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Abstract: This article develops optimality conditions for a large class of non-smooth variational models. The main 
results are based on standard tools of functional analysis and calculus of variations. Firstly, we address a model with 
equality constraints and, in a second step, a more general model with equality and inequality constraints, always in a 
general Banach space context. We highlight some novelties related to the proof procedures developed in this text, which 
are in general softer than those concerning the present literature.
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1. Introduction
In this article, we present Lagrange multiplier results for non-smooth variational optimization, firstly for an 

equality constraints model and, in a subsequent step, for a more general problem involving equality and inequality 
constraints. We emphasize some novelties are introduced in the proofs developed in this text, concerning the results 
already established in the present literature. It is also worth mentioning the results are rather general and are suitable in 
a Banach space context.

Moreover, the main references for this article are [1-3]. Indeed, the results here presented are, in some sense, 
extensions of previous ones found in Clarke [1].

We also highlight specific details on the function spaces addressed and concerning functional analysis and 
Lagrange multiplier basic results may be found in [2-8].

Related subjects are addressed in [9-11]. Specifically in [9], the authors propose an augmented Lagrangian method 
for the solution of constrained optimization problems suitable for a large class of variational models.

At this point, we highlight the main novelties mentioned in the abstract are specified in the first three paragraphs of 
Section 2 and are applied in the statements and proofs of Theorems 2.1 and 3.1.

Finally, fundamental results on the calculus of variations are addressed in [12].
We start with some preliminary results and basic definitions. The first result we present is the Hahn-Banach 

Theorem in its analytic form. Concerning our context, we have assumed the hypothesis the space U is a Banach space 
but indeed such a result is much more general.
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Theorem 1.1 (The Hahn-Banach theorem). Let U be a Banach space. Consider a functional :p U →   such that

( ) ( ) 0p u p u u U= ∀ ∈ >，，λ λ λ                                                                  (1)

and

( ) ( ) ( )p u v p u p v u v U+ ≤ + ∀ ∈，，
                                                                (2)

Let ⊂V U  be a proper subspace of U and let : → g V  be a linear functional such that

( ) ( )g u p u u V≤ ∀ ∈，                                                                           (3)

 
Under such hypotheses, there exists a linear functional : → f U  such that

( ) ( )g u f u u V= ∀ ∈，                                                                           (4)

and

( ) ( )f u p u u U≤ ∀ ∈，                                                                           (5)

For a proof, please see [2, 3, 7].
Here, we introduce the definition of topological dual space.
Definition 1.2 (Topological dual spaces). Let U be a Banach space. We shall define its dual topological space, as the 

set of all linear continuous functionals defined on U. We suppose such a dual space of U, may be represented by another 
Banach space *U , through a bilinear form 

*., . :   
U

U U× →   (here we are referring to standard representations of dual 
spaces of Sobolev and Lebesgue spaces). Thus, given : → f U linear and continuous, we assume the existence of a 
unique 

* * u U∈ such that

*( ) , , .= ∀ ∈
U

f u u u u U
                                                                        (6)

The norm of  f, denoted by 
U

f , is defined as

{ }* *

* *sup , : 1
∈

= ≤ ≡
U UU Uu U

f u u u u
 
                                                          (7)

At this point, we present the Hahn-Banach Theorem in its geometric form.
Theorem 1.3 (The Hahn-Banach Theorem, the geometric form). Let U be a Banach space and let , ⊂A B U be two 

non-empty, convex sets such that φ∩ =A B  and A  is open. Under such hypotheses, there exists a closed hyperplane 
which separates A and B, that is, there exist α ∈  and * * u U∈ such that * 0≠u  and

* *, , , ,  .
U U

u u v u u A v Bα≤ ≤ ∀ ∈ ∈

For a proof, please see [5-7].
Another important definition, is the one concerning locally Lipschitz functionals.
Definition 1.4 Let U  be a Banach space and let : → F U  be a functional. We say that F  is locally Lipschitz at

0 ∈u U if there exist 0>r and 0>K such that

0( ) ( ) , ,  ( )rU
F u F v K u v u v B u− ≤ − ∀ ∈

, ,

, .

.

.

,

.

.

,

,

,
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In this definition, we have denoted

{ }0 0( ) := ∈ − <r U
B u v U u v r

The next definition is established as those found in [1]. More specifically, such a next one, corresponds to the 
definition of generalized directional derivative found in section 10.1 at page 194, in [1].

Definition 1.5 Let U be a Banach space and let : → F U be a locally Lipschitz functional at ∈u U . Let  Uϕ ∈ . 
Under such statements, we define

( ){ },{ }

( ) ( )
( ) sup limsup : ,  0

n n

n n n
u n n

nu t U n

F u t F u
H u u in U t

t
ϕ

ϕ
+

+

→∞⊂ ×

 + −
= → → 

 

We also define the generalized local sub-gradient set of F at u, denoted by 0 ( )∂ F u , by

{ }0 * * *( ) : , ( ),ϕ ϕ ϕ∂ = ∈ ≤ ∀ ∈uU
F u u U u H U

We also highlight such a last definition of generalized local sub-gradient is exactly the definition of generalized 
gradient, which may be found in section 10.13, at page 196, in [1].

In the next lines, we prove some relevant auxiliary results.
Proposition 1.6 Considering the context of the last two definitions, we have

1 2 1 2 1 2( ) ( ) ( ), ,  u u uH H H Uϕ ϕ ϕ ϕ ϕ ϕ+ ≤ + ∀ ∈

( ) ( ), 0, .λϕ λ ϕ λ ϕ= ∀ > ∈u uH H U

Proof. Let 1 2,ϕ ϕ ∈U .
Observe that

( )

( )

( )

( )

( )

1 2

1 2

{ },{ }

1 2 2 2

{ },{ }

{ },{ }

( )

( ) ( )
sup limsup : in , 0

( ) ( ) ( ) ( )
sup limsup : in , 0

sup limsup

ϕ ϕ

ϕ ϕ

ϕ ϕ ϕ ϕ

+

+

+

+

→∞⊂ ×

+

→∞⊂ ×

⊂ ×

+

+ + −  = → → 
  

+ + − + + + −  = → → 
  

≤







n n

n n

n n

u

n n n
n n

nu t U n

n n n n n n n
n n

nu t U n

nu t U

H

F u t F u
u u U t

t

F u t F u t F u t F u
u u U t

t

( )

( )

( )

1

2

{ },{ }

1 2

( )
: in , 0

( )
sup limsup : in , 0

( ) ( ).

ϕ

ϕ

ϕ ϕ

+

+

→∞

+

→∞⊂ ×

+ −  → → 
  

+ −  + → → 
  

= +

n n

n n n
n n

n

n n n
n n

nu t U n

u u

F u t F u
u u U t

t

F u t F u
u u U t

t
H H (8)

in

.

.

.

,
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Thus,

( )

( )

( )

( )

( )

( )

{ },{ }

{ },{ }

ˆ{ },{ }

( )

( ) ( )
sup limsup : in ,  0

( ) ( )
sup limsup : in ,  0

ˆ ( )
sup limsup : in

n n

n n

n n

u

n n n
n n

nu t U n

n n n
n n

nu t U n

n n n
n

nu t U n

H

F u t F u
u u U t

t

F u t F u
u u U t

t

F u t F u
u u

t

λϕ

λϕ

λϕ
λ

λ

ϕ
λ

+

+

+

+

→∞⊂ ×

+

→∞⊂ ×

→∞⊂ ×

+ −  = → → 
  

+ −  = → → 
  

+ −
= →







ˆ,  0

( ).

n

u

U t

Hλ ϕ

+
  → 
  

=

The proof is complete.

2. The Lagrange multiplier theorem for equality constraints and non-smooth 
optimization

In this section, we state and  prove a Lagrange multiplier theorem for non-smooth optimization. This first one is related 
to equality constraints.

Here, we refer to a related result in the Theorem 10.45 at page 220, in [1]. We emphasize that in such a result, in 
this mentioned book, the author assumes the function which defines the constraints to be continuously differentiable in a 
neighbourhood of the point in question.

Anyway, in our next result, we do not assume such hypothesis. Indeed, our hypotheses are different, and in some 
sense, weaker. More specifically, we assume the continuity of the Fréchet derivative ( )′G u  of a concerning constraint 
G(u) only at the optimal point 0u and not necessarily in a neighbourhood, as properly indicated in the next lines.

Theorem 2.1 Let U and Z be Banach spaces. Assume 0u is a local minimum of F(u) subject to ( ) θ=G u , where 
: → F U is locally Lipschitz at 0u and : →G U Z is a Fréchet differentiable transformation such that 0( )′G u maps U 

onto Z. Finally, assume there exist 0α > and 0>K such that if ϕ α<
U

, then

0 0( ) ( ) .ϕ ϕ′ ′+ − ≤
U

G u G u K

Under such assumptions, there exists * *
0 ∈z Z such that

( )( )0 * *
0 0 0( ) ( ) ,θ ′∈∂ +F u G u z

that is, there exist 0
0 )* (Fu u∈∂  and * *

0 ∈z Z such that

( )* * *
0 0( ) ,θ′ + = u G u z

so that,

* *
0 0, ( ) , 0, .ϕ ϕ ϕ′+ = ∀ ∈

U Z
u G u z U

Proof. Let ϕ ∈U be such that

0( )ϕ θ′ =G u

,

,

(9)

.
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From the proof of Theorem 11.3.2 at page 292, in [3], there exist 0 0ε > , 1 0>K and

{ }0 0( ), 0ψ ε< < ⊂t t U

such that

0 1 0( ) , 0 .ψ ε≤ ∀ < <
U

t K t

and
( )2

0 0 0( ) , 0 .ϕ ψ θ ε+ + = ∀ < <G u t t t t

From this and the hypotheses on 0u , there exists 1 00 ε ε< < such that

( )2
0 0 0 1( ) ( ), 0 ,ϕ ψ ε+ + ≥ ∀ < <F u t t t F u t

so that
( )2

0 0 0
1

( ) ( )
0, 0 .

ϕ ψ
ε

+ + −
≥ ∀ < <

F u t t t F u
t

t

Hence,

( )

( ) ( ) ( )

( ) ( )

2
0 0 0

2 2 2
0 0 0 0 0 0 0

2 2
0 0 0 0

0 1

( ) ( )
0

( ) ( ) ( ) ( )

( ) ( )
( ) , 0 min{ , }.

ϕ ψ

ϕ ψ ψ ψ

ϕ ψ ψ
ψ ε

+ + −
≤

+ + − + + + −
=

+ + − +
≤ + ∀ < <

U

F u t t t F u

t
F u t t t F u t t F u t t F u

t
F u t t t F u t t

Kt t t r
t

From this, we obtain

( )

( ) ( ) ( )

( ) ( )

( ) ( )

0

2
0 0 0

0

2 2 2
0 0 0 0 0 0 0

0

2 2
0 0 0 0

0
0 0

2 2
0 0 0 0

0

( ) ( )
0 limsup

( ) ( ) ( ) ( )
limsup

( ) ( )
limsup limsup ( )

( ) ( )
limsup

( )

ϕ ψ

ϕ ψ ψ ψ

ϕ ψ ψ
ψ

ϕ ψ ψ

ϕ

+

+

+ +

+

→

→

→ →

→

+ + −
≤

+ + − + + + −
=

+ + − +
≤ +

+ + − +
=

≤

t

t

U
t t

t

u

F u t t t F u

t
F u t t t F u t t F u t t F u

t
F u t t t F u t t

Kt t
t

F u t t t F u t t

t
H

Summarizing,

( )
0 0( ) 0, ( ) .ϕ ϕ ′≥ ∀ ∈uH N G u

Hence,

( )
0 0( ) 0 , , ( ) .ϕ ϕ θ ϕ ′≥ = ∀ ∈u U

H N G u

(11)

(10)

,

,

.
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From the Hahn-Banach Theorem, the functional

0≡f

Defined on ( )0( )′N G u  may be extended to U through a linear functional 1 : → f U  such that

( )1 0( ) 0, ( )ϕ ϕ ′= ∀ ∈f N G u

and

01( ) ( ), .ϕ ϕ ϕ≤ ∀ ∈uf H U

Since from the local Lipschitz property
0uH is bounded, so is 1f .

Therefore, there * *∈u U  such that

0

*
1( ) , ( ), ,ϕ ϕ ϕ ϕ= ≤ ∀ ∈uU

f u H U

so that

* 0
0( ).∈∂u F u

Finally, observe that

( )*
0, 0, ( ) .ϕ ϕ ′= ∀ ∈

U
u N G u

Since 0( )′G u  is onto (closed range), from a well known result for linear operators, we have that

* *
0( ) .′ ∈  u R G u

Thus, there exists, * *
0 ∈z Z such that

( )* * *
0 0( ) ,′ = − u G u z

so that

( )* * *
0 0( ) .θ′ + = u G u z

From this, we obtain

( )* * *
0 0, , ( ) 0,ϕ ϕ ′ + = U U

u G u z

that is

( )* *
0 0, ( ) , 0, .ϕ ϕ ϕ′+ = ∀ ∈

U Z
u G u z U

The proof is complete.

.
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3. The Lagrange multiplier theorem for equality and inequality constraints for 
non-smooth optimization

In this section, we develop a rigorous result concerning the Lagrange multiplier theorem for the case involving 
equalities and inequalities.

Theorem 3.1 Let U, 1Z , 2Z  be Banach spaces. Consider a cone C  in 2Z  (as specified at Theorem 11.1 in [3]) 
such that if 1 θ≤z and 2 θ<z  then 1 2 θ+ <z z , where θ≤z  means that ∈−z C  and θ<z  means that ( )z C∈ − °. The 
concerned order is supposed to be also that if θ<z , * *θ≥z and * θ≠z  then 

2

*, 0<
Z

z z . Furthermore, assume 0 ∈u U
is a point of local minimum for : → F U  subject to 1( ) θ=G u and 2 ( ) θ≤G u , where 1 1: →G U Z , 2 2: →G U Z are 
Fréchet differentiable transformations and F locally Lipschitz at 0 ∈u U . Suppose also 1 0( )′G u  is onto and that there 
exist 0α > , 0>K such that if ϕ α<

U , then

1 0 1 0( ) ( ) .ϕ ϕ′ ′+ + ≤
U

G u G u K

Finally, suppose there exists 0ϕ ∈U such that 

1 0 0( ) ϕ θ′ ⋅ =G u

and

2 0 0( ) .ϕ θ′ ⋅ <G u

Under such hypotheses, there exists a Lagrange multiplier ( )* * * * *
0 1 2 1 2,= ∈ ×z z z Z Z such that

( ) ( )0 * * * *
0 1 0 1 2 0 2( ) ( ) ( ) .θ    ′ ′∈∂ + +

   
F u G u z G u z

* *
2 ,θ≥z

and

( )
2

*
2 0 2( ), 0,=

Z
G u z

that is, there exists * 0
0( )∈∂u F u  and a Lagrange multiplier ( )* * * * *

0 1 2 1 2,= ∈ ×z z z Z Z  such that

( ) ( )* * * * *
1 0 1 2 0 2( ) ( ) ,θ   ′ ′+ + =

   
u G u z G u z

so that

( ) ( )* * * * *
1 0 1 2 0 2, , ( ) , ( ) 0,ϕ ϕ ϕ′ ′+ + =

U U U
u G u z G u z

that is,

1 2

* * *
1 0 1 2 0 2, ( ) , ( ) , 0, .ϕ ϕ ϕ ϕ′ ′+ + = ∀ ∈

U Z Z
u G u z G u z U

,
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Proof. Let ϕ ∈U be such that

1 0( ) ϕ θ′ ⋅ =G u

and

2 0 2 0( ) ( ),ϕ λ′ ⋅ = −G u v G u

for some θ≤v  and 0λ > . 
For (0,  1)α ∈ define

0 (1 ) .αϕ αϕ α ϕ= + −

Observe that 1 0( ) θ=G u  and 1 0( ) αϕ θ′ ⋅ =G u  so that as in the proof of the Lagrange multiplier Theorem 11.3.2 in 
[3], we may find 1 0>K , 0ε >  and 0 ( )αψ t  such that

( )2
1 0 0 ( ) , ,  (0,1)G u t t t tα

αϕ ψ θ ε α+ + = ∀ < ∀ ∈
and

0 1( ) , ,  (0,1).
U

t K tαψ ε α< ∀ < ∀ ∈

Observe that

( )

2 0

2 0 0 2 0

2 0 0 2 0

2 0 0 2 0

0 0 2 0

( )

( ) (1 ) ( )

( ) (1 ) ( )

( ) (1 ) (1 ) ( )
( )

αϕ

α ϕ α ϕ

α ϕ α λ

α ϕ α α λ
λ

′ ⋅

′ ′= ⋅ + − ⋅

′= ⋅ + − −

′= ⋅ + − − −
= −

G u

G u G u

G u v G u

G u v G u
v G u

where

0 (1 ) ,λ α λ= −

and

0 2 0 0( ) (1 )α ϕ α θ′= ⋅ + − <v G u v

Hence, for 0>t ,

( ) ( )2 2
2 0 0 2 0 2 0 0( ) ( ) ( ) ( ) ( ),α α

α αϕ ψ ϕ ψ′+ + = + ⋅ + +G u t t t G u G u t t t r t

where

0

( )
lim 0.

+→
=

t

r t
t

(12)

.
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Therefore from (12), we obtain

( )2
2 0 0 2 0 0 0 2 0 1( ) ( ) ( ) ( ),α

αϕ ψ λ+ + = + − +G u t t t G u tv t G u r t

where

1

0

( )
lim 0.

+→
=

t

r t
t

Observe that there exists 1 0ε >  such that if 10 ε ε< < <t , then

1
0

( ) ,θ+ <
r tv

t

and

2 0 0 2 0 0 2 0( ) ( ) (1 ) ( ) .λ λ θ− = − ≤G u t G u t G u

Hence,

( )2
2 0 0 1( ) , if 0 .α

αϕ ψ θ ε+ + < < <G u t t t t

From this, there exists 2 10 ε ε< <  such that

( )2
0 0 0 2( ) ( ), 0 , (0,1).F u t t t F u tα

αϕ ψ ε α+ + ≥ ∀ < < ∈

In particular,

( )2
0 0 0 2( ) ( ), 0 min{1, },ϕ ψ ε+ + ≥ ∀ < <t

tF u t t t F u t

so that

( )2
0 0 0

2

( ) ( )
0, 0 min{1, },

ϕ ψ
ε

+ + −
≥ ∀ < <

t
tF u t t t F u

t
t

that is 

( )( )2
0 0 0 0

2

( ) ( )
0, 0 min{1, },

ϕ ψ ϕ ϕ
ε

+ + + − −
≥ ∀ < <

tF u t t t F u
t

t .
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From this, we obtain

( )( )

( )( ) ( )( ) ( )( )

( )( ) ( )( )

2
0 0 0 0

0

2 2 2
0 0 0 0 0 0 0 0 0 0

0

2 2
0 0 0 0 0 0

0 0
0 0

( ) ( )
0 limsup

( ) ( ) ( ) ( )
limsup

( ) ( )
limsup limsup ( )

li

ϕ ψ ϕ ϕ

ϕ ψ ϕ ϕ ψ ϕ ϕ ψ ϕ ϕ

ϕ ψ ϕ ϕ ψ ϕ ϕ
ψ ϕ ϕ

+

+

+ +

→

→

→ →

+ + + − −
≤

 + + + − − + + − + + − −
 = +
 
 

+ + + − − + + −
≤ + + −

=

t

t

t t t

t

t t
t

Ut t

F u t t t F u

t

F u t t t F u t t F u t t F u

t t

F u t t t F u t t
Kt t

t

( )( ) ( )( )

0

2 2
0 0 0 0 0 0

0

( ) ( )
msup

( ).

ϕ ψ ϕ ϕ ψ ϕ ϕ

ϕ
+→

+ + + − − + + −

≤

t t

t

u

F u t t t F u t t

t
H

Summarizing, we have

0
( ) 0,ϕ ≥uH

If

1 0( ) ϕ θ′ ⋅ =G u

and

2 0 2 0( ) ( ),ϕ λ′ ⋅ = −G u v G u

for some θ≤v  and 0λ ≥ .
Define

{ }0 1 0 2 0 2 0( ) , ( ) , ( ) ( ), , 0, , 0 .ϕ ϕ ϕ λ ϕ θ λ′ ′= + ⋅ − + ∈ ≥ ≤ ≥uA H r G u G u v G u U r v

From the convexity of 
0uH and the hypotheses on 1 0( )′G u  and 2 0( )′G u , we have that A  is a convex set (with a 

non-empty interior).
If

1 0( ) ,ϕ θ′ ⋅ =G u

and

2 0 2 0( ) ( ) ,ϕ λ θ′ − + =G u v G u

with θ≤v  and 0λ ≥  then

0
( ) 0,ϕ ≥uH

.

(14)

(13)
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so that

0
( ) 0, 0.ϕ + ≥ ∀ ≥uH r r

From this and

0
( ) 0,θ ≥uH

we have that (0, , )θ θ is on the boundary of A. Therefore, by the Hahn-Banach Theorem, geometric form, there exists

( )* * * *
1 2 1 2, ,β ∈ × ×z z Z Z

such that

( )* *
1 2, , (0, , )β θ θ≠z z

and

( )0
1 2

* *
1 0 1 2 0 2 0 2( ) ( ) , ( ) ( ), 0,β ϕ ϕ ϕ λ′ ′+ + ⋅ + ⋅ − + ≥u

Z Z
H r G u z G u v G u z

, 0, , 0ϕ θ λ∀ ∈ ≥ ≤ ≥U r v . Suppose 0β = . Fixing all variable except v, we get *
2 θ≥z . Thus, for 0ϕ ϕ= c  with arbitrary 

∈c , θ=v , 0λ = , if *
2 θ≠z , then 

2

*
2 0 0 2( ) , 0ϕ′ ⋅ <

Z
G u z  so that, letting → +∞c , we get a contradiction through (15), 

so that *
2 θ=z . Since 1 0( )′G u  is onto, a similar reasoning lead us to *

1 θ=z , which contradicts ( )* *
1 2, , (0, , )β θ θ≠z z .

Hence, 0β ≠ , and fixing all variables except r, we obtain 0β > . There is no loss of generality in assuming 1β = . 
Again fixing all variables except v, we obtain *

2 θ≥z . Fixing all variables except λ, since 2 0( ) θ≤G u , we obtain

2

*
2 0 2( ), 0.=

Z
G u z

Finally, for 0=r , θ=v , 0λ = , we get

0
1 2

* *
1 0 1 2 0 2( ) ( ) , ( ) , 0 , , .ϕ ϕ ϕ ϕ θ ϕ′ ′+ + ≥ = ∀ ∈u UZ Z

H G u z G u z U

From this,

( ) ( ) ( )
1 2

0 * * 0 * * * *
0 1 0 1 2 0 2 0 1 0 1 2 0 2( ) ( ), ( ), ( ) ( ) ( ) ,θ    ′ ′∈∂ + + = ∂ + +

   Z Z
F u G u z G u z F u G u z G u z

so that there exists * 0
0( )∈∂u F u , such that

( ) ( )* * * * *
1 0 1 2 0 2( ) ( ) ,θ   ′ ′+ + =

   
u G u z G u z

so that

( ) ( )* * * * *
1 0 1 2 0 2, , ( ) , ( ) 0,ϕ ϕ ϕ′ ′+ + =

U U U
u G u z G u z

(15)

,
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that is,

1 2

* * *
1 0 1 2 0 2, ( ) , ( ) , 0, .ϕ ϕ ϕ ϕ′ ′+ + = ∀ ∈

U Z Z
u G u z G u z U

The proof is complete.

4. Conclusion
In this article, we have presented an approach on Lagrange multiplier theorems for non-smooth variational 

optimization in a general Banach space context. The results are based on standard tools of functional analysis, calculus 
of variations and optimization. 

We emphasize, in the present article, no hypotheses concerning convexity are assumed and the results indeed are 
valid for such a more general Banach space context.
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