
Volume 5 Issue 1|2024| 421 Contemporary Mathematics

Research Article

On Some New Approach of Paranormed Spaces

Reham A. Alahmadi

Basic Science Department, College of Science and Theoretical Studies, Saudi Electronic University, Riyadh-11673, Kingdom of 
Saudi Arabia
Email: r.alhmadi@seu.edu.sa

Received: 22 February 2023;  Revised: 13 March 2023;  Accepted: 3 April 2023

Abstract: The object of this paper is to bring out the space rq ( ,g p)  of non-absolute patterns. Also, we will structure 
B

its completeness property. Also, the Köthe duals will be determined. Moreover, the Schauder basis for it will be 
constructed.
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1. Introduction
By ,Ω = NC  we indicate the set of every sequence for C to symbolize the complex field and {0,1,2, }.=N   We

say each linear subspace of Ω is called a sequence space. We symbolize the bounded sequences by l∞ and by l(p) as 
p-absolutely convergent series.

Consider Y to be any linear space, define : ,Y → G  and call it a paranorm for Y, holding the following axioms:
(i) ( ) 0,Θ =G

(ii) ( ) ( ),− = G G

(iii) ( ) ( ) ( ),ζ ζ+ ≤ + G G G  and
(iv)  for | | 0nc c− →  and ( ) 0,n − → G  imply ( ) 0n nc c− → G  for each c’s in   and ℧’s in Y, where zero 

vector Θ belongs to Y. Choose (pk) as a bounded and positive number sequence having sup k
k

p =   and max{1, }.=   
So, as in [1] the space l(p) is given by:

|( ) { ( ) : | }pk
k k

k
l p ς ς ς= <= ∞∑

and is completely paranormed with

1/

1( ) | | ,
M

pk
k

k

 Ψ =   
∑ 
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for 11
{

1
}k kpp ′

+ =  if 1 inf .kp< ≤ < ∞

Consider infinite matrix ,( ( ))i jw=  and sequence ( ( ) ),kν ν= ∈Ω  then for every ( ),i∈  the  -transform   
( {( ) })iν ν=   exists with 

,
0

(( ) ).i i j j
j

wν ν
∞

=

= ∑

As in [2], the matrix domain of   in  is

{ }( ) .:jv v νΩ= ∈= ∈   (1)

For ,t∈  choose sequence of positive numbers ( )jQ  with 
0

.
t

t j
j=

= ∑Q  Then, the matrix ( )tjR r=Q Q  is given by

if 0 ,

0, if 

,

.

j

tj tr
j t

j t


≤ ≤= 

 >

Q

Q



In [3], the author has given new techniques and introduced the spaces ( )U   as follows:

    ( ) { ( ) : ( ) }j jU U∆ = = ∈Ω ∈  

for 0{ , , }U l c c∞∈  and 1.j j j−= −    
It was further analysed in [4-7] and many others as cited. The authors in [8] introduced the space ( )p

gr 

Q  as 
follows:

0

1( ) ( ) : ,
kp

k
p
g k j j j

k jk

r g
=

  ∆ = = ∈Ω < ∞ 
  

∑ ∑  

Q Q


where (0 < pk ≤ H < ∞) and g = (gj) is a sequence, such that 0jg ≠  for all .j∈  
For each , ,i j∈  the author in [9] defined matrix ( )mkb=B  as:

0

for
for 1
for 0 1 o

 

r
,

,

,

,
mj

r
b

j m i
j m

j m
s

j m


= 


= −
= −

< − > ≤

with , {0}.r s∈ −  By putting r = 1, 2 = −1, matrix B  reaches to matrix .
To notion of getting a new way of introducing generalized spaces with some limiting approach were studied in [4, 9, 

10] and many others.

2. The space ( , )r g pQ
B

The approach of this portion is to define ( , ),r g pQ
B  and compute its various topological structures. By q

gR B
-transform of a sequence ( ),k=   we imply that sequence ( )kη η=  is related as
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1

1 1
0

1( ) ( . . ) . . , ( ).
k

k j j j j j k k k
jk

q g r g s g r kη
−

+ +
=

 
= + + ∈ 

 
∑   Q Q Q

Q
(2)

Following various authors as in [9-20], we introduce ( , )r g pQ
B  as follows:

{ }( , ) ( ) : ( ) ( ) .k kr g p q l pη= = ∈Ω ∈ 

Q
B

In case r = 1 and s = −1, then the set ( , )r g pQ
B  gets merged to ( )q p

gr ∆  [8] and for taking n kg g=  for all n∈ (k 
fixed), yielding the results as in [6]. Also, if ( ) (1, 1, ...)kg e= = , s = −1 and r = 1, then ( , )r g pQ

B  merges to ( )q p
gr ∆  studied 

by Başarir [9].
Utilizing notion of (1), we redefine it as

( , ) { ( )} .q
gR

r g p l p=Q
B B

Now, we shall now begin the following theorem without proof, which is important in the text.
Theorem 2.1. For max{1, }=   and 0 ,kp< ≤ < ∞  the set ( , )r g pQ

B  is complete and is paranormed by ,BG  
where

1

1

1 1
0

1( ) ( . . ) . .
kp

k

j j j j j k k k
k jk

g r g s g r
−

+ +
=

   = + + 
   
∑ ∑  BG Q Q Q





Theorem 2.2. For 0 ,kp< ≤ < ∞  the set ( , )Br g pQ  and l(p) are linearly isomorphic.
Proof. Using the notion of (2), choose the map : ( , ) ( )BT r g p l p→Q  as .Tη→ =   
Nothing to prove about the linearity of T as is obvious. Also, = Θ  for T = Θ  showing T is injective. Suppose 
( ),l pη ∈  and choose ( )k= 

 as

11

1
0 1 1

( 1) .
k n k nk

k n k k
k n nk n k n

n k kn n n n

s s
rgr g r g

η
η

− − −−
−

− − +
= + +

 
= − + + 

 
∑

Q
Q

QQ Q

Then,

1

1

1 1
0

1

0
1

1

1( ) ( )

( ) , 

k

k

k

p
k

k k k
B j j j j j

k jk k

p
k

kj j
k j

p
k

k

g r
g r g s

δ η

η η

−

+ +
=

=

 
 = + +
  

 
 =
  

 = = Ψ < ∞  

∑ ∑

∑∑

∑



 

Q
G Q Q

Q Q







for

when ,
when 

1, 
.0,kj

k j
k j

δ
≠
=


= 


Consequently, ( , ).Br g p∈ Q  Hence, T is surjective as well as preserves paranorm, yielding T as linear bijection, and the 
result follows.
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3. Duals and basis of ( , )r g pQ
B

Here, the determination of basis and duals of ( , )Br g pQ  will be given.
Definition 3.1. Köthe duals: For the spaces   and   define ( ( , ))Λ    as follows:

                                                 ( ) ( ) ( ) ( ){ }., :   j j j jx x x xυ υ υ υΛ = = ∈Ω = ∈ ∀ = ∈   

Therefore, as in [1], the Köthe duals by above representation are defined as

                                                        1( , ), ( , ) and ( , ).K K K K cs K K bsα β γ= Λ = Λ = Λ

Theorem 3.1 (i): For each k ∈  with 1 ,kp< ≤ < ∞  construct the sets 1( , )D g p  and 2 ( , )D g p  as:

                                                 

1
1

1

( , ) { ( ) :

su } p (        , ) 
k

k

k
B

p

n
g n k n

K F n K n n

D g p a a

a
k n a B

g

>
′

−

∈ ∈

= = ∈Ω

 
+ < ∞ 

 
∑∑



Q Q
Q



and

                                                  

2
1

1

1

( , ) { ( ) :

             ( , ) },
k

k
B

p
n

k
g i k

k i kk k

D g p a a

a
k n a B

rg

>
′

−

= +

= = ∈Ω

  
+ < ∞  

   
∑ ∑



Q
Q



where

                                                          

1

1
1 1

( , ) ( 1) .
n k n k

n k
g n k n k

k k k k

s sk n
r g r g

− − −
−

− − +
+ +

 
= − + 

 Q Q


Then,

                                         1 2( , ) ( , ), ( , ) ( , ) .( , )B B Br crg p D g p p r g pg p D g s
α β γ

   = = ∩ =   Q Q Q

(ii): Let 0 < pk ≤ 1, for each .k ∈  Consider the sets D3(g, p) and D4(g, p) as given below:

                                                 

3

1

( , ) { ( ) :

             supsup ( , ) }
k

k
p

n
g n k n

K F k n K n n

D g p a a
a

k n a B
rg

−

∈ ∈

= = ∈Ω
 

+ < ∞ 
 

∑ Q Q
Q



and

                                                      

4

1

( , ) { ( ) :

            sup ( , ) }.
k

k
p

n
k

g i k
k i kk k

D g p a a
a

n k a
rg = +

= = ∈Ω
  

+ < ∞  
   

∑ Q
Q



Then, we have
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                                          3 4( , ) ( , ), ( , ) ( , ) ( , ) .B B Br crg p D g p g p D g p s g pr
α β γ

     = = ∩ =     
Q Q Q

To establish Theorem 3.1, the following lemmas are needed.
Lemma 3.1 (see, [17]) (i): For an integer B > 1, if 1 < pk ≤ H < ∞, then 1( ( ) : )C l p l∈  if

                                                                           
1sup . 

kp

nk
K F Kk n

c B
′

−

∈∈∈
< ∞∑ ∑



(ii): Let 0 < pk ≤ 1. Then, ( ( ) : )C l p l∞∈  if

                                                                               
supsup .

kp

nk
K F k n K

c
∈ ∈ ∈

< ∞∑


Lemma 3.2 (see, [21]) (i): For an integer B > 1, if 1 .kp< ≤ < ∞  Then, ( ( ) : )C l p l∞∈  if

                                                                                
1 .sup k

nk
k

p

n
c B

′− < ∞∑                                                                            
(3)

(ii): For 0 < pk ≤ 1 with ,k ∈  then ( ( ) : )C l p l∞∈  if

                                                                                   ,
sup | | .kp

nk
n k

c
∈

< ∞
                                                                                

(4)

Lemma 3.3 (see, [21]). For 0 < pk ≤ H < ∞ with each ,k ∈  we have ( ( ) : )C l p c∈  if (3) and (4) hold along with

                                                                                      lim .nk kn
c β=                                                                                  (5)

Proof of Theorem 3.1. First choose 1 < pk ≤ H < ∞ and define ( ) ,na a= ∈Ω  then (2) yields

                                                                 

1
1

0

0

( , )
.

        ( ) ,

n
n n n

n n g n k k k
k n
n

nk k n
k

a
a k n a g

r

c C

η
η

η η

−
−

=

=

= +

= =

∑

∑



Q




                                                           
(6)

where ( )nkC c=  is defined by

                                                                 

if 0 1,

i

( , ) , 

,  

0 f,

f ,

i ,

g n k

n n
nk

n n

k n

k n

k n

k n a

a
c

rg

≤ ≤ −






=



=


>







Q







Clearly from (6) with Lemma 3.1, we deduce that 1( )n na a l= ∈   whenever ( ) ( , )n Br g p= ∈ 

Q  if 1C lη ∈  whenever 
η ∈ l(p), yielding 1( , ) ( , ).Br g p D g p

α
  = 

Q

Now for ,n∈  consider
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1

0 0 1
( , ) ( ) ,

.

n n n
k

n n k g i k k n
k k i kk

a
a g k n a D

r
η η−

= = = +

 
= + = 

 
∑ ∑ ∑

Q
 

                                             
(7)

with ( ),nkD d=  given by

                                                       

1

,

(

i

, ) ,

0,

if 0 ,

f

n
k

g i k
i kk knk

k n
d

a
a k n

rg
k n

= +

 + = 


≤ ≤


 >

∑
Q



Now, from (7) and Lemma 3.2 yields that ( )n na a cs= ∈   whenever ( ) ( , )n Br g p= ∈ 

Q  if D cη ∈  for ( ).l pη ∈   
Consequently, from (7), we have

                                                        

1

1
( , ) ,    

kp
n

k
g i k

i kk k

a
n k a B

rgk

′

−

= +

  
+ < ∞  

   
∑ ∑

Q


                                                    
(8)

and lim nkn
d  is finite, thereby yielding 2( , ) ( , )  .Br g p D g p cs

β
  = ∩ 

Q .
As established above, with Lemma 3.3 along (8) yields ( )k ka a bs= ∈   whenever ( ) ( , ),n Br g p= ∈ 

Q  
if and only if D lη ∞∈  whenever ( ) ( ).k l pη η= ∈  Consequently, by applying the same condition, we deduce that 

2( , ) ( , )  .Br g p D g p cs
γ

  = ∩ 
Q .

Definition 3.2. Basis: If space G  is paranormed by B  contains a sequence ( ),n℘  and every ,ς ∈G  we can find 
one and only one ( ),nα  such that

                                                                             0
lim 0,

n

i in i
ς α

=

 − ℘ = 
 

∑B

where ( )nα  represents sequence of scalars, then ( )n℘  is a Schauder basis for G. The series i iα℘∑  having the sum ς is 
then said to be as expansion of ς w.r.t. ( )n℘  and is expressed as .i iς α= ℘∑  

Theorem 3.2. Let ( ) ( )( ) { ( )}m m
nb b=Q Q  be defined as elements of ( , )Br g pQ  as

                                                     

( )

 
 

( , ) , if  0 ,

0, if   

)

,

(m

m
g m

m m
n

n m n m
rg

b

n m

 + ≤ ≤
= 

 >

Q
Q




for each fixed .m∈  Then, ( ){ ( )}mb Q  is a basis for ( , )Br g pQ  having a unique representation of the form

                                                                              
( )( ) ( )m

m
m

bλ= ∑ Q Q
                                                                          

(9)

for any ( , )Bx r g p∈ Q  with ( ) ( )  m g mR B mλ = ∀ ∈ 

QQ  and 0 .mp H< ≤ < ∞  
Proof. For 0 ,jp< ≤ < ∞  trivially, ( ){ ( )} ( , )j

Bb r g p⊂ QQ  as

                                                                   
( ) ( )( ) ( ) for ,j j

gR Bb e l p j= ∈ ∈Q Q

where the sequence ( )je  having only non-zero term as 1 at jth place.
Let ( , )q

Br g p∈  be given. For every non-negative integer ,κ  we put
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[ ] ( )

0
( ) ( ).m

m
m

b
κ

κ λ
=

= ∑ Q Q (10)

Now, taking q
gR B  to (10), and with the help of (9), we see that

[ ] ( ) ( )

0 0
( ) ( ) ( )q q m q m

u m g g m
m m

R B R Bb R B e
κ κ

κ λ
= =

= =∑ ∑ Q Q

and

( )( )
( )

[ ]

  0, if  0

, f  

q
g i

q
g i

i
R B

iR B

κ

κ

κ

 ≤ ≤= −
 >

 

 i

with , .i κ ∈  Also, for ε > 0, we can find an integer 0 ,κ  such that

1

|( ) |
2

kpq
g i

i
R B

κ

ε∞

=

  < 
 
∑ 



for all 0 .κ κ≥  Hence,

( )

0

1

[ ]

1

|( ) |

|( ) |

2

i

k

pq
B g i

i

pq
g i

i

R B

R B

κ

κ

κ

ε ε

∞

=

∞

=

 − =  
 

 
≤   
 

< <

∑

∑

  



G




for each 0 ,κ κ≥  which proves that ( , )q
Br g p∈  is represented as (9).

To prove this representation for ( , )q
Br g p∈  given by (9) is unique. We assume on the contrary that there do exists 

another representation given by ( ) ( ).j
j

j
bµ=∑ Q Q  But, as in Theorem 3.1, the : ( , ) ( )q

BT r g p l p→  is continuous, so 
we have

( )
( )

( ) ( ) ( )                

( ) ( )

q q j
g n j g n

j
j

j n n
j

R B R Bb

e

µ

µ µ

=

= =

∑
∑

 Q Q

Q Q

for each ,n∈  contradicting ( ) ( ).q
g n nR B λ= Q  Therefore, it follows that representation (9) is unique.
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