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1. Introduction

The Toda lattice [1] is a clue in nonlinear one-dimensional crystal which has been used in solid state physics and
presented in the following form:

dn = an (bn+l _bn)’
Bn =2a —a.), neZ.

The Toda lattice is relevant in many fields of science, even as a model for DNA in biology [2]. Soliton solutions,
which are related to the integrability of the equations, play a crucial role in the Toda lattice. The presence of such
solutions is linked to the integrability of equations. The work [3] shows that all the integrable systems have soliton
solutions. Many studies have focused on investigating the Toda lattice and its generalizations, from which we indicate
here only [4-13].

Recent interest has been growing in investigating soliton equations and their hierarchies with self-consistent
sources. These sources appear in solitary waves with alternating speeds, leading to diverse dynamics in physical models
such as plasma physics, hydrodynamics, and solid-state physics [14-26]. The work [17] is dedicated to Korteweg-
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de Vries (KdV) equations containing integral types that are self-consistent. As shown in previous works, [18] have
examined soliton equations with self-consistent sources in the context of the KdV equation, capillary-gravity waves,
and the nonlinear Schrodinger equation, among others. Furthermore, in [26], it has been considered that other important
soliton equations with a self-consistent source are the nonlinear Schrédinger equation, which describes the nonlinear
interaction of ions acoustic waves in double-component homogeneous plasma with an electrostatic high-frequency
wave. The associated results were collected in [27-34].

The discrete soliton equations with self-consistent sources were first studied by Liu and Zeng [35], who
investigated the Darboux transformation for formulating and calculating the Toda lattice with self-consistent sources.
An inverse scattering method was also developed to find solutions for the Toda lattice with self-consistent sources [36-38].
Integrability of the periodic Toda lattice and its hierarchy with a source has been shown in previous works [39-44].

In this study, we work on the higher-order Toda lattice with an integral-type source using the standard Zakharov-
Shabat algorithm.

We contemplate the isospectral deformation of the L-operator by scalar products of its eigenfunctions, which
transforms the nonlinear equation into a prescribed form on the right-hand side. The solution can be constructed using
the inverse scattering problem for the L-operator [45]. Analogously in [46, 47], this approach may discover applications
in certain models of electric transmission lines.

2. Formulation of the problem

In this part, we will provide a brief review of the statement of the problem. For this purpose, we consider the
following system:

. 1
an = an (Gn+l,r+l _Gn,rﬂ) + an @ _(f;z+1gn+l _ﬁgn )dﬂ’

luf=1

. | 1 .
bn = Hn+],r+l _Hn,r-H + ar/ ¢ _(.fngn-H +~f}’l+]g}’l )d/u_ an—] @ _(j;gn—l +-fn—lgn)dﬂ9

|ul=1 O lul=1
+
an—Lfn—l +bn.fn + an.fn+l = /u 2’u f;,f
-1
+
anflgnfl-‘rbngn-i_angnﬂ = /u lu gn’nez’ (1)
under initial conditions
a,(0)=a’,b (0)=b", neZ, @)

where

j
G, )= ZC,--.; <0,Lt) o, >0<j<r+lrez,
5=0

J
H, ()= 2a,(t)c, , <0,,,L(t) 5, >+c, +10< j<r+],
s=0

O,m#n

(L(t)y) = anflynfl +bnyn +anyn+1 = ﬂ’yn’< Sm’5n >:{
" 1,m=n,

¢,,C,,...,C,,, are given arbitrary real numbers. Here and in the future, dot means the derivative with respect to time.
{a)}* b)) satisfy the following properties:
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1.a2>0,[mb,?=0, neZz,
2.Z|n( b,?]<oo,

3. The operator

+

a -t
"2

(L(0)y), =a,,(0)y,, +b,(0)y, +a,(0)y,, €)

has exactly N eigenvalues

/Ik 0)=

zk(0)+zkfl(0) k=12 . N
2 b 2 bR b

which are out of the interval [—1; 1].

Varying r, we obtain the hierarchy for the Toda lattice with the integral-type source (1) that is advertised in the title
of this paper. In system (1), the functional sequences of the functions {a,(£)}",,{b,(1)}",.{f, (1, 1)}", > and {g, (1,1)}",
are unknown vector functions. We assume that for all #> 0 and |u| = 1 the following asymptotic properties are fulfilled:

g, (i)~ p(u, )" +q(u,t)u™", n — — o
Lo, t) ~ r(u, )" +s(p, )™, n— — oo 4)

Here p(u,t), q(u,t), ¥(u,t), and s(u,t) are given continuous functions in x4 and ¢ with first-order derivatives with
respect to x4 and satisfy Holder’s condition [40] with some degree v € (0, 1] on |u| =1 for all nonnegative £. Moreover,
let the quantities P and Q of the form

P(u,t) = p(u, 0)r(p,t)+q(u' 1) s(u™' 1),
O(u, 1) = p(u,0)s(u, 1)+ q(u " 1) r(u™ 1), %)

satisfy the relations

P(;u_l’t) = _P(:uﬂt)’ Q(;u_l’t) = _Q(,uat):

for all |u| =1 and ¢ > 0, where the overbar means complex conjugation.
The main aim of this work is to obtain the expressions of the solutions {a,(?)}",, {b,()}",, {f,(&,t)}", , and
{g,(u,1)}”, of the problem (1)-(2) in the framework of inverse scattering method for the operator L(7).

3. The basic facts from scattering problem

In this section, we give some basic information about the scattering theory for the operator L(¢). This theory was
developed in the work [48].
We consider the second-order difference equation

(Ly)n Eanflynfl +bnyn +anyn+1 =ﬂ'yn7 n EZ' (6)
. z+z7"
Here, {y,}”, is an unknown vector and A=
{a,}” ,{b,}”, satisfy the conditions

©

is a spectral parameter. We suppose that the sequences
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a,>0,Imb,=0,neZ,

bl

1
a,——|+|b,| |< . 7
=] Ij (7)
If condition (7) is valid, then equation (6) has Jost solutions with the asymptotics:
p,(2)=z"+0(l) as n—>x»,|z| =1,
v, (z2)=z"+0(l) as n— —o, |z| =1. ®)

As we know that such solutions exist, and moreover, they are identified by the asymptotic expressions (8) unique
and analytically expended into the circle |z| < 1.
The function ¢,(z) admits the following representation

0,(2) = iK(n,n')z"', )

where the coefficients K(#n,n") are independent on z, and are related to a, and b, by formulas

4 _1K(n+Ln+l)
"2 K(nn)

5 _l(K(n,nJrl)_ K(n-1,n) j

" 20 K(nn) Kmn-lLn-1)

>

(10)

For |z] = 1, the pairs {@,(2),9, (z"")} and {v,(2),v, (z™")} are the pairs of linearly independent solutions of (6),
therefore

v, (2)=a(2)e,(z)+ B(2)e,(2),

0, (2)=a(2)y,(z )= By, (2), (11)
with
2
0!(2):FW{%(Z),%(Z)}, (12)
and
Wiy, (2).0,(2)} =a,,(2)9,.(2) - v,..(2)9,(2)).
-1
The reflection coefficient is given by the formula R(z) = —% and is regular enough on the circle. The function
oz
o(z) is analytically expended into the circle |z| < 1, and inside it has a finitely many zeros z,, z,, ..., zy. The points
-1
A = TSt , k=1,2,....N correspond to eigenvalues of the operator L. From (12) we have

o =By* k=12..N, (13)

where y/} =y, (z,).

The set of the quantities
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{R(2),2,,25,-s 2y, B), B

seNosBPogseees

By}

is called the scattering data for equations (6).
The coefficients K(n,n") given in representation (9) satisfy the equation of Gelfand-Levitan-Marchenko type

y(n,m)+ F(n+m)+ i y(m,nYF(m'+m)=0, m>n (14)

n'=n+1

(K(n,n))”" =1+ F(2n)+ i y(n,n"YF(n'+n),

n'=n+1
where

K(n,m
l(n$m):¥s

K(n,n)

1 -1 S 2
Fn)=— ® R(2)z"dz+ ) C;z]. 16
()27[1.24:() 2Ci (16)

Now {a,}”, and {b,}” can be expressed via the scattering data by the formulas (10).
It is worthy to remark that the vectors

B =L, )~ f, | _
Z zZ =

k
are solutions of the equations Ly =4, y,k =1,2,..., N. From the equality (12), as |z] <1 we deduce that
9,(z) > a(z)z" as n —> —o,
therefore,
ht ——p.a(z)z, as n—>-0k=12,.,N, 17
_datz)

. !
where ¢ (z, )= y . From asymptotes (8) and (17), we get W{h! ,y'}= pia(z, )ézk %)
zZ

z=z;

. In the future, we
will need the following identity.

If {x,(1)}”, and {y,(&)}", are solutions of the equations Lx =Ax and Ly =¢y, then the identity holds:

(6 =Dx, (D), (&) =Wix,(A),,(S)} =Wix, (1), y,,(&)}, neZ. (18)

4. Time evolution for z,(¢)

In this section, we will show the time independence of the eigenvalues 4,(¢), k = 1, 2, ..., N of the operator L(¢) as
well as z,(¢), k=1, 2, ..., N.

If Ker(L(f) — 1), 4 € C denotes the two-dimensional nullspace of L(z) — A, then the system of equations (1) can be
rewritten as follows:
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a =a[H +I:In,r+l

n n n+l,r+1

- 2(2’ - bn+l )G~n+],r ]
—a, § (1, (g, (1)

“u‘zl

=S (u,0)g, (u,0)d 1
b,=2[a’G,,,, ~a.G,,,

+(A=b,)G,, ~(A-b)H,,.,]
—a, § (1, (g, ()

Jud=t

+ fra(,0)g, (u.0)d 1
v, § (g ()

|ed=1

+ [ () g, (. 0)d (19)

where

G, (z0=22G,, ),
Jj=0

A,,(0=2"+Y VH,, (-G, ()

Jj=0

reNy,teR.

Let {Vnk (t)}io be the normalized eigenvector of the operator L(f), associated with the eigenvalue 1,(¢), k=1, 2, ..., N,
ie.,

a, Vi +bVi+vaVt =2Vinez. (20)

n-1" n-1 n'n n’ n+l n

We differentiate identity (20) with respect to ¢ and use (19), then multiply the resulting identity by ¥* and summing
over n from —oo to oo, we get

j’k = z (I:In,rJrl +[—~In—1,r+1)

n=—000

x[(A =5,V (D) =a, V(W (2)
=2 (A =b)[(k =B,V (2)=a, Vi ()]

n=-—o0

o0
~ k 2 A 2 A
x Gn,rVn (Z) +2 z (an Gn+l,r - an—lGn—l,r
n=—c0

+(ﬂ“k _bn )2 Gn,r _(//Lk _bn )ﬁn,)‘+1)(Kf (Z))z

+ Z a, (I:In+1,r+1 +I:In,r+l _2(ﬂ’k _bn+1)én+1,r )Vnk+l (Z)Vnk (Z)

}’l:—ool
+ § T (uwndu, 1)
=1

where
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Ty = S (a,,(f, (008, (100)

= g, (W V()
+ a,(f, (1,08, (1,1) .

+ [ (08, (1.0) (V) (2)

- an—l(f;;(ﬂ?t)gn—l(ﬂ9t) 5

+ £ (g, (w)) (V) (2)

+ an (f;l+l (ﬂ, t)gnﬂ (/’l’ t)

— L, (1) g, (O, (2 (2).

Now, let us simplify the right-hand side of (21)

b= A =b) (V@)

n=

-3 b, (V@

=S G, V()

+ Z a,H,., V@V

23 b a,G VW)

+ 22 a:G,,, (Vi)

2Y a6, (V@)

-2 Z a,(% =b,.)G,.. .V, 2V} (2)

1
+ ¢ T (undp

|uf=1

Consequently, using (20) we obtain

/ik = 2 Z arfG~n+l,)‘ (Vnk (Z))z
+ 2 Z anflanfzénfl,rl/;k—2 (Z)Vnk (Z)
=224, @V () +a,. V()

n=-o

~ 1
x G, V@ § T (undu

Juf=1

2 i afénﬂ,r (Vnk (Z))2
2 i aananflénfl,rVnIiZ (Z)I/nk (Z)
- 2 i ajénﬂ,r (Vnk (Z))2

- 2> a,a,,G,. Vi@V, ()

n o n+l T n+lr’ on

+

n=—o0n

1
+ ¢ —T (uwt)dp.

‘,u‘:l

It follows that
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h=§ - L wnap. (22)

Next, we calculate right-hand side of (22). Note that, by grouping the terms we obtain

0

Z|:f;1+l n+l { n sgn}""gnnmkﬂ { }]+ Zw:[ L { fn}J

n=-0n n=-o

-1
Denote now & = 4 +2,u , then putting W, =W {V*,g },D, =W{¥V*, f.}, and using (18), we have

T}c = Z|: (];Hl n+1+ka):|+Dn(gn+lI/n}11+gn n ) l] 0
Due to (22), we get
4, =0,k=1,2,...,N.
dt
Furthermore, using time independence of the eigenvalues 1,(¢), we obtain
E 0 k=12,..N. 23)
dt
5. Evolution for the scattering function
Let us consider the following system
(Ly)n Eanflynfl +bnyn +anyn+l :/’i’yn’ (24)
z+z"
EI :fn+1(:u)yn+l(z)+f;y(lu)yn(z)a/1: ,}’IEZ, (25)

for unknown functions F,(u, z), n € Z. By taking an arbitrary solution of this system, we define for alln € Z,

0 ~ ~ 1
5)(2)=21=24,(0G, ,(30)y,. = Hypa (003, + § —2,(0F, (1.2)d (26)

‘y‘:l

and

S, (u,2)=a,(f,. (1,2 = [0y, () + a,, (f/,(0)y,,(2) = f,,()y,(2))+ (A=&)F,(1,2),

+ -1
where & = £ 2’” . Note that, according to (18), S,(u,z)=0,n € Z.

Now, we determine (L —2)S)(z). For this, we introduce the following notations
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})2r+2 = zan (t)én,r (ﬂ”t)S+ _I:In,rH (ﬂ"t)’

1
2, =(ﬁ\;,\:1;gn(ﬂ)ﬂ(#,z)du. o

Here S' is shift operator, i.e., (S*f)(n) = f,,,.

LS’?(Z)—iS,?(Z) :L(yn _I)2r+2yn +Qn)_ﬂ“(yn _1)21‘+2yn +Qn)
=Ly, =4y, ~(L=A)P, ,y, +(L=1)Q,.

By using the equality Ly, — Ay, = —I;yn and notations (27), we obtain

LS, (2)~ 1S, (2)
= _Lyn - 2a5*lanl,ryn + anlenfl,rHynfl

1
+a,, §—g, (WF, (u2)du

“u‘:l

- 2a b G yn+l +bn1:[n,r+1yn

n-n > n,r

1
+ b, § —g,(1)F,(1,2)dp

=1

- za a Gn+l,ryn+2 + anH

nn+l n+l,r+1yn+l

1
+a, § =g, (WF,. (1. 2)d )

‘y‘:l

+ 2ﬂ’anén,ryn+l - ﬂ'l:ln,rﬂyn

~ 2§ g, (WF, (uw2)du

|l=t

According to (24), (19) and the following equality

Lyn = dn—lylz—l +Bnyn + dnyrHl

. ﬂ’_bn an A .
:anl[ yn __yn+1]+bnyn+anyn+l’

n-1 n—1

we get
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+H

LS)(2)-A8)(2) = -a, (H i —204=5,)G,)

1
= a, § —(f,(w0)g, (w0~ 1, (w.0)g, (u0)d 4]
Ju=1
A-b a ~ ~ ~
- yn __nyn+1 ] - [z(ajGn-H‘r - aj—lGn—l,r + ()b - bn)z Gn,r

n,r+l

X

a

n—1 n—1

b))+ 4, 08, + (08, (1)

Ju=1

. ~ ~ 1
- [an (Hn+l,r+l +Hn,r+] _2(l_bn+l)Gn+1,r)+ an @ _(f‘nﬂ (ll'l?t)gnﬂ (/’l! t)
Ju=1

- f;r (él’t)gn (ﬂ, t))dél]ynﬂ - [anl:lnfl,rjl + zanbn Gn,r +~ 2anén+l,r (a’ _an)
- aan+l,r+l _Zﬂ‘anGn,r ]yn+1 - [2a5—lGn—1‘r - (ﬂ’ _bn)Hn—l‘H-l _an

-~ - 1
- 2ar?GnH,r +/1Hn,r+l]yn + an—l @ _gn—l (/’l)F'n—l (/u’ Z)d/.l

Ju=1

n,r+l

1 1 1
+ b, § —e,(WF,(u2du+ a, § ~Ee (O Ddu-2§ —g,(WF,(1w2)dp.

|ef=1 |f=1 |ed=1

After a simple simplification, on the right-hand side of the last equality, we derive

LS ()= A80(2) = W (3,1 S (b, ()= WA, f, (D}, (.0

Juf=1
+a,, v, fiawng, () + a, v, f,(u0g,  (u0)— a,y,f,(10g,, (1,1)
- anynf;r (/u’ t)gnﬂ (luﬂ Z‘) - any/z+1f;1+l (/u’t)gnﬂ (ﬂ’t) + anflgnfl (ﬂ)anl (lu’ Z)
+ b,8,(WF,(u,2)+ a,g,.,(WF,, (4,2) - Ag,(L)F, (1, 2)]d .

Taking into account (25) and

W), g,y =Wif, (1), g, (1)} =0,
necz,

we obtain

(L-DS'(2) =~ § &, (S, (20, neZ.

ld=1
It follows that
(L-2)S)(2)=0, neZ. (28)

We denote by ¢,(z, 1) and w,(z, ) the Jost solutions of the equation (24) which satisfy condition (8). Setting y," =
¢,(z)and y, = y,(z) in (25), we define

F(u.2) = £, (1w, (2)+2 Z £, (2,

Fr(.2)=—£,(d,(2) -2 Y £,(),(2). (29)

Jj=n+l

It is easy to check that these equalities determine the functions F, (u,z) and F, (u,z) at any |u| = 1 to be analytical
functions of the parameter z on the |z| < 1. Taking into account (18) and (29), the functions F, (u,z) and F, (u,z) at any
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value of the parameter z inside the circle |z| < 1 can be represented as

Fr(u2)= - 2“1( L 1Jx(W{fn(u),wn(z)}+W{fn_l<m,w,H(z)}), (30)
z—z \p-z pu-z
and
Fr(,z)=— 2“1( L 1IJX(W{fH(ﬂ),¢,1(Z)}+W{fﬂ_1(ﬂ),(ﬂn_l(z)}). €30
z—z \u-z pu-z

The right-hand side of the expressions (30) and (31) are also meaningful at any |z| = 1 of the parameter z satisfying the
conditionsz# u andz # p1 .
Next, we introduce S¢~ (z) and S (z) for |z] <1 as follows:

o ow, o - 1 )
S =224 20,6y H, ¢ § g, 0F, (), (32)

‘y‘:l

+ a 3 l +
S0 = 420,611, + § e, GOF, (.2 (33)

‘y‘:l

In accordance with the aforesaid, the quantities S, (z)=S," (z) and S,"(z)=S,"(z) thus determined depend
analytically on the parameter z in the circle |z| < 1. However, since at any |z| = | and z # *1 the functions F, ( ,u,z) and
FE’ ( ,u,z) have singularities at the points # = z and u = z — 1, the limiting values of the functions S’ (z) and S* (z)
as |z| — 1 must to be determined more accurately. To do it, substituting the right-hand sides of equalities (30) and (31)
into expressions (32) and (33), we get that at |z| = 1 the following equalities are valid:

Sy (2)= at” +2a,G, v, —H,, v+ v.p. gn(ﬂ)F (. 2)du+ ¢ (2, (z7)+¢; (2w, (2), (34)

nn Hl

S, (2)= —gn(ﬂ)F (w2)du+ ¢ (D)e,(z7)+4; (D)9, (2), (35)

9,
a +2anGn r¢ n, r+l¢ + p¢

=1

where v.p. means that integrals are taken as the principal value, and quantities ¢ (2),¢, (2),4'(z) and ¢, (z) are
determined by expressions

¢ (2) =27 i(p(2)r(2) +q(z")s(z")),
¢, (2) =27 i(q(2)r(2)+ p(z")s(z™)) (36)

and

¢ (2) =27 i(a(z)c(z)+ bz )d(z™),
¢ (2) =27 i(b(z)c(z) +a(z)d(z™")). (37)

Due to (5), we have

¢ (2) =27iP(2), §, (2) = 27iQ(2),
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¢4 (2) =27 i(P()F*(z )+ 0(Da(2)B(z ™)
+0(z a(2)p(z) + P(z e’ (2))

and
¢, (2) =-27i(P(2)a(z )B(z )+ Oz Na(2)a(z )+ 0z )B(2)B(z ") + Pz Ha(2) B(2)).
In the next step, we will find the asymptotes of the quantities

) 1 _
¢ =v.p. M:l;gn (L), (p,2)d ppasn — —o0

and

n 1 +
g = V-p%ﬂ;g,, (W F, (p,2)d pas n — .

Using expression (29), we find that the following asymptotes is valid:

#'(2) ~ G +C ()
#(2) ~ ()" +C ()27,

where

C(z)= %V.p_ {C](ﬂ)r(ﬂ)(ﬂ +2)(uz=1) | p()s()(u - i)(,uz + 1)}1 ’
-1 L p(p—z) u(u—z")

G, (z)=-27P(z) (38)

and

)=ty § be(u+ Dpz=1) | ad(Wu-20pz+D) |,
1 T 1P, u(p—7z) /J(,u—z’l)

C; (2) =2rxila(z)c(z) +b(z )d(z ™). (39)

Taking into account of (28), (34), and (35), we obtain the equalities

Sy (2)=(2.(2.0)2" ~ ) (2.0 +K(2)Jxw, () + K; (2, (27,
SV(2) =(8,(2,0)2= 5., (2,00 + K" (2))x4,(2) + K; (2)4,(z7),

where

K (2)=¢,(2)+C (2),
Ky (2)=¢ (2)+C, (2), (40)

K'(2)=¢, (2)+C (2),
K (2)=¢"(2)+C; (2), (41)
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Here, g (z,0) and £ _ (z,0) are polynomial in variable z. Note that in accordance with (36), (37), (38), and (39) we

r+l

deduce
K;(2)=K;(2) =0,
in that
Sy (2)=(2.0z" ~h, (20 + K (), () 42)
and
8% (z) = ( £,(2.02-h,,(2.0)+ K" (2))¢,(2).n e Z. 43)

Due to (38)-(41) one can easily be convinced that the quantities K (z)and K'(z) admit analytical continuation in z into
the circle |z| < 1. Moreover, it is easy to show that at |z| < 1, the equalities

K (o=t {q(ﬂ)r(ﬂ)(ﬂ +2)uz=1) | pU)s@)a =2z +D) } dp “4)
2 =1 u(p—z) u(pu—z")
and
K*(2)=— 21 §. {b(ﬂ)é’(ﬂ)(# +2)(pz—1)  a(ud(u)(p— i)(ﬂz + 1)} du 45)
z7 =1l u(u—z) p(u—z")

are fulfilled. Now, we assume
G,(2)=8"(2)—a(2)S) (z)+p(zHS) (2).
In view of (42) and (43), we deduce

G,(z)= ( 8.(2,00z-8.(z",0)z— ., (z,0)0+ ], (z"", 0))a(z)l//n zh
+ (K @-K ()@, )= (8,(z02-8,(20:" +K () =K @))x 1A W, (). (46)

On the other hand, from expressions (11), (30), and (31), at any |z] = 1 and |u| = 1 the following equality
F(u,2)—a(2)F, (u.z")+ Bz F, (u,2) =0,

is valid. Then, according to (11), (25), (36), and (37) we get

4 D,z + 65 (D0, (2)~ a@@ @ W, @+ @ W, N+ BEG @, )+ b (@, (2)
= ~4zia(2)(P(z W, (2)+ 02w, (= ).

By virtue of these equalities and using (11), (34), and (35), we deduce

op(z .1

—47iQ(z,t)a(z, t)} v,z 1) - {— +4zP(z",Ha(z, t)} v, (z,1).

G (z.0) = {_aaf(; 2

=
ot
Comparing this equality with (46), we obtain
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% =[47iQ(z,0) + &, (2,0)z = §,(z ", 0)z=h (2,00 + h_,(z",0)+ K" (z) - K (z ")]a(z,1)

and

M(;—;,t) =[g,(z,0)(z- z! )+ K (z2)-K~ (z)]ﬁ(z'1 1) — 472'P(Z_l ,Ha(z,t).

Bz 1)

Finally, from R(z,t)=—
a(z,t)

, (44) and (45) we obtain that at any |z| = 1, the following equality

GR((;,I) =[8,(z,0)0(z-z")+ 21 v.p. K_]SD(,u,t)d,u]R(z,t)
' -1 [u=1

+27 i(Q(z, )+ Q(z ' ,t))R(z,t) + 47 iP(z") 47)

are fulfilled, where

(u+2)(uz=1) (u—z)(uzﬂ)}_

D . = s s ) B
(s = (s ) (pas 1) + p(ps D)t t))x[ i—2) )

6. Time dependence of B,
We introduce
Gr =8"(z,)-B.S) (z,),k=12,..,N,
where the quantity B, = B(¢) is determined by (13). Using (42) and (43), we get
G, =[&,(2,0)(z, —z)+ K" (z) - K (z2)1By,(z,)n e Z. (48)

In (48), the quantities K (zk) and K (zk) are determined from (44) and (45).
On the other hand, taking into account formulas (30), (31), and the orthogonality relation of L(#), we deduce the
following equality

F(nz) = BF (1z) =23 f,(uw,(2,) =0,

Jj=—o

atany |u|=1.
In consequence, by virtue of (26), we obtain that

Gk — dBk (t)

z), neZ, k=12,..,N.
n dt l//"( k)

Comparing this equality with (48), we get

dB, (t - . - _ _
# —[8.(5,0)7, + K (2)~ &.(20,0)2 ~K~(2,)1B, (0 k = 1.2, N,
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where quantities K (zk, t) and K" (zk, t) are determined from (44) and (45). Thus

dB, (1) =[(z, - 2,")&, (Zk,O)— ¢ (4 +z,)(uz, —1)

dt L mu=z)
x (blDelut) + g nr(un)du— —— ¢ W= W+
z, —1 |=1 m(u—z;)

k=12,...N, (49)

where

a(u, 1) = p(u,0) (.0 + q(p,0)a(u, 1),
b(u,0) = p(u,0)a(u™ ,0)+q(p,1) Bu, 1),
c(p,0) = r(uw ) f(u" 1) +s(u,Da(u,t),
d(u,0) = r(u,t)a(u™ ,0) +s(u,t) f(u,1) (50)

and

a(y,t):nijzjiflixexp{“; ig'[lln(l_|R(§’t)| )ﬂ+§ dg} B ) =—R(u,t)a(u,t).

As consequence of all the previous arguments, we have thereby proved the following assertion.
Theorem 1. If the functions a,(t), b,(?), f,(u,t), g (u,t), n € Z are solutions of the problem (1)-(3), then the
scattering data of the operator

(L(t)Y),, =a, ,(0)y,,+b,()y, +a,)y,,,

by relations (23), (47), and (49).

7. Conclusion

The obtained results completely define the time evolution of the spectral data, which allows us to solve the problem
(1-4) by using the following algorithm: Let us give a’ and b’, n € Z.
1. With the given @’ and b!,, n € Z, we find scattering data

{R(2),2,,2y, s Zy > Bys Byseees By} for
(LO)y),;
2. According to the results of Theorem 1, we obtain the time evolution of the scattering data
{R(z,0),2,(t), 2z, (£),.... z\, (1), B, (1), B, (t),..., B, (1)}

for (L(1)y), ;
3. With the obtained scattering data, we uniquely define the function F(n, f) from the equality (16);
4. Substituting F(n,f) into the equations (14) and (15), and solving the resulting system we define y(n, m, f) then the
potentials a,() and b,(f) can be obtain via the formulas (10);

5. Solving the equation (6), we will construct the eigenfunctions { f,(x,1)}" and {g,(u1)}" .neZ.
The results obtained play an important role in the theory of solitons, and they can be used in some models of a
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special type of transmission line.
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