On Some New Approach of Paranormed Spaces

Reham A. Alahmadi

Basic Science Department, College of Science and Theoretical Studies, Saudi Electronic University, Riyadh-11673, Kingdom of Saudi Arabia
Email: r.alhmadi@seu.edu.sa

Received: 22 February 2023; Revised: 13 March 2023; Accepted: 3 April 2023
Abstract: The object of this paper is to bring out the space $r^{q}(g, p)$ of non-absolute patterns. Also, we will structure its completeness property. Also, the Köthe duals will be determined. Moreover, the Schauder basis for it will be constructed.

Keywords: infinite matrices, completeness property, basis
MSC: 46A45, 40C05, 46J05

1. Introduction

By $\Omega=\mathbf{C}^{\mathbf{N}}$, we indicate the set of every sequence for \mathbf{C} to symbolize the complex field and $\mathbf{N}=\{0,1,2, \cdots\}$. We say each linear subspace of Ω is called a sequence space. We symbolize the bounded sequences by l_{∞} and by $l(p)$ as p-absolutely convergent series.

Consider Y to be any linear space, define $\mathfrak{G}: Y \rightarrow \mathbb{R}$, and call it a paranorm for Y, holding the following axioms:
(i) $\mathfrak{G}(\Theta)=0$,
(ii) $\mathfrak{G}(-\mho)=\mathfrak{G}(\mho)$,
(iii) $\mathfrak{G}(\mho+\zeta) \leq \mathfrak{G}(\mho)+\mathfrak{G}(\zeta)$, and
(iv) for $\left|c_{n}-c\right| \rightarrow 0$ and $\mathfrak{G}\left(\mho_{n}-\mho\right) \rightarrow 0$, imply $\mathfrak{G}\left(c_{n} \mho_{n}-c \boldsymbol{\sigma}\right) \rightarrow 0$ for each c 's in \mathbb{R} and \mho 's in Y, where zero vector Θ belongs to Y. Choose $\left(p_{k}\right)$ as a bounded and positive number sequence having sup $p_{k}=\mathcal{H}$ and $\mathcal{M}=\max \{1, \mathcal{H}\}$. So, as in [1] the space $l(p)$ is given by:

$$
l(p)=\left\{\varsigma=\left(\varsigma_{k}\right): \sum_{k}\left|\varsigma_{k}\right|^{p k}<\infty\right\}
$$

and is completely paranormed with

$$
\Psi_{1}(\mho)=\left[\sum_{k}\left|\mho_{k}\right|^{p k}\right]^{1 / M}
$$

for $\frac{1}{p_{k}}+\frac{1}{\left\{p_{k}^{\prime}\right\}}=1$ if $1<\inf p_{k} \leq \mathcal{H}<\infty$.
Consider infinite matrix $\left(\mathcal{W}=\left(w_{i, j}\right)\right)$ and sequence $\left(v=\left(v_{k}\right) \in \Omega\right)$, then for every $(i \in \mathbb{N})$, the \mathcal{W}-transform $\left(\mathcal{W} v=\left\{(\mathcal{W} v)_{i}\right\}\right)$ exists with

$$
\left((\mathcal{W} v)_{i}=\sum_{j=0}^{\infty} w_{i, j} v_{j}\right)
$$

As in [2], the matrix domain of \mathcal{W} in \mathcal{G} is

$$
\begin{equation*}
\mathcal{G}_{\mathcal{W}}=\left\{v=\left(v_{j}\right) \in \Omega: \mathcal{W} v \in \mathcal{G}\right\} . \tag{1}
\end{equation*}
$$

For $t \in \mathbb{N}$, choose sequence of positive numbers $\left(\mathfrak{Q}_{j}\right)$ with $\mathcal{Q}_{t}=\sum_{j=0}^{t} \mathfrak{Q}_{j}$. Then, the matrix $R^{\mathfrak{Q}}=\left(r_{t j}^{\mathfrak{Q}}\right)$ is given by

$$
r_{t j}^{\mathfrak{Q}}= \begin{cases}\frac{\mathfrak{Q}_{j}}{\mathcal{Q}_{t}}, & \text { if } 0 \leq j \leq t, \\ 0, & \text { if } j>t .\end{cases}
$$

In [3], the author has given new techniques and introduced the spaces $U(\Delta)$ as follows:

$$
U(\Delta)=\left\{\mho=\left(\mho_{j}\right) \in \Omega:\left(\Delta \mho_{j}\right) \in U\right\}
$$

for $U \in\left\{l_{\infty}, c, c_{0}\right\}$ and $\Delta \boldsymbol{\mho}_{j}=\boldsymbol{\mho}_{j}-\boldsymbol{\mho}_{j-1}$.
It was further analysed in [4-7] and many others as cited. The authors in [8] introduced the space $r^{2}\left(\Delta_{g}^{p}\right)$ as follows:

$$
r^{\mathfrak{Q}}\left(\Delta_{g}^{p}\right)=\left\{\mathbb{\mho}=\left(\mathbb{\mho}_{k}\right) \in \Omega: \sum_{k}\left|\frac{1}{\mathcal{Q}_{k}} \sum_{j=0}^{k} g_{j} \mathfrak{Q}_{j} \Delta \widetilde{\mho}_{j}\right|^{p_{k}}<\infty\right\},
$$

where $\left(0<p_{k} \leq H<\infty\right)$ and $g=\left(g_{j}\right)$ is a sequence, such that $g_{j} \neq 0$ for all $j \in \mathbb{N}$.
For each $i, j \in \mathbb{N}$, the author in [9] defined matrix $\mathfrak{B}=\left(b_{m k}\right)$ as:

$$
b_{m j}= \begin{cases}r, & \text { for } j=m-i \\ s, & \text { for } j=m-1 \\ 0, & \text { for } 0 \leq j<m-1 \text { or } j>m\end{cases}
$$

with $r, s \in \mathbb{R}-\{0\}$. By putting $r=1,2=-1$, matrix \mathfrak{B} reaches to matrix Δ.
To notion of getting a new way of introducing generalized spaces with some limiting approach were studied in $[4,9$, 10] and many others.

2. The space $r_{\mathfrak{B}}^{\mathfrak{Z}}(g, p)$

The approach of this portion is to define $r_{\mathfrak{B}}^{\mathfrak{Z}}(g, p)$, and compute its various topological structures. By $R_{g}^{q} \mathfrak{B}$ -transform of a sequence $\mho=\left(\mho_{k}\right)$, we imply that sequence $\eta=\left(\eta_{k}\right)$ is related as

$$
\begin{equation*}
\eta_{k}(q)=\frac{1}{\mathfrak{Q}_{k}}\left\{\sum_{j=0}^{k-1}\left(g_{j} \mathfrak{Q}_{j} \cdot r+g_{j+1} \mathfrak{Q}_{j+1} \cdot s\right) \mho_{j}+g_{k} \mathfrak{Q}_{k} \cdot r \cdot \mho_{k}\right\},(k \in \mathbb{N}) . \tag{2}
\end{equation*}
$$

Following various authors as in [9-20], we introduce $r_{\mathfrak{B}}^{\mathfrak{2}}(g, p)$ as follows:

$$
r_{\mathfrak{B}}^{\mathfrak{2}}(g, p)=\left\{\mho=\left(\mho_{k}\right) \in \Omega: \eta_{k}(q) \in l(p)\right\} .
$$

In case $r=1$ and $s=-1$, then the set $r_{\mathfrak{B}}^{\mathfrak{Q}}(g, p)$ gets merged to $r^{q}\left(\Delta_{g}^{p}\right)$ [8] and for taking $g_{n}=g_{k}$ for all $n \in \mathbb{N}(k$ fixed), yielding the results as in [6]. Also, if $\left(g_{k}\right)=e=(1,1, \ldots), s=-1$ and $r=1$, then $r_{\mathfrak{B}}^{\mathfrak{Z}}(g, p)$ merges to $r^{q}\left(\Delta_{g}^{p}\right)$ studied by Başarir [9].

Utilizing notion of (1), we redefine it as

$$
r_{\mathfrak{B}}^{\mathfrak{Z}}(g, p)=\{l(p)\}_{R_{g}^{q \mathcal{G}}} .
$$

Now, we shall now begin the following theorem without proof, which is important in the text.
Theorem 2.1. For $\mathcal{M}=\max \{1, \mathcal{H}\}$ and $0<p_{k} \leq \mathcal{H}<\infty$, the set $r_{\mathfrak{B}}^{\mathfrak{2}}(g, p)$ is complete and is paranormed by $\mathfrak{G}_{\mathfrak{B}}$, where

$$
\mathfrak{G}_{\mathfrak{B}}(\boldsymbol{\mho})=\left[\sum_{k}\left|\frac{1}{\mathcal{Q}_{k}}\left(\sum_{j=0}^{k-1}\left(g_{j} \mathfrak{Q}_{j} \cdot r+g_{j+1} \mathfrak{Q}_{j+1} \cdot s\right) \boldsymbol{\mho}_{j}+\mathfrak{Q}_{k} g_{k} \cdot r \mho_{k}\right)\right|^{p_{k}}\right]^{\frac{1}{\mathcal{M}}} .
$$

Theorem 2.2. For $0<p_{k} \leq \mathcal{H}<\infty$, the set $r_{B}^{\text {Q }}(g, p)$ and $l(p)$ are linearly isomorphic.
Proof. Using the notion of (2), choose the map $T: r_{B}^{\mathfrak{2}}(g, p) \rightarrow l(p)$ as $\mho \rightarrow \eta=T \mho$.
Nothing to prove about the linearity of T as is obvious. Also, $\mho=\Theta$ for $T \mho=\Theta$ showing T is injective. Suppose $\eta \in l(p)$, and choose $\boldsymbol{\mho}=\left(\mho_{k}\right)$ as

$$
\boldsymbol{\mho}_{k}=\sum_{n=0}^{k-1}(-1)^{k-n}\left(\frac{s^{k-n-1}}{r^{k-n} g_{n+1} \mathfrak{Q}_{n+1}}+\frac{s^{k-n}}{r^{k-n+1} g_{n} \mathfrak{Q}_{n}}\right) \mathfrak{Q}_{n} \eta_{n}+\frac{\mathfrak{Q}_{k} \eta_{k}}{r g_{k} \mathfrak{Q}_{k}} .
$$

Then,

$$
\begin{aligned}
\mathfrak{G}_{B}(\mho) & =\left[\sum_{k}\left|\frac{1}{\mathfrak{Q}_{k}} \sum_{j=0}^{k-1}\left(g_{j} \mathfrak{Q}_{j} r+g_{j+1} \mathfrak{Q}_{j+1} s\right) \mho_{j}+\frac{g_{k} \mathfrak{Q}_{k} r \mho_{k}}{\mathfrak{Q}_{k}}\right|^{p_{k}}\right]^{\frac{1}{\mathcal{M}}} \\
& =\left[\sum_{k}\left|\sum_{j=0}^{k} \delta_{k j} \eta_{j}\right|^{p_{k}}\right]^{\frac{1}{\mathcal{M}}} \\
& =\left[\sum_{k}\left|\eta_{k}\right|^{p_{k}}\right]^{\frac{1}{\mathcal{M}}}=\Psi_{1}(\eta)<\infty,
\end{aligned}
$$

for

$$
\delta_{k j}= \begin{cases}1, & \text { when } k \neq j, \\ 0, & \text { when } k=j .\end{cases}
$$

Consequently, $\mho \in r_{B}^{\Omega}(g, p)$. Hence, T is surjective as well as preserves paranorm, yielding T as linear bijection, and the result follows.

3. Duals and basis of $r_{\mathfrak{B}}^{\mathfrak{Z}}(g, p)$

Here, the determination of basis and duals of $r_{B}^{Q}(g, p)$ will be given.
Definition 3.1. Köthe duals: For the spaces \mathcal{K} and \mathcal{L} define $(\Lambda(\mathcal{K}, \mathcal{L}))$ as follows:

$$
\Lambda(\mathcal{K}, \mathcal{L})=\left\{v=\left(v_{j}\right) \in \Omega: v x=\left(v_{j} x_{j}\right) \in \mathcal{L} \forall x=\left(x_{j}\right) \in \mathcal{K}\right\} .
$$

Therefore, as in [1], the Köthe duals by above representation are defined as

$$
K^{\alpha}=\Lambda\left(K, \ell_{1}\right), K^{\beta}=\Lambda(K, c s) \text { and } K^{\gamma}=\Lambda(K, b s) .
$$

Theorem 3.1 (i): For each $k \in \mathbb{N}$ with $1<p_{k} \leq \mathcal{H}<\infty$, construct the sets $D_{1}(g, p)$ and $D_{2}(g, p)$ as:

$$
\begin{aligned}
& D_{1}(g, p)=\bigcup_{B>1}\left\{a=\left(a_{k}\right) \in \Omega:\right. \\
& \left.\quad \sup _{K \in F} \sum_{k}\left|\sum_{n \in K}\left[\nabla_{g}(k, n) a_{n} \mathfrak{Q}_{k}+\frac{a_{n}}{g_{n} \mathfrak{Q}_{n}} \mathfrak{Q}_{n}\right] B^{-1}\right|^{p_{k}^{\prime}}<\infty\right\}
\end{aligned}
$$

and

$$
\begin{aligned}
D_{2}(g, p) & =\bigcup_{B>1}\left\{a=\left(a_{k}\right) \in \Omega:\right. \\
& \left.\sum_{k}\left|\left[\left(\frac{a_{k}}{\operatorname{rg}_{k} \mathfrak{Q}_{k}}+\nabla_{g}(k, n) \sum_{i=k+1}^{n} a_{i}\right) \mathfrak{Q}_{k}\right] B^{-1}\right|^{p_{k}^{\prime}}<\infty\right\},
\end{aligned}
$$

where

$$
\nabla_{g}(k, n)=(-1)^{n-k}\left(\frac{s^{n-k-1}}{r^{n-k} g_{k+1} \mathfrak{Q}_{k+1}}+\frac{s^{n-k}}{r^{n-k+1} g_{k} \mathfrak{Q}_{k}}\right)
$$

Then,

$$
\left[r_{B}^{\mathfrak{Q}}(g, p)\right]^{\alpha}=D_{1}(g, p),\left[r_{B}^{\mathfrak{Q}}(g, p)\right]^{\beta}=D_{2}(g, p) \cap c s=\left[r_{B}^{\mathfrak{Q}}(g, p)\right]^{\gamma} .
$$

(ii): Let $0<p_{k} \leq 1$, for each $k \in \mathbb{N}$. Consider the sets $D_{3}(g, p)$ and $D_{4}(g, p)$ as given below:

$$
\begin{aligned}
& D_{3}(g, p)=\left\{a=\left(a_{k}\right) \in \Omega:\right. \\
& \left.\quad \sup _{K \in F} \sup _{k}\left|\sum_{n \in K}\left[\nabla_{g}(k, n) a_{n} \mathfrak{Q}_{k}+\frac{a_{n}}{r g_{n} \mathfrak{Q}_{n}} \mathfrak{Q}_{n}\right] B^{-1}\right|^{p_{k}}<\infty\right\}
\end{aligned}
$$

and

$$
\begin{aligned}
& D_{4}(g, p)=\left\{a=\left(a_{k}\right) \in \Omega:\right. \\
&\left.\left.\sup _{k} \|\left(\frac{a_{k}}{r g_{k} \mathfrak{Q}_{k}}+\nabla_{g}(n, k) \sum_{i=k+1}^{n} a_{i}\right) \mathfrak{Q}_{k}\right]\left.\right|^{p_{k}}<\infty\right\} .
\end{aligned}
$$

Then, we have

$$
\left[r_{B}^{\mathfrak{Q}}(g, p)\right]^{\alpha}=D_{3}(g, p),\left[r_{B}^{\mathfrak{Q}}(g, p)\right]^{\beta}=D_{4}(g, p) \cap c s=\left[r_{B}^{\mathfrak{Q}}(g, p)\right]^{\gamma} .
$$

To establish Theorem 3.1, the following lemmas are needed.
Lemma 3.1 (see, [17]) (i): For an integer $B>1$, if $1<p_{k} \leq H<\infty$, then $C \in\left(l(p): l_{1}\right)$ if

$$
\sup _{K \in F} \sum_{k \in \mathbb{N}}\left|\sum_{n \in K} c_{n k} B^{-1}\right|^{p_{k}^{\prime}}<\infty .
$$

(ii): Let $0<p_{k} \leq 1$. Then, $C \in\left(l(p): l_{\infty}\right)$ if

$$
\sup _{K \in F} \sup _{k \in \mathbb{N}}\left|\sum_{n \in K} c_{n k}\right|^{p_{k}}<\infty .
$$

Lemma 3.2 (see, [21]) (i): For an integer $B>1$, if $1<p_{k} \leq \mathcal{H}<\infty$. Then, $C \in\left(l(p): l_{\infty}\right)$ if

$$
\begin{equation*}
\sup _{n} \sum_{k}\left|c_{n k} B^{-1}\right|^{p_{k}^{\prime}}<\infty \tag{3}
\end{equation*}
$$

(ii): For $0<p_{k} \leq 1$ with $k \in \mathbb{N}$, then $C \in\left(l(p): l_{\infty}\right)$ if

$$
\begin{equation*}
\sup _{n, k \in \mathbb{N}}\left|c_{n k}\right|^{p_{k}}<\infty . \tag{4}
\end{equation*}
$$

Lemma 3.3 (see, [21]). For $0<p_{k} \leq H<\infty$ with each $k \in \mathbb{N}$, we have $C \in(l(p): c)$ if (3) and (4) hold along with

$$
\begin{equation*}
\lim _{n} c_{n k}=\beta_{k} . \tag{5}
\end{equation*}
$$

Proof of Theorem 3.1. First choose $1<p k \leq H<\infty$ and define $a=\left(a_{n}\right) \in \Omega$, then (2) yields

$$
\begin{align*}
a_{n} \mho_{n} & =\sum_{k=0}^{n-1} \nabla_{g}(k, n) a_{n} \mathcal{Q}_{k} \eta_{k}+\frac{a_{n} \mathcal{Q}_{n} \eta_{n}}{r \cdot \mathfrak{Q}_{n}} g_{k}^{-1} \\
& =\sum_{k=0}^{n} c_{n k} \eta_{k}=(C \eta)_{n}, \tag{6}
\end{align*}
$$

where $C=\left(c_{n k}\right)$ is defined by

$$
c_{n k}= \begin{cases}\nabla_{g}(k, n) a_{n} \mathcal{Q}_{k}, & \text { if } 0 \leq k \leq n-1, \\ \frac{a_{n} \mathcal{Q}_{n}}{\operatorname{rg}_{n} \mathfrak{Q}_{n}}, & \text { if } k=n, \\ 0, & \text { if } k>n,\end{cases}
$$

Clearly from (6) with Lemma 3.1, we deduce that $a \boldsymbol{\mho}=\left(a_{n} \mho_{n}\right) \in l_{1}$ whenever $\mho=\left(\mho_{n}\right) \in r_{B}^{\mathfrak{Q}}(g, p)$ if $C \eta \in l_{1}$ whenever $\eta \in l(p)$, yielding $\left[r_{B}^{\mathfrak{Q}}(g, p)\right]^{\alpha}=D_{1}(g, p)$.

Now for $n \in \mathbb{N}$, consider

$$
\begin{equation*}
\sum_{k=0}^{n} a_{n} \mho_{n}=\sum_{k=0}^{n}\left(\frac{a_{k}}{r \cdot \mathfrak{Q}_{k}} g_{k}^{-1}+\nabla_{g}(k, n) \sum_{i=k+1}^{n} a_{i}\right) \mathcal{Q}_{k} \eta_{k}=(D \eta)_{n}, \tag{7}
\end{equation*}
$$

with $D=\left(d_{n k}\right)$, given by

$$
d_{n k}= \begin{cases}\left(\frac{a_{k}}{r g_{k} \mathfrak{Q}_{k}}+\nabla_{g}(k, n) \sum_{i=k+1}^{n} a_{i}\right) \mathcal{Q}_{k}, & \text { if } 0 \leq k \leq n, \\ 0, & \text { if } k>n,\end{cases}
$$

Now, from (7) and Lemma 3.2 yields that $a \mho=\left(a_{n} \mho_{n}\right) \in c s$ whenever $\mho=\left(\mho_{n}\right) \in r_{B}^{\Omega}(g, p)$ if $D \eta \in c$ for $\eta \in l(p)$. Consequently, from (7), we have

$$
\begin{equation*}
\sum_{k}\left|\left[\left(\frac{a_{k}}{r g_{k} \mathfrak{Q}_{k}}+\nabla_{g}(n, k) \sum_{i=k+1}^{n} a_{i}\right) \mathcal{Q}_{k}\right] B^{-1}\right|^{p_{k}^{\prime}}<\infty, \tag{8}
\end{equation*}
$$

and $\lim _{n} d_{n k}$ is finite, thereby yielding $\left[r_{B}^{\Omega}(g, p)\right]^{\beta}=D_{2}(g, p) \cap c s$.
As established above, with Lemma 3.3 along (8) yields $a \mho=\left(a_{k} \mho_{k}\right) \in b s$ whenever $\mho=\left(\mho_{n}\right) \in r_{B}^{\Omega}(g, p)$, if and only if $D \eta \in l_{\infty}$ whenever $\eta=\left(\eta_{k}\right) \in l(p)$. Consequently, by applying the same condition, we deduce that $\left[r_{B}^{\mathfrak{Q}}(g, p)\right]^{\gamma}=D_{2}(g, p) \cap c s$.

Definition 3.2. Basis: If space \mathfrak{G} is paranormed by \mathfrak{B} contains a sequence $\left(\wp_{n}\right)$, and every $\varsigma \in \mathfrak{G}$, we can find one and only one $\left(\alpha_{n}\right)$, such that

$$
\lim _{n} \mathfrak{B}\left(\varsigma-\sum_{i=0}^{n} \alpha_{i} \wp_{i}\right)=0
$$

where $\left(\alpha_{n}\right)$ represents sequence of scalars, then $\left(\wp_{n}\right)$ is a Schauder basis for \mathfrak{G}. The series $\sum \alpha_{i} \wp_{i}$ having the sum ς is then said to be as expansion of ς w.r.t. $\left(\wp_{n}\right)$ and is expressed as $\varsigma=\sum \alpha_{i} \wp_{i}$.

Theorem 3.2. Let $b^{(m)}(\mathfrak{Q})=\left\{b_{n}^{(m)}(\mathfrak{Q})\right\}$ be defined as elements of $r_{B}^{\mathfrak{Q}}(g, p)$ as

$$
b_{n}^{(m)}(\mathfrak{Q})= \begin{cases}\frac{\mathcal{Q}_{m}}{r g_{m} \mathfrak{Q}_{m}}+\nabla_{g}(n, m) \mathcal{Q}_{m}, & \text { if } 0 \leq n \leq m, \\ 0, & \text { if } n>m,\end{cases}
$$

for each fixed $m \in \mathbb{N}$. Then, $\left\{b^{(m)}(\mathfrak{Q})\right\}$ is a basis for $r_{B}^{\mathfrak{Q}}(g, p)$ having a unique representation of the form

$$
\begin{equation*}
\mathcal{Z}=\sum_{m} \lambda_{m}(\mathfrak{Q}) b^{(m)}(\mathfrak{Q}) \tag{9}
\end{equation*}
$$

for any $x \in r_{B}^{\mathfrak{Q}}(g, p)$ with $\lambda_{m}(\mathfrak{Q})=\left(R_{g}^{\mathfrak{Q}} B \mho\right)_{m} \forall m \in \mathbb{N}$ and $0<p_{m} \leq H<\infty$.
Proof. For $0<p_{j} \leq \mathcal{H}<\infty$, trivially, $\left\{b^{(j)}(\mathfrak{Q})\right\} \subset r_{B}^{\mathfrak{Q}}(g, p)$ as

$$
R_{g}^{\mathfrak{Q}} B b^{(j)}(\mathfrak{Q})=e^{(j)} \in l(p) \text { for } j \in \mathbb{N},
$$

where the sequence $e^{(j)}$ having only non-zero term as 1 at j th place.
Let $\mho \in r_{B}^{q}(g, p)$ be given. For every non-negative integer κ, we put

$$
\begin{equation*}
\boldsymbol{\mho}^{[\kappa]}=\sum_{m=0}^{\kappa} \lambda_{m}(\mathfrak{Q}) b^{(m)}(\mathfrak{Q}) . \tag{10}
\end{equation*}
$$

Now, taking $R_{g}^{q} B$ to (10), and with the help of (9), we see that

$$
R_{u}^{q} B \mho^{[\kappa]}=\sum_{m=0}^{\kappa} \lambda_{m}(\mathfrak{Q}) R_{g}^{q} B b^{(m)}(\mathfrak{Q})=\sum_{m=0}^{\kappa}\left(R_{g}^{q} B \mho\right)_{m} e^{(m)}
$$

and

$$
\left(R_{g}^{q} B\left(\mho-\mho^{[\kappa]}\right)\right)_{i}= \begin{cases}0, & \text { if } 0 \leq i \leq \kappa \\ \left(R_{g}^{q} B \bar{\mho}\right)_{i}, & \text { if } i>\kappa\end{cases}
$$

with $i, \kappa \in \mathbb{N}$. Also, for $\varepsilon>0$, we can find an integer κ_{0}, such that

$$
\left(\sum_{i=\kappa}^{\infty}\left|\left(R_{g}^{q} B \mho\right)_{i}\right|^{p_{k}}\right)^{\frac{1}{\mathcal{M}}}<\frac{\varepsilon}{2}
$$

for all $\kappa \geq \kappa_{0}$. Hence,

$$
\begin{aligned}
\mathfrak{G}_{B}\left(\mho-\boldsymbol{\mho}^{[\kappa]}\right) & =\left(\sum_{i=\kappa}^{\infty}\left|\left(R_{g}^{q} B \mho\right)_{i}\right|^{p_{i}}\right)^{\frac{1}{\mathcal{M}}} \\
& \leq\left(\sum_{i=\kappa_{0}}^{\infty}\left|\left(R_{g}^{q} B \mho\right)_{i}\right|^{p_{k}}\right)^{\frac{1}{\mathcal{M}}} \\
& <\frac{\varepsilon}{2}<\varepsilon
\end{aligned}
$$

for each $\kappa \geq \kappa_{0}$, which proves that $\mho \in r_{B}^{q}(g, p)$ is represented as (9).
To prove this representation for $\mho \in r_{B}^{q}(g, p)$ given by (9) is unique. We assume on the contrary that there do exists another representation given by $\mho=\sum_{j} \mu_{j}(\mathfrak{Q}) b^{j}(\mathfrak{Q})$. But, as in Theorem 3.1, the $T: r_{B}^{q}(g, p) \rightarrow l(p)$ is continuous, so
we have

$$
\begin{aligned}
\left(R_{g}^{q} B \widetilde{\mathbb{O}}\right)_{n} & =\sum_{j} \mu_{j}(\mathfrak{Q})\left(R_{g}^{q} B b^{j}(\mathfrak{Q})\right)_{n} \\
& =\sum_{j} \mu_{j}(\mathfrak{Q}) e_{n}^{(j)}=\mu_{n}(\mathfrak{Q})
\end{aligned}
$$

for each $n \in \mathbb{N}$, contradicting $\left(R_{g}^{q} B\right)_{n}=\lambda_{n}(\mathfrak{Q})$. Therefore, it follows that representation (9) is unique.

Acknowledgments

We are pleased with the reviewers for their meticulous reading and suggestions, which improved the presentation of the paper.

Availability of data and material

Data sharing is not applicable to this article, as no data sets were generated or analyzed during the current study.

Conflict of interest

It is declared that the author has no conflict of interest.

References

[1] Maddox IJ. Elements of functional analysis. 2nd ed. Cambridge, New York: Cambridge University Press; 1988.
[2] Wilansky A. Summability through functional analysis. Netherlands: North-Holland Mathematics Studies; 1984.
[3] Kizmaz H. On certain sequence. Canadian Mathematical Bulletin. 1981; 24(2): 169-176. Available from: https://10.4153/CMB-1981-027-5.
[4] Esi A, Tripathy BC, Sarma B. On some new type of generalized difference sequence spaces. Mathematica Slovaca. 2007; 57(5): 475-482. Available from: https://doi.org/10.2478/s12175-007-0039-y.
[5] Abdul HG, Antesar A. Certain spaces using \triangle-operator. Advanced Studies in Contemporary Mathematics (Kyungshang). 2020; 30(1): 17-27.
[6] Lascarides CG, Maddox IJ. Matrix transformations between some classes of sequences. Mathematical Proceedings of the Cambridge Philosophical Society. 1970; 68(1): 99-104. Available from: https://doi.org/10.1017/ S0305004100001109.
[7] Sheikh NA, Ganie AH. A new paranormed sequence space and some matrix transformations. Acta Mathematica Academiae Paedagogiace Nyíregyháziensis. 2012; 28(1): 47-58.
[8] Ganie AH, Neyaz AS. New type of paranormed sequence space of non-absolute type and some matrix transformation. International Journal of Modern Mathematical Sciences. 2013; 8(3): 196-211.
[9] Başarir M. On the generalized Riesz B-difference sequence space. Filomat. 2010; 24(4): 35-52. Available from: https://doi.org/10.2298/FIL1004035B.
[10] Altay B, Basar F. On the paranormed Riesz sequence space of nonabsolute type. Southeast Asian Bulletin of Mathematics. 2002; 26(5): 701-715.
[11] Ahmad ZU. Mursaleen. Ko the-Toeplitz duals of some new sequence spaces and their matrix maps. Publications de l'Institut Mathématique. 1987; 42(56): 57-61.
[12] Bilgiç H , Furkan, H . On the fine spectrum of the generalized difference operator $B(r, s)$ over the sequence spaces lp and bvp, $(1<p<\infty)$. Nonlinear Analysis. 2008; 68(3): 499-506. Available from: https://doi.org/10.1016/ j.na.2006.11.015.
[13] Fathema D, Ganiel AH. On some new scenario of \triangle-spaces. Journal of Nonlinear Sciences and Applications. 2021; 14(3): 163-167. Available from: http://dx.doi.org/10.22436/jnsa.014.03.05.
[14] Fathima D, AlBaidani MM, Ganie AH, Akhter A. New structure of Fibonacci numbers using concept of Δ-operator. Journal of Mathematics and Computer Science. 2022; 26(2): 101-112. Available from: https://doi.org/10.22436/ jmcs.026.02.01.
[15] Ganie AH. Some new approach of spaces of non-integral order. Journal of Nonlinear Sciences and Applications. 2021; 14(2): 89-96. Available from: http://dx.doi.org/10.22436/jnsa.014.02.04.
[16] Ganie AH, Lone SA, Afroza A. Generalised difference sequence space of non-absolute type. Eksakta: Journal of Sciences and Data Analysis. 2020; 20(2): 147-153. Available from: https://doi.org/10.20885/EKSAKTA.vol1.iss2. art9.
[17] Grosseerdmann KG. Matrix transformations between the sequence spaces of Maddox. Journal of Mathematical Analysis and Applications. 1993; 180(1): 223-238. Available from: https://doi.org/10.1006/jmaa.1993.1398.
[18] Mursaleen. Generalized spaces of difference sequences. Journal of Mathematical Analysis and Applications. 1996; 203(3): 738-745. Available from: https://doi.org/10.1006/jmaa.1996.0409.
[19] Naik PA, Tarry TA. Matrix representation of an all-inclusive Fibonacci sequence. Asian Journal of Mathematics \&

Statistics. 2018; 11(1): 18-26. Available from: https://doi.org/10.3923/ajms.2018.18.26.
[20] Tripathy BC, Esi A. A new type of difference sequence spaces. International Journal of Science \& Technology. 2006; 1(1): 11-14.
[21] Lascarides CG, Maddox IJ. Matrix transformations between some classes of sequences. Mathematical Proceedings of the Cambridge Philosophical Society. 1970; 68(1): 99-104. Available from: https://doi.org/10.1017/ S0305004100001109.

