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Abstract: In the language of mathematics, the method of cognition of the surrounding world in which the description 
of the object is carried out the name is mathematical modeling. The study of the model is carried out using certain 
mathematical methods. The systems of the ordinary differential equations modeling artificial neuronal networks and 
the systems modeling the gene regulatory networks are considered. The one system consists of a sigmoidal function 
which depends on linear combinations of the arguments minus the linear part. The other system consists of a sigmoidal 
function which depends on the hyperbolic tangent function. The linear combinations and hyperbolic tangent functions 
of the arguments are described by one regulatory matrix. For the three-dimensional cases, two types of matrices are 
considered and the behavior of the solutions of the system is analyzed. The attracting sets are constructed for several 
cases. Illustrative examples are provided. The list of references consists of 19 items.
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1. Introduction
Complex regulatory networks are being explored in many areas of science, including biochemistry, biology [1-

2], ecology, and engineering. Gene regulatory network (GRN in short) is a complex dynamical system that is present in 
living organisms and which is constantly changing their states responding to fluctuations in their environment [3]. For 
a complete description of gene networks, it is necessary to analyze the processes occurring in them at the level of the 
whole organism. In this case, it is possible to describe gene networks, some parts of which are distributed over various 
large compartments of their organism, such as organs and tissues. In many cases, it is possible to determine the direction 
of processes within a specific fragment of the gene network. The main approaches to the description of gene networks 
and modeling their dynamics are a logical description; a description of the gene network using a system of nonlinear 
differential equations [3]; stochastic gene network models; graph theory [1], Boolean modeling [1]. Nonlinear ordinary 
differential equations are the most-widespread formalism for modeling genetic regulatory networks [4-7].

An artificial neural network (ANN in short) is a mathematical model created in the likeness of biological 
neural networks [8]. Similar to a natural analog, an artificial neural network consists of neurons and synapses [9]. 
Neural networks are used to solve many problems: recognition and generation of images (face identification in video 
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surveillance systems); speech and language (language for chat-bots and service robots); weather prediction; medical 
diagnosis [9-10]; business fields [11-12]; traffic monitoring systems [13]. 

In our paper, we use nonlinear ordinary differential equations to model the GRN and ANN. Our goal is to describe 
the behavior of the systems and to compare the results of GRN and ANN. In our previous papers on GRN networks 
multiple results on attractors and their properties were obtained. By comparison with models of neuronal networks 
we wish to show that similar results can be presented for neuronal networks. Our consideration is geometrical. The 
main intent is to use the 2D and 3D projections on different subspaces, to construct the graphs of systems solutions. 
Visualizations are provided. The dynamics of Lyapunov exponents are shown. Calculations and visualizations are 
performed using Wolfram Mathematics. 

2. Gene regulatory network
Consider the three-dimensional system
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In the context of GRN theory, this system describes the three-element network. The link between any two elements 
xi and xj is associated with the element wij of the regulatory matrix
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Positivity of wij means the activation of xi by xj, negativity means inhibition, and zero value is for no relation. 
System (1) was studied, in particular, in the paper [14].
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2.1 An example of the system (1) with a periodic solution

Let the coefficient matrix in (1) be

(4)
2.5 1.5 0
4 2.5 0
0 0 1.2

W
− 

 =  
 
 

and v1 = v2 = v3 = 1; μ1 = 2.3; μ2 = 1.9; μ3 = 1; θ1 = 0.5; θ2 = 2.5; θ3 = 1.
There is one critical point (0.320154; 0.418536; 0.36235). The characteristic numbers are λ1 = -0.72 and λ2,3 = 0.2 

± 1.18i. The type of critical point is an unstable saddle-focus. The nullclines of the system (1) and the stable periodic 
solution are depicted in Figure 1 and Figure 2. The graphs of xi(t), i = 1, 2, 3 of the system (1) with the regulatory matrix 
(4) are depicted in Figure 3.
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Figure 1. The nullclines of the system (1) with the regulatory matrix (4).

0.2

0.2

0.2

0.4

0.4

0.4

0.6

0.6

0.6

0.8

x2

x1

Figure 2. The periodic solution of the system (1) with the regulatory matrix (4).
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Figure 3. The graphs of xi(t), i = 1, 2, 3 of the system (1) with the regulatory matrix (4).

Similar systems are considered in paper [14]. 
The dynamics of Lyapunov exponents (LE1 = 0, LE2 = -0.3166; LE3 = -0.7227) are shown in Figure 4. The 

following set of LEs characterizes the stable limit cycle.
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Figure 4. The dynamics of Lyapunov exponents.

The sum of Lyapunov exponents of the system (1) with the regulatory matrix (4) is negative that is why it is a 
dissipative system.

2.2 An example of the system (2) with a chaotic solution

Under chaos in ancient Greek mythology understood the pre-life confusion. Greek “chaos” is the infinite first 
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everyday mass, which subsequently gave rise to all the existing. Physicists call this science-“nonlinear dynamics”, 
mathematicians-“chaos theory”, all the rest-“nonlinear science”. 

Chaos is a multifaceted phenomenon that is not easily classified or identified. There is no universally accepted 
definition for chaos, but the following characteristics are nearly always displayed by the solutions of chaotic systems [15].

There are several characteristics that identify the behavior of chaotic systems [16]. Usually to identify a chaotic 
system scientists use the method of Lyapunov exponents [16]. A 3D dynamical system is chaotic if it has one positive 
Lyapunov exponent (LE in short) [17]. Also, a system is said to be dissipative if the sum of all Lyapunov exponents of 
the system (1) is negative [18].

Consider the system (1), where v1 = 0.65, v2 = 0.42, v3 = 0.1, μ1 = μ2 = 7, μ3 = 13, θ1 = 0.5, θ2 = 0.3, θ3 = 0.7. 
The regulatory matrix of the system (1) is

0 1 5.63
1 0 0.133
1 0.02 0.03

W
− 

 =  
 
 

(5)

The initial conditions are

1 2 3(1) 0.2; (1) 1.3; (1) 0.4.x x x= = = (6)

There is one critical point. The characteristic equation for critical point (0.370688; 1.59227; 0.223125) is -λ3 + 
Aλ2 + Bλ + C = 0, where A = -1.16149; B = -0.428566; C = -0.689604. Solving the equation, we have λ1 = -1.257; λ2,3 = 
0.0477516 ± 0.739143i. The type of critical point is an unstable saddle-focus. The nullclines of the system (1) with the 
regulatory matrix (4) and the chaotic attractor of the system (1) with the regulatory matrix (4) are depicted in Figure 5 
and Figure 6. The graphs of xi(t), i = 1, 2, 3 of the system (1) with the regulatory matrix (4) are shown in Figure 7.
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Figure 5. The nullclines of the system (1) with the regulatory matrix (4).
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Figure 6. The chaotic attractor of the system (1) with the regulatory matrix (4).
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Figure 7. The graphs of xi(t), i = 1, 2, 3 of the system (1) with the regulatory matrix (4).

Similar systems were considered in papers [14], [19] and [20].
The dynamics of Lyapunov exponents (LE1 = 0.03, LE2 = 0; LE3 = -1.16) are shown in Figure 8.
At the end of the 70s of the last century, the Kaplan-Yorke formula was proposed to estimate the fractal size-in 

terms of Lyapunov exponents [12].
Let calculate the Kaplan-Yorke dimension using the formula

11

1 j

KY j
jj

D j L
L =+

= + ∑

with j representing the index such that



Contemporary MathematicsVolume 4 Issue 2|2023| 223

1

1 1
0,  0

j j

j j
j j

L L
+

= =
> <∑ ∑

Such formula is considered in papers [12, 21].
Kaplan-Yorke dimension for the system (1) with the regulatory matrix (5) is DKY = 2.03. The sum of Lyapunov 

exponents of the system (1) with the regulatory matrix (5) is negative that is why it is a dissipative system. The 
dynamics of Lyapunov exponents are shown in Figure 8.

                           

LC
Es

-1.2

-1.0

-0.6

-0.2

0.0

-0.8

-0.4

0 40002000 6000 8000
Steps

Figure 8. The dynamics of Lyapunov exponents.

3. Artificial neural network
Consider the three-dimensional system
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The nullclines are given as
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3.1 Examples of the system (7) with regulatory matrices (4) and (5)

Consider the coefficient matrix (4) and b1 = b2 = b3 = 1.
There are three critical points. First critical point is (0; 0; 0). The characteristic numbers are λ1 = 0.2 and λ2,3 = 

1.5 ± 2.45i. The type of critical point is an unstable focus-node. Second critical point is (0; 0; 0.66). The characteristic 
numbers are λ1 = -0.32 and λ2,3 = 1.5 ± 2.45i. The type of critical point is an unstable saddle-focus. Third critical point 
is (0; 0; -0.66). The characteristic numbers are λ1 = -0.32 and λ2,3 = 1.5 ± 2.45i. The type of critical point is an unstable 
saddle-focus. The nullclines of the system (7) with the regulatory matrix (4) and three periodic solutions of the system (7) 
with the regulatory matrix (4) are shown in Figure 9 and Figure 10. The graphs of xi(t), i = 1, 2, 3 of the system (7) with 
the regulatory matrix (4) are depicted in Figure 11.
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Figure 9. The nullclines of the system (7) with the regulatory matrix (4).
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Figure 10.Three periodic solutions of the system (7) with the regulatory matrix (4).
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Figure 11. The graphs of xi(t), i = 1, 2, 3 of the system (7) with the regulatory matrix (4).

Similar systems are considered in paper [22]. 
The dynamics of Lyapunov exponents (LE1 = 0, LE2 = -0.32; LE3 = -0.78) are shown in Figure 12. The following 

set of LEs characterizes the stable limit cycle.
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Figure 12. The dynamics of Lyapunov exponents.

The sum of Lyapunov exponents of the system (1) with the regulatory matrix (5) is negative that is why it is a 
dissipative system.

Consider the coefficient matrix (5) and b1 = 0.65, b2 = 0.42, b3 = 0.1. The coefficients of regulatory matrix and 
parameters are the same. The initial conditions are (6). There is no chaotic solution. The nullclines of the system (7) 
with the regulatory matrix (5) and the solution of the system (7) with the regulatory matrix (5) and the initial conditions (6) 
are shown in Figure 13 and Figure 14. The graphs of xi(t), i = 1, 2, 3 of the system (7) with the regulatory matrix (5) are 



Contemporary Mathematics 226 | Inna Samuilik, et al.

depicted in Figure 15.
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Figure 13. The nullclines of the system (7) with the regulatory matrix (5).
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Figure 14. The solution of the system (7) with the regulatory matrix (5) and the initial conditions (6).

The dynamics of Lyapunov exponents (LE1 = -0.32, LE2 = -0.33; LE3 = -0.49) are shown in Figure 16. The 
following set of LEs characterizes the stable fixed point.

The sum of Lyapunov exponents of the system (1) with the regulatory matrix (5) is negative that is why it is a 
dissipative system.
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Figure 15. The graphs of xi(t), i = 1, 2, 3 of the system (7) with the regulatory matrix (5).
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Figure 16. The dynamics of Lyapunov exponents.

4. Conclusion
The article deals with models of three-dimensional genetic and neural networks with a certain set of parameters 

and two different regulatory matrices. In a genetic system with a matrix (4), the existence of a periodic solution is 
shown. For a neural system with the same matrix, the existence of three periodic solutions is shown. In a genetic system 
with a matrix (5), a solution with chaotic behavior is indicated. This is evidenced by the Lyapunov curves, the three-
dimensional graphics of the solution and the graphs of the three components of the solution. At the same time, in a 
neural system with the same regulatory matrix, this solution does not detect chaotic behavior. This observation is in line 
with statement [23, section 6.10.1] that the minimum dimension of systems of the form (7) in which chaos is possible is 
four. 
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