Table 3. Confusion matrix of the train, test data

Train Test Total records

Model TP FP FN TN TP FP FN TN

LR 241 38 24 271 97 17 6 126 820

kNN 241 38 34 261 100 14 9 123 820

LDA 240 39 26 269 97 17 6 126 820

Nsvc 250 29 34 261 101 13 17 115 820

MLP 255 24 13 282 102 12 3 129 820

SEMLA 278 1 1 294 109 5 2 130 820

3.1.2 Sensitivity 

A metric [23] uses the model to describe the number of real positive cases that were projected to be positive. In 
other words, it is regarded as a true-positive rate, which measures the likelihood that a condition associated with heart 
disease would be accurately detected using equation 1.

p

p N

T
sensitivity

T F
=

+
(1)

3.1.3 Specificity 

It is described as the model’s ability to accurately forecast TN  instances. It is the inverse of recall and is referred to 
as TN rate. It counts the no heart disease individuals who were correctly recognized as healthy people without the disease 
with equation 2. 

N

N P

T
specificity

T F
=

+
(2)

3.1.4 Accuracy 

A metric is used to show the relationship between the measured result and the actual value. It is used to quantify 
the ability to differentiate between a person with the disease and someone who does not have the disease. Accuracy can 
be determined using sensitivity and specificity, with prevalence results [24] using equation 3.

p N

p N p N

T T
accuracy

T T F F
+

=
+ + +

(3)
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The above-mentioned metrics are used to measure the performance of the models, and the results achieved are 
recorded in Tables 4, and 5. Table 4 demonstrates the obtained values of metric sensitivity, specificity, and accuracy 
using 13 features on train (sens_1_train, spec_1_train, acc_1_train) and test (sens_1_test, spec_1_test, acc_1_test) data. 
Table 5 records the results of metrics with categorical features on the train (sens_2_train, spec_2_train, acc_2_train) and 
test (sens_2_test, spec_2_test, acc_2_test) data. SEMLA has obtained sensitivity, specificity, and accuracy of 98.4%, 
96.21%, and 97.28%, respectively, which is better than other models. And also, it is evident from Table 5 that SEMLA 
implemented with only categorical features has outperformed other models by achieving 86.4%, 90.91%, and 88.72% 
sensitivity, specificity, and accuracy, respectively.

Table 4. Sensitivity, specificity, the accuracy of the train, and test data with all features

Train Test

Model sens_1_train spec_1_train acc_1_train sens_1_test spec_1_test acc_1_test

LR 89.73 85.76 87.77 92 86.34 89.11

kNN 91.72 87.12 89.45 92 89.39 90.66

LDA 90.4 86.44 88.44 92 86.37 89.11

Nsvc 88.41 93.56 90.95 91.2 93.94 92.61

MLP 94.7 90.51 92.63 94.4 90.9 92.61

SEMLA 99.0 98.98 98.99 98.4 96.21 97.28

Table 5. Sensitivity, specificity the accuracy of the train, and test data with the categorical features

Train Test

Model sens_2_train spec_2_train acc_2_train sens_2_test spec_2_test acc_2_test

LR 80.79 80.68 80.74 80.8 84.85 82.88

kNN 80.79 84.41 82.58 82.4 88.64 85.60

LDA 83.11 78.98 81.07 83.2 82.58 82.88

Nsvc 82.78 75.56 79.22 78.4 83.33 80.93

MLP 83.44 80.69 82.08 84 86.36 85.21

SEMLA 87.09 88.47 87.77 86.4 90.91 88.72

Tables 4 and 5 are visualized in Figures 4 (a), (b), (c), and (d). It is aesthetically evident that the accuracy achieved 
by SEMLA is better than other models, both for training and testing data. Figures 4 (a) and (b) depict the results of 
models on the train and test data with 13 features. Figures 4 (c) and (d) show the metric values obtained with categorical 
train and test data. SEMLA has performed incredibly well when it comes to train data. Furthermore, compared to 
categorical features, the values of data containing all features are better. With all features, the train’s accuracy is greater 
than the accuracy of the test data, indicating overfitting of the model; however, with categorical features, it is optimal.
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Figure 4. Sensitivity, specificity, accuracy: (a) train data with 13 features and target; (b) test data with 13 features and target; (c) train data with 
categorical features and target; (d) test data with categorical features and target

3.1.5 Lr+ 

A metric in [25] was used to quantify the probability of patients who have heart disease being diagnosed positively 
over the probability of patients who are negatively diagnosed with the disease. In equation 4, ‘+’ represents the increase 
in the odds of the disease when the diagnostic test is positive.

1
sensitivityLr

specificity
+ =

−
(4)

3.1.6 Lr– 

This measurement quantifies the ratio of the probability of patients being diagnosed with heart disease negatively to 
the probability of people not having the disease. ‘–’ indicates the decrease in the odds of the disease when the diagnostic 
test is negative, in equation 5.

1 sensitivityLr
specificity

− −
= (5)

3.1.7 Dor

The effectiveness of the diagnosis of disease data can be measured using the metric Dor [26]. It is a summary of 
likelihood (Lr+, Lr–) ratios. It is calculated using “equation 6”. The value of the metric ranges from zero to infinity. 
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The result of the metric is interpreted as less than zero, specifying that the outcome should be inverted; exactly one 
signifies a positive prediction irrespective of the actual value; and greater than one signifies a higher performance of the 
prediction.

( )( )1 1
sensitivity specificityDor
sensitivity specificity

∗
=

− −
(6)

The results obtained for the above metrics are shown in Tables 6 and 7. Table 6 demonstrates the output of metrics 
Lr+ (Train_Lr+, Test_Lr+), Lr– (Train_Lr–, Test_Lr–), (Train_Dor_1, Test_Dor_1) applied to 13 features. Table 7 shows 
the output achieved by the metrics (Train_Lr+,Test_Lr+,Train_Lr–, Test_Lr–, Train_Dor_2, Test_Dor_2) on categorical 
features of data.

Table 6. Lr+, Lr–, Dor_1 of train, test data with 13 features

Train Test

Model Train_ Lr+ Train_ Lr– Train_Dor_1 Test_ Lr+ Test_ Lr– Test_Dor_1

LR 6.303 0.119 52.66 6.747 0.093 72.83

kNN 7.121 0.095 74.94 8.674 0.089 96.93

LDA 6.667 0.111 60.01 6.747 0.093 72.83

Nsvc 13.727 0.124 110.82 15.048 0.094 160.64

MLP 9.978 0.059 170.45 10.384 0.062 168.57

SEMLA 97.357 0.01 9700.89 25.978 0.017 1562.1

Table 7. Lr+, Lr–, Dor_2 of train, test data with categorical features

Train Test

Model Train_ Lr+ Train_ Lr– Train_Dor_2 Test_ Lr+ Test_ Lr– Test_Dor_2

LR 4.181 0.238 44.39 5.323 0.226 23.57

kNN 5.181 0.228 38.83 7.251 0.199 36.52

LDA 3.955 0.214 38.59 4.775 0.203 23.47

Nsvc 3.392 0.228 26.37 4.704 0.259 18.15

MLP 4.319 0.205 89.57 6.160 0.185 33.25

SEMLA 7.556 0.146 2221.03 9.504 0.149 63.53

The Dor readings of Tables 6 and 7 are visualized to highlight the performance of SEMLA in comparison to the 
selected five models in Figure 5.
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Figure 5. Dor Evaluation: (a) train, test data with 13 features; (b) train, test data with categorical features

3.1.8 Precision and recall

This metric [27] is used to qualitatively measure different models’ performance. As in equation 7, it is calculated as 
the ratio of true-positive and (sum of true-positive and false-positive).

p

p p

T
precision

T F
=

+
(7)

Recall gives a quantitative measure of machine learning models. Equation 8 is used to find the recall by dividing 
the true positive by (the true positive and false negative).

p

p N

T
recall

T F
=

+
(8)

3.1.9 F1_score

A weighted average of recall and precision can be calculated using this metric. F1_score can be computed using 
equation 9. It can also be defined as the harmonic mean of sensitivity and precision. Its best value is one, whereas its 
worst value is zero.

1_
2

2
p

p p N

T
F score

T F F
=

+ +
(9)

3.1.10 Mcc

The Pearson product-moment correlation coefficient between actual and predicted values is calculated using a 
contingency matrix method known as the Mcc and can be computed with equation 10. A coefficient of +1.0 denotes a 
perfect prediction; 0.0 denotes a prediction that is no better than chance; and -1.0 denotes the worst possible prediction.

( )( )( )( )
p N p N

p p p N N p N N

T T F F
Mcc

T F T F T F T F

−
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+ + + +
(10)

In Table 8, pre_1_tr, re_1_tr, f1score_1_tr, and Mcc_1_tr represent the precision, recall, F1_score, and Mcc of the 
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models on 70% of the training data, and pre_1_t, re_1_t, f1score_1_t, and Mcc_1_t are used for 30% of the test data 
with 13 features. Table 9 shows the values of the above metrics (pre_2_tr, re_2_tr, f1score_2_tr, and Mcc_2_tr) for train 
data and (pre_2_t, re_2_t, f1score_2_t, and Mcc_2_t) for test data with categorical attributes.

Table 8. Precision, recall, F1_score of the train, test data with 13 features

Train Test

Model pre_1_tr re_1_tr f1score_1_tr Mcc_1_tr pre_1_t re_1_t f1score_1_t Mcc_1_t

LR 0.866 0.897 0.878 0.756 0.865 0.920 0.891 0.784

kNN 0.879 0.917 0.871 0.789 0.891 0.920 0.907 0.814

LDA 0.872 0.904 0.864 0.769 0.865 0.920 0.891 0.784

Nsvc 0.934 0.884 0.936 0.820 0.934 0.912 0.926 0.852

MLP 0.911 0.947 0.905 0.853 0.908 0.944 0.926 0.853

SEMLA 0.990 0.990 0.989 0.979 0.961 0.984 0.973 0.946

Table 9. Precision, recall, F1_score of the train, and test data with categorical features

Train Test

Model pre_2_tr re_2_tr f1score_2_tr Mcc_2_tr pre_2_t    re_2_t f1score_2_t Mcc_2_t

LR 0.811 0.808 0.807 0.615 0.835 0.808 0.828 0.657

kNN 0.841 0.808 0.826 0.652 0.873 0.824 0.856 0.712

LDA 0.802 0.831 0.811 0.622 0.819 0.832 0.829 0.658

Nsvc 0.776 0.828 0.792 0.586 0.817 0.784 0.809 0.618

MLP 0.816 0.834 0.821 0.642 0.854 0.840 0.852 0.704

SEMLA 0.886 0.871 0.878 0.756 0.90 0.864 0.887 0.775

Figure 6 represents the visualized entries of Tables 8 and 9 (F1_score and Mcc) separately. The SEMLA scored 0.989 
on train data and 0.973 on test data using 13 features, which is an excellent F1_score. Similarly, the SEMLA did well 
with categorical features on the train and test data, scoring 0.878 and 0.887, respectively. The model also scored higher 
on Mcc for train and test with 13 features (0.979, 0.946) and for train and test with categorical (0.756, 0.775).
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Figure 6. F1_score, Mcc evaluation: (a) F1_score of the train, test data with 13 features; (b) F1_score of the train, test data with categorical features; (c) 
Mcc of the train, test data with 13 features; (d) Mcc of the train, test data with categorical features

3.1.11 roc_auc score

The receiver operating characteristics (roc) metric is used to evaluate binary classification types, and the area under 
the curve (auc) summarizes the area under the curve. The positive and negative class points are perfectly distinguished 
[28] when the auc value is 1. When auc is 0, all negatives are predicted as positives and all positives as negatives. The
rauc_score_1 with 13 features and the rauc_score_2 considering categorical features are recorded in Table 10. SEMLA
has overtaken with 0.998 on train data and 0.992 on test data with 13 features. And also, SEMLA has achieved 0.933 on
train data and 0.929 on test data with the categorical features.
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Table 10. roc_auc score of the train, test data

Train, test data with 13 features Train, test data with categorical features

Model rauc_score_1_train rauc_score_1_test rauc_score_2_train rauc_score_2_test

LR 0.951 0.953 0.889 0.889

kNN 0.944 0.946 0.918 0.927

LDA 0.951 0.951 0.889 0.889

Nsvc 0.977 0.984 0.5 0.5

MLP 0.973 0.967 0.903 0.903

SEMLA 0.998 0.992 0.933 0.929

3.1.12 auc

In 1971, [29] the roc curve was introduced in medicine for a radiologist to apply different decision criteria based on 
the contrast of the percentage of true-positive against false-positive diagnoses. The discriminative capacity of predictive 
models is commonly assessed using the auc. The risk distribution of patients with the disease and people with NO 
disease can be presented using the roc plot in Figure 7. The difference in risk between patients with and without disease 
is shown by the area between the roc curve and diagonal. The higher the auc, the greater the area between roc and 
diagonal, representing a higher separation between the risk of disease and NO disease people. The area under the curve 
is obtained by plotting (1-sensitivity) on the x-axis and sensitivity on the y-axis.
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3.1.13 Log_loss

There are many standard loss functions like Brier-loss, spherical-loss, and logarithmic-loss that can be used for 
probabilistic predictive problems. The log_loss is the most used metric [30, 31]. It is a probability-based metric used for 
the comparison of the classifier to measure the prediction using equation (11). The values of the metric range from 0 to 1, 
inclusive. Lower log_loss represents efficient model prediction, value 0 is obtained for a perfect model

                                                
( )( ) ( ) ( )( )( )

1

1log_ loss log 1 log 1
N

i i i i
i

y p y y p y
N =

= − + − −∑
                                          

(11)

where p is probability prediction.
In Table 11, the values obtained for the log_loss metric are recorded. The log_loss_1 (train, test) values result from 

all 13 features of the data, and log_loss_2 (train, test) records the reading of metrics with categorical features of the data.

Table 11. Log_loss of the train, test data with 13 features, and categorical features

Train, test data with 13 features Train, test data with categorical features

Model log_loss_1_train log_loss_1_test log_loss _2_train log_loss _2_test

LR 4.223 3.73 6.653 5.913

kNN 3.645 3.225 6.017 4.973

LDA 3.992 3.763 6.538 5.913

Nsvc 3.124 2.553 7.174 6.585

MLP 2.546 2.553 6.190 5.107

SEMLA 0.347 0.941 4.223 3.897

The results of the log_loss function on train and test data with 13 features obtained in Table 11 are visualized in 
Figure 8 (a), and results with categorical features are shown in Figure 8 (b). The loss in classification using SEMLA 
is very small in comparison to other models. Only 0.347% and 0.941% losses occurred on the train, test data with 13 
features. Similar results were observed with categorical feature data.
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Figure 8. log_loss evaluation: (a) train, test data with 13 features; (b) train, test data with categorical features

As further analysis [32, 33], the findings of the F1_score and Dor with all features are visualized in Figure 9 (a), 
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and in Figure 9 (b), the results obtained for the F1_score and Dor with categorical features are shown.
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The findings of accuracy and log_loss with 13 features and with categorical features on test data are summarized in 
Figures 10 (a) and (b). The SEMLA has achieved excellent accuracy, resulting in a minimum loss.
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Figure 10. Accuracy, log_loss combo evaluation: (a) test data with 13 features; (b) test data with categorical features

4. Discussion
Several researchers obtained a survey [34] of research publications on the prediction of heart disease and accuracy,

f-measure. To disclose the information in the dataset, quantitative data analysis is used [35, 36]. The authors of [37]
looked at major factors that contribute to cardiovascular diseases, such as dyslipidemia, hypertension, diabetes,
smoking, and lack of physical activity. To improve the system’s efficiency, a web application was created [38, 39] to
collect patient data and implement several machine learning techniques. To increase accuracy, “Hybrid Random Forest
with a Linear Model (HRFLM)” [40] combines the advantages of random forest (RF) and linear-method. Support
vector machine (svm), kNN, naïve-Bayes (NB), decision-tree (dtree), and adaboost were demonstrated to quantify
regressor metrics using various models in [41]. On classification methods such as neural networks (NN), dtree, svm,
LR, LDA, RF, kNN, and NB [42], holdout, stratified k-fold, k-fold cross-validation, and repeated random procedures
were used, and an accuracy of 71.82% was achieved using NN with holdout cross-validation. The voting model [43]



Volume 4 Issue 4|2023| 921 Contemporary Mathematics

was implemented with 84.1% accuracy using svm and dtree. [44] used Weka to illustrate classification algorithms 
(svm, NB, dtree, kNN) that obtained 84.33% accuracy. In [45], a statistical correlation was employed to choose the 
features to increase accuracy by utilizing 18 distinct classifiers and achieving an efficiency of 85%. [46] recorded the 
performance of kNN for k values ranging from 1 to 20 and found an accuracy of 87%, while [47] found an efficiency of 
90.79% with a k value of 7. In contrast, RF in [48] has a superior accuracy of 91.80% when compared to other models. 
In [49], a cost-sensitive ensemble model was demonstrated to attain 92% accuracy using Matlab employing statistical 
t-test comparison. Fast conditional mutual information (fcmim) feature selection was compared to various feature 
selection methods in [50], and it attained a percentage of 92.37 accuracies in 0.001 seconds. [51] illustrates four distinct 
preprocessing strategies for dealing with missing values. To achieve 95.83% accuracy, boosting techniques such as 
extreme and adaptive gradient, light gradient boosting, extra trees, stochastic gradient descent, nsvc, and stacking were 
used. To demonstrate the findings with and without principal component analysis, an artificial neural network model 
with embedded regularization based on standard deviation [52] was built, with an accuracy of 96.3%. An accuracy of 
96.3% was achieved [53] by using a voting classifier with svm, RF, LR, XGBoost, and deep learning (Convolution-NN, 
Deep-NN) as base models. The machine learning model was implemented after applying Pearson correlation, recursive 
elimination, analysis of variance (ANOVA), least absolute shrinkage and selection operator (LASSO), and decision tree 
(DT) feature selection techniques. The authors [54] have preprocessed the data and applied LASSO for feature selection, 
then sequential deep learning with a fully connected dense layer to achieve an accuracy of 94.2%. 

The accuracy of SEMLA compared with other models studied in the literature is shown in Figure 11. SEMLA has 
outperformed other models with an accuracy of 97.28%.
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Figure 11. Comparison of SEMLA with other models in the literature

5. Conclusions
An ensemble model for heart disease prediction is presented in the proposed work. The accuracy, Dor, F1_score, 

and log_loss of the proposed model’s prediction to that of LR, RF, LDA, Nsvc, MLP classifiers have been evaluated. 
On data with all attributes, significant results are obtained as compared to the base models. The accuracy achieved is 
97.28%, Dor of 1562.1, F1_score of 0.973, roc-auc score of 0.992, 0.946 Mcc, and log_loss of 0.941. The learning 
models were then applied to data with only categorical variables. SEMLA has a value of 88.72% accuracy, 63.53 Dor, 
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0.887 F1_score, 0.929 auc_score, 0.775 Mcc, and a value of 3.897 log_loss. Effective performance of SEMLA has been 
observed considering all features and categorical data with 16 ms and 10 ms execution times for prediction, respectively. 
The efficacy of the proposed model is compared to that of previous studies published between 2017 and 2021. We 
foresee significantly better outcomes if the suggested model (SEMLA) is indeed applied to large clinical data obtained 
through expert pathologists. The study’s scope can be extended in the future to include other chronic conditions and 
industries.
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