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Abstract: In this paper, we introduce and investigate the neighborhood of binary self-dual codes. We prove that there is 
no better Type I code than the best Type II code of the same length. Further, we give some new necessary conditions for 
the existence of a singly-even (56,28,12)-code and a doubly-even (72,36,16)-code.
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1. Introduction
Neighbors of self-dual codes were first investigated in [1] and [2]. Later, neighbors were used to find extremal

(64,32,12) codes in [3] and to find new codes of length 68 in [4]. Recently, the graph of neighboring codes was 
investigated [5]. In the current paper, we introduce the definition of a neighborhood of binary self-dual codes. The paper 
is organized as follows: In Section 2, we mention the main definitions and preliminary results that were essential for our 
work. Section 3 contains some auxiliary results. In Section 4, we investigate the relationship between neighboring self-
dual codes and introduce the neighborhood of self-dual codes. In Section 6, we show that equivalent codes can have 
different neighborhoods. Finally, in Section 7, we give some research problems.

2. Preliminaries
Let 2  denote the finite field of two elements, and let n be a positive integer. Then, a subspace of 2

n  is called a
binary linear code. We denote a linear code by C. Then, its dual code C⊥  is defined as

{ }2 ,0 nC x x c c C⊥ ⋅= ∈ = ∀ ∈

where ⋅  denotes the usual scalar product of two vectors. A code is called self-orthogonal if C C⊥⊆  and self-dual if 
.C C⊥=  It is a well-known fact that the dimension of a self-dual code of length n is ,

2
n  as for each linear code C, we

have ( ) ( )dim dim ,C C n⊥+ =  where ( )dim C  denotes the dimension of C as a vector space.
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The weight of a codeword ,c C∈  denoted by w(c) is the number of its nonzero coordinates. The minimum weight 
(or minimum distance) of a code C is the smallest nonzero weight of its codewords. We denote the minimum distance of 
C by ( ).d C  If a code C is a k-dimensional subspace of 2

n  with minimum distance d, then we say that C is an (n, k, d) 
-code.

Self-dual binary codes can be classified into Type I and Type II codes [6, 7]. A self-orthogonal binary code C is 
said to be doubly-even if all of its codewords have weight divisible by 4. If C has a codeword of weight not divisible by 
4, then C is a singly-even code [8]. Singly-even self-dual codes are called Type I codes and doubly-even self-dual codes 
are called Type II codes [7]. It is well known that Type II codes only exist for length divisible by 8 [9].

We know that the minimum distance of a binary self-dual code is bounded by ( ) 2 2
8
nd C  ≤ +  

 if C is a Type 

I code and ( ) 4 4
24
nd C  ≤ +  

 if C is a Type II code [1, 9]. If a code reaches equality in this bound, then the code is 

called extremal. Especially for larger codelengths it seems that equality cannot be reached in many cases. Codes with 
the highest possible minimum distance are called optimal codes. The search for extremal and optimal binary codes is a 
difficult task for many codelengths n and several researchers have contributed to this theory (see e.g., [10, 11]). There 
are still many open problems about extremal and optimal binary codes [7].

3. Auxiliary results
Let a and b be two codewords (i.e., binary vectors) of the same length. We denote the numbers of coordinates, 

which are 1 in both codewords by μ(a, b), i.e., 

                                                              ( ) [ ] [ ] { }{ }, # 1, 1, , .a b i a i b i i nµ = = = ∈ 

The weight of the sum of two vectors is the following:

                                                                    ( ) ( ) ( ) ( )2 , .w a b w a w b a bµ+ = + −

Lemma 1. Let a,b and c be vectors of the same length. Then, ( ) ( ) ( ) ( ), , , , .a b c b c a b c a bµ µ µ µ+ = + + −  
Proof. Using the following equations in the given order, the proposition can be directly shown:
1. ( ) ( ) ( ) ( )2 ,w a b c w a b w c a b cµ+ + = + + − +  
2. ( ) ( ) ( ) ( )2 ,w a b w a w b a bµ+ = + −  
3. ( ) ( ) ( ) ( )2 ,w a b c w a w b c a b cµ+ + = + + − +  
4. ( ) ( ) ( ) ( )2 ,w b c w b w c b cµ+ = + −

3.1 Neighbors and neighborhoods

The definition of neighbors among self-dual codes was introduced as follows:
Definition 2. Two self-dual codes of length n are called neighbors, provided their intersection is a code of 

dimension 1.
2
n
−

It is well known that a Type I code has a maximal doubly-even subcode of codimension 1 [1, 2]. Throughout the 
paper, we will denote this maximal doubly-even subcode by max ,C  further we denote the all-1 codeword by 1. If C is 
a self-dual code of even, then 1 ,C∈  since c C∀ ∈ , we have 0,c c⋅ =  which implies ( ) 0 mod 2w c ≡ , and therefore, 

1 1.c ⋅ =
We know by [1] and [2] that if C is Type I, then it has two Type II neighbors.
Investigating the neighbors of self-dual codes leads us to some interesting facts about the relationship between 

neighboring codes. We find out that codes with the same maximal subcode have a special relationship with each other. 
Therefore, we come up with the definition of a neighborhood for binary self-dual codes.

We extend the definition of neighbors to a set of codes, which are pairwise neighbors. We will call this set of codes 
a neighborhood.
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Definition 3. Let Cmax be a self-orthogonal code of length n, and dimension 1.
2
n
−  Then, there exist three self-

dual codes C1, C2, and C3, which contain Cmax as a maximal subcode of codimension 1, i.e., they are pairwise neighbors. 
Then, we say that {C1, C2, C3} are a neighborhood of codes. We will denote this set by  .

Remark 4. The neighborhood   of a doubly-even self-dual code of length divisible by 8 always consists of three 
codes, one of Type I and two of Type II.

Proof. Let { }1 2 3, ,C C C=  be a neighborhood with 1 max 1, ,C C γ=  2 max 2,C C γ= , and 3 max 1 2,C C γ γ= +  
for some 1 2 max, .Cγ γ ⊥∈  Since C1, C2, and C3 are self-dual, we immediately get that 1 2/ ,γ γ⊥  thus ( )1 2, 1 mod 2.µ γ γ ≡   
Since ( ) 0 mod 4w c ≡  and max ,c C∀ ∈  ( )1 22 , 0 mod 4cµ γ γ+ ≡ , and ( )1 22 , 2 mod 4,cµ γ γ+ ≡  we have by ( ) ( ) ( ) ( ) ( ) ( ) ( )1 2 1 2 1 2 1 2 1 22 , 2 ,w c w c w c w c w cγ γ γ γ µ γ γ γ γ µ γ γ+ + ≡ + + − + ≡ + + − + 

( ) ( ) ( ) ( ) ( ) ( ) ( )1 2 1 2 1 2 1 2 1 22 , 2 ,w c w c w c w c w cγ γ γ γ µ γ γ γ γ µ γ γ+ + ≡ + + − + ≡ + + − +  that ( ) ( ) ( )1 2 1 2 2 mod 4.w w c wγ γ γ γ+ ≡ + + +  
( ) ( ) ( )1 2 1 2 2 mod 4.w w c wγ γ γ γ+ ≡ + + +  This implies that if one of the codewords 1 2 ,γ γ+ 1c γ+  and 2γ  is doubly-even, then among the other two 

codewords exactly one is doubly-even and one is singly-even. 
In the following, we investigate the minimum distances of three members of a neighborhood   and their 

relations. First, it turns out that if the Type I member of a neighborhood   has a minimum distance 2, then the 
minimum distance of the two Type II members coincides.

Theorem 5. Let   be a neighborhood of binary self-dual codes of length divisible by 8. If the singly-even 
member of   has a minimum distance 2, then the minimum distance of the doubly-even members coincides.

Proof. We denote the members of   by C1, C2, and C3. Their coinciding doubly-even subcode will be denoted 
by Cmax. Then, 1 max 1, ,C C γ= 2 max 2, ,C C γ=  and 3 max 1 2,C C γ γ= +  for suitable 1 2 max, .Cγ γ ⊥∈  Furthermore, we 
assume that ( ) ( )2 1 2 0 mod 4.w wγ γ γ≡ + ≡  Since ( )2 1 2, 1 mod 2,µ γ γ γ+ ≡  we have ( )1 2 mod 4.w γ ≡  Thus, C1 is a 
singly-even code, and C2 and C3 are doubly-even codes. By assumption, we have ( )1 2,d C =  and thus, we can choose 

1γ  such that ( )1 2.w γ =  Let us denote the minimum distance of C2 by d. Then, we have for all maxc C∈ ,

                                                                              ( )2 .d w c n dγ≤ + ≤ −

We know

                                                       ( ) ( ) ( ) ( )1 2 2 1 2 12 , .w c w c w cγ γ γ γ µ γ γ+ + = + + − +

Since 2c γ+  and 1γ  cannot be orthogonal, we have ( )2 1, 1.cµ γ γ+ =  Thus, ( ) ( )1 2 2w c w cγ γ γ+ + = +  for all 
max ,c C∈  which implies ( )3 .d C d=  

Theorem 6. Let { }1 2 3, ,C C C=  be a neighborhood of self-dual codes of length divisible by 8. We assume that 
C1 is Type I, and C2 and C3 are Type II. Then, ( ) ( ) ( ){ }1 2 3max , .d C d C d C≤  

Proof. For technical reasons and to keep the proof as simple as possible, we assume now that 1 max 1 2,C C γ γ= +  
is a singly-even code and 2 max 1,C C γ=  and 3 max 2,C C γ=  are doubly-even codes.

We assume indirectly that ( ) ( ) ( ){ }1 2 3max , .d C d C d C>  The assumption implies immediately ( ) ( ) ( ){ }max 2 3max ,d C d C d C>  
( ) ( ) ( ){ }max 2 3max ,d C d C d C> , and since Cmax is doubly-even, we may assume that ( )max 4d C d≥ +  and ( )1 2d C d≥ +  for some 

0 mod 4.d ≡  Then, for any maxic C∈ , we have

                                                                     ( )1 22 2id w c n dγ γ+ ≤ + + ≤ − −

and

                                                                              ( )1 .id w c n dγ≤ + ≤ −

Further, we may assume ( )1w dγ =  and ( )2 1,w γ δ=  where 1 .dδ ≤  
Let 1 maxc C∈  be such that ( )1 1w c n dγ+ = −  and ( )1 1 1 22 , 2.cδ µ γ γ− + ≥  (Such an element c1 exists since ( )2 1 0 mod 4w γ δ= ≡ 

( )2 1 0 mod 4w γ δ= ≡  and ( )1 1 2, 1 mod 2.cµ γ γ+ ≡ ) Then, ( ) ( ) ( ) ( ) ( )1 1 2 1 1 2 1 1 2 1 1 1 22 , 2 , 2,w c w c w c n d c n dγ γ γ γ µ γ γ δ µ γ γ+ + = + + − + = − + − + ≥ − +  
( ) ( ) ( ) ( ) ( )1 1 2 1 1 2 1 1 2 1 1 1 22 , 2 , 2,w c w c w c n d c n dγ γ γ γ µ γ γ δ µ γ γ+ + = + + − + = − + − + ≥ − +  which is a contradiction. 

Corollary 7. There is no better Type I code than the best possible Type II code of the same length.
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This answers a question of Rains and Sloane [6] and Conway and Sloane ([1], p.1321, open question 1) who asked 
what is the smallest n such that a Type I code of length n is better than the best Type II code of the same length. Using 
the neighborhood approach, we can see that such a code cannot exist. This shows that the neighborhood approach 
enables us to see binary self-dual codes in a different way and thus to see relations and properties which were not 
obvious before.

3.2 The existence of certain self-dual codes

The existence of a Type I (56,28,12)-code is an open question [12]. It is known that Type II (56,28,12)-code exists 
[13-15]. Considering our previous results, we come to the following fact:

Corollary 8. If there exists a Type I (56,28,12)-code, then it is a neighbor of a Type II (56,28,12)-code, since 12 is 
the best possible minimum distance for a self-dual code of length 56.

Another unsolved question is the existence of a doubly-even (72,36,16)-code [12]. By Corollary 7, we can reduce 
the search of a Type II (72,36,16)-code to the search of a Type I (72,36,14)-code.

Corollary 9. If there exists a Type I (72,36,14)-code, then it has a doubly-even neighbor with greater minimum 
distance, i.e., it has a Type II (72,36,16)-code as a neighbor.

3.3 Neighborhood is not unique

The neighborhood of a self-dual code is not unique for permutation equivalent codes. Equivalent codes can be 
contained in neighborhoods whose members have different properties (minimum distance). For example, the well-
known (24,12,8) Golay code is unique up to permutation equivalence, but it is contained in (at least) two distinct 
neighborhoods. The first neighborhood is { }1 1 2 3, , ,C C C=  where C1 and C2 are two permutation equivalent (24,12,8) 
-codes and C3 is a (24,12,2)-code. The second neighborhood is { }2 4 5 6, , ,C C C=  where C4 is a (24,12,6)-code, C5 is 
a (24,12,4)-code, and C6 is a (24,12,8)-code. Generator matrices for C1, C2, C3, C4, C5, and C6 are the following matrices 
G1, G2, G3, G4, G5, and G6 respectively.

                                   

1

100000000001111111111001
010000000000111111000100
001000000000111000111100
000100000000101110101010
000010000000011101011010
000001000001101000011011
000000100001011001001101
000000010001110010010101
00000

G = 2

100000000001111111111001
010000000000111111000100
00100000000011100011

0001001000101101011
000000000101101100100101
000000000011011110000011
000000000000001011110111

G

 
 
 
 
 
 
 
 
  = 
 
 
 
 
 
 
 
 
 

1100
000100000000101110101010
000010000000011101011010
000001000001101000011011
000000100001011001001101
000000010001110010010101
000000001001000101101011
000000000101101100100101
000000000011011110000011
000000000001001011110110

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
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3

100000000001111111111001
010000000000111111000100
001000000000111000111100
000100000000101110101010
000010000000011101011010
000001000001101000011011
000000100001011001001101
000000010001110010010101
00000

G = 4

100000000000111111111110
010000000001010110111000
00100000000101011100

0001001000101101011
000000000101101100100101
000000000011011110000011
000000000001000000000001

G

 
 
 
 
 
 
 
 
  = 
 
 
 
 
 
 
 
 
 

0110
000100000001001010110110
000010000000011110010011
000001000000010011110101
000000100000001011001111
000000010001111010001010
000000001001011001101100
000000000101100011011100
000000000011001101011010
000000000001101001001001

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

5

100000000000111111111110
010000000001010110111000
001000000001010111000110
000100000001001010110110
000010000000011110010011
000001000000010011110101
000000100000001011001111
000000010001111010001010
00000

G = 6

100000000000111111111110
010000000001010110111000
00100000000101011100

0001001011001101100
000000000101100011011100
000000000011001101011010
000000000000000110101000

G

 
 
 
 
 
 
 
 
  = 
 
 
 
 
 
 
 
 
 

0110
000100000001001010110110
000010000000011110010011
000001000000010011110101
000000100000001011001111
000000010001111010001010
000000001001011001101100
000000000101100011011100
000000000011001101011010
000000000001101111100001

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Remark 10. If C is a Type I code, then its maximal doubly-even subcode is unique, thus its neighborhood is unique 
as well.

4. Conclusion and further research
We are convinced that the investigation of binary self-dual codes through their neighborhoods opens new

possibilities, both in finding codes whose existence is not known yet and in understanding the relations between self-
dual codes better.

By Theorem 6, we know that the minimum distance of a singly-even self-dual code cannot be greater than the 
minimum distance of its best doubly-even neighbor, but it can be equal.

There are three non-equivalent (32,16,8) Type I codes [16]. All of them have a doubly-even neighbor with 
minimum distance 8, which we computed by the program package TORCH [17].

Therefore, the following questions arise, whose solutions may help to solve open questions like the existence of a 
Type I (56,28,12)-code or a Type II (72,36,16)-code.

Problem 11. Is there a condition for the codelength n, such that the minimum distance of the best Type II code 
coincides with the minimum distance of its Type I neighbor?

Problem 12. Given a neighborhood { }1 2 3, , ,C C C=  is it possible that all three minimum distances coincide, i.e.,
d(C1) = d (C2) = d (C3)? 
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