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1. Introduction
Many models that describe many phenomena in the applied sciences can be modeled by Fractional Differential 

Equations (FDEs), see for example [1-5]. One of the fundamental equations of mathematical physics is the fractional 
diffusion equation; it generalizes the classical diffusion equation, treating super-diffusive flow processes; it becomes 
increasingly sought after in recent years. The old version of the diffusion process problem is of great application in many 
disciplines and aims to capture the historical status of the physical field from its current data. The most simple model of 
the time-diffusion problem is the well-known partial differential equation of the temperature field u(x, t) governed by 
[6-8] 

2
1

2 , ,u u t x
u x

+∂ ∂
= ∈ ∈Ω ⊂

∂ ∂
 

under certain specified boundary conditions on ∂Ω, and a given pre-specified initial condition at t = 0. The target is to 
find a closed form of u(x, t) based only on the given initial and boundary conditions.
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Harold T. Davis created the notation for fractional calculus, which is a generalization of integration and 
differentiation to the noninteger-order fundamental operator aD

α
t , where a and t are the operation’s limits and α ∈ R. 

Fractional derivatives have been defined using various definitions, including Riemann-Liouville, Caputo, Hadamard, 
Erdélyi-Kober, Grünwald-Letnikov, Marchaud, and Riesz, to mention a few. The Riemann-Liouville, Caputo, and 
Grünwald-Letnikov definitions are the three best standard definitions for the universe of fractional calculus [9-11].

Due to the great demand for finding efficient solutions for time-fractional diffusion equations, recently, many 
researchers devoted their interest to handling this equation, for instance, the Regularization method [12], B-spline 
method [13], Finite difference method [14, 15], discontinuous Galerkin method [16, 17], collocation method [18, 19], 
fifth-kind Chebyshev tau method [20], Generalized Lucas tau method [21] and fifth-kind Chebyshev Galerkin method 
[22].

Let’s stress that the “global dependence” problem has generally restricted the computation of the numerical 
solution of time-fractional differential equations to basic scenarios (low spatial dimension or short time integration). The 
solution at a time tk typically depends on the solutions at all earlier time levels according to the concept of the fractional 
derivative. If low-order methods are used for spatial discretization, the storage would be expensive because all past 
solutions must be saved to compute the solution at the current time level. However, using the spectral approach [23-27], 
can relieve this storage restriction because it uses fewer grid points to provide highly accurate results than a low-order 
method. This reason motivates us to build and implement a robust and efficient Perov-Galerkin procedure that smoothly 
reduces the underlying time-fractional differential equation to a system of algebraic equations that can be efficiently 
inverted via Gaussian elimination procedures.

Lucas polynomials have vital places in the theory and practice of mathematics; there is a great deal of interest 
in their view and use in modern science. As a result, numerous academics have investigated their varied arithmetical 
features and produced several significant findings. For example, Abd-Elhameed and Napoli derived novel formulae on 
Lucas polynomials in [28], Abd-Elhameed et al. [29], derived novel formulas on Fibonacci and Lucas polynomials, 
Gumgum et al. [30] suggested Lucas polynomials collocation method for solving functional integro-differential 
equations, Youssri et al. executed a spectral Lucas approach for handling second-order boundary value problems [31], 
Youssri et al. [32] proposed a generalized Lucas Galerkin method for handling the linear one-dimensional telegraph type 
equation. 

To the best of our knowledge, there are some advantages of the proposed technique that can be mentioned as 
follows:

• Selecting the basis functions in terms of the Lucas polynomials enables one to obtain approximate solutions with 
high accuracy by taking a few numbers of the retained modes. This leads to less computational time and computational 
errors.

• The proposed method has inverse factorial order.
The above advantages motivate our interest to employ the Lucas polynomials. In addition, the numerical 

investigations based on the Lucas polynomials are few. This also gives us another motivation to utilize numerically this 
kind of polynomials.

The paper is structured as follows: In Sect. 2, some necessary mathematical tools of fractional calculus and Lucas 
polynomials required for the construction of the work will be given. Sect. 3 is the main section, devoted to constructing 
a Pertov-Galerkin Procedure for treating the time-fractional diffusion equation. In Sect. 4, we study the convergence rate 
of the expansion coefficients and the truncation error as well. Some test problems are executed in Sect. 5, finally, some 
concluding remarks are reported in Sect. 6.

2. Some used definitions and formulas
This section is devoted to accounting for Caputo fractional derivative properties. Moreover, we give an important 

definitions and elementary relations concerning the family of the non orthogonal polynomials, namely, Lucas 
Polynomials (LPs).
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2.1 Some properties of the Caputo fractional derivative

Definition 1 The fractional-order derivative in Caputo sense is defined as ([33]):
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where N = {1, 2, ...} and N0 = {0, 1, 2, ...}.

2.2 An account on the LPs

The recurrence relation of LPs Li(x) is defined as [34] as
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The Binet’s form for Li(x) can be written in the following form
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It is worth reporting that, the well-known Lucas numbers Li  can be obtained from LPs by setting x = 1, or can be 
generated from the Fibonacci recurrence relation Li +2 = Li +1 + Li; L0 = 2, L1 = 1.

3. Petrov-Galerkin approach for the time-fractional diffusion equation
In this section, we consider the following Time-Fractional Diffusion Equation (TFDE) [13]

( , ) ( , ) ( , ), 0 , 1t xxD u x t u x t f x tα β α− = < ≤

subject to the Initial Condition (IC)

( ,0) ( ), 0 1, u x x xσ= < ≤

and the Homogeneous Boundary Conditions (HBCs)

(0, ) (1 , , ) 0, 0 1u t u t t= = < ≤

where β is arbitrary positive constant and f (x, t) is the source term.

3.1 Basis functions

Consider the following basis functions
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along with Li(t) defined in (6).
Corollary 1 λi(x) can be written alternatively in the following form
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where
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and Li is the so called Lucas numbers.
Corollary 2 For all k ≥ 0, we have
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3.2 Petrov-Galerkin solution for TFDE

Now, one may set

span{ ( ) ( ) : , 0,1, , },M i jS x L t i j Mλ= = …
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then, any function u(x, t) ∈ VM may be written as
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Now, the application of Petrov-Galerkin is used to find uM (x, t) ∈ VM such that
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And hence, Eqs. (23) and (24), produce a linear system of algebraic equations of dimension (M + 1) × (M + 1) in 
the unknown expansion coefficients cij, that may be solved using suitable procedure.

Theorem 1 The elements bj, s, di,r, gi,r and hj, s are given by
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and rFs denotes the Gauss generalized hypergeometric function defined by
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Proof. To find the elements of bj, s, by using Definition 1, we get
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Now, to find the elements of di,r , by using Corollary 2, one has
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after simplifying the right-hand side of the last equation, we get the desired result. Finally, we can find similarly the 
elements of gi, r and hj, s, after using Corollary 1 and the analytic form (7).

Remark 1 The following transformation
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( , ) ( , ) (1 ) (0, ) (1, ),v x t u x t x u t xu t= − − −

helps us transform the boundary conditions from non-homogeneous ones to homogeneous ones.
Remark 2 Algorithm 1 shows all the steps required to obtain the numerical solution of Eq. (10) governed by the 

conditions (11)-(12).

Algorithm 1 Coding algorithm for the proposed technique
Input α, β, σ(x) and f (x, t).
Step 1. Assume an approximate solution uM (x, t) as in (19).
Step 2. Apply the Petrov-Galerkin method to obtain the system in (23) and (24).
Step 3. Use Theorem 1 to get the elements bj, s, di,r , gi,r and hj,s.
Step 4. Use NDsolve command to solve the system in (23) and (24) to get cij.
Output uM(x, t)

Remark 3 We would like to report here that our proposed method can be used to solve the two-dimensional time 
diffusion equation
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where K(x, y, t) is the source term.

In this case, we assume 
0 0 0
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= ∑∑∑  and imitating similar steps as in Section 3 to 

get a linear system of algebraic equations of dimension (M + 1)3 in the unknown expansion coefficients aijk, which can 
be inverted via Gaussian elimination procedure.

4. Convergence rate and truncation error bound
In this section, we find an upper estimate for the expansion coefficients cij, to specify the convergence rate, and then 

we find a dominant bound for the truncation error, for the previous purposes, we need the following results.
Lemma 1 For all t ∈ [0, 1], the following inequality is valid:
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where ϕ is the well-known golden ratio and 1 5
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Proof. Noting that Lj(z) ≤ Lj(1) = Lj, and since 1lim
2

n
nn

L
φ→∞

= , we get the desired result.

Lemma 2 For all x ∈ [0, 1], we have the following inequality
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Proof. By mathematical induction on i, we have λi(x) ≤ ϕix(1 − x)Li (x), now noting that x(1 − x) ≤ 
1
4

 and direct 
application of Lemma 1, we get the desired result.

The following theorem [34] is needed.
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Now, we are ready to prove the following theorem.
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Proof. With the aid of hypotheses of Theorem 3 and the following inequality
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Now, theorem 2 enables us to get the following inequality
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This completes the proof of this theorem.

Theorem 4 If 1 2
0 0
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Proof. The proof of this theorem can be obtained by imitating similar steps as followed in Theorem 3 in [32].
Theorem 5 If u(x, t) satisfies the hypothesis of Theorem 4, then we have the following upper estimate on the 

truncation error:
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By virtue of Theorem 4 along with two Lemmas 1 and 2, one has
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we get the following estimation

1 2( ) 1 1
1 2 1 2cosh(2 )cosh(2 ) ( ) ( )

| | ,
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M M
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u u
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where Γ(.) and Γ(., .) denote, respectively, gamma and upper incomplete gamma functions [35]. This completes the 
proof of this theorem.

5. Illustrative examples
Test Problem 1 [13, 36, 37] Consider the TFDE of the form

( , ) ( , ) ( , , 1 ) 0 ,t xxD u x t u x t f x tα α− + < ≤

subject to the IC

( ,0) 0, 0 1, u x x= < ≤

and the HBCs

(0, ) (1 , , ) 0, 0 1u t u t t= = < ≤

where 2 2 22( , ) sin(2 ) 4 sin(2 )
(3 )

f x t t x t xα π π π
α

−= +
Γ −

 and the exact solution of this problem is u(x, t) = t 2sin(2πx). 

In Table 1, we give a comparison of Maximum Absolute Errors (MAE) between our method and the method in [36] at 
α = 0.5. Also, we give a comparison of L2 error between our method and method in [37] at α = 0.5 in Table 2. Figure 1 
shows the exact and approximate solutions at M = 7 and α = 0.2. Table 3, presents the Absolute Error (AE) at different 
values of (x, t) when M = 7 and α = 0.7. Table 4 shows the AE at different values of t when M = 7 and α = 0.8. Finally, 
Figure 2 illustrate the L∞ error at different values of α at M = 7.

Table 1. Comparison of the MAE for Example 1

Method in [36] at ∆t = 0.001 Our method at M = 7

M MAE MAE

4 1.72 × 10−1

8 4.80 × 10−2

16 1.23 × 10−2 3.18816 × 10−5

32 3.08 × 10−3

64 7.70 × 10−4

(38)

(39)

(40)

(41)

□
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Table 2. Comparison of the L2 error for Example 1

Method in [37] at ∆t = 0.001 Our method at M = 7

M MAE MAE

4 1.09 × 10−1

8 3.20 × 10−2

16 8.42 × 10−2 1.00451 × 10−5

32 2.15 × 10−3

64 5.42 × 10−4

Figure 1. The exact and the approximate solutions for Example 1

Figure 2. The L∞ error for Example 1 at different values of α
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0.00001
0.00000

0.00002
0.00001
0.00000

1.0 1.0

0.5 0.5

0.0 0.0

t t

x x
1.0 1.0

0.5 0.5
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Table 3. The AE of Example 1

(x, t) (0.1, 0.1) (0.2, 0.2) (0.3, 0.3) (0.4, 0.4) (0.5, 0.5) (0.6, 0.6) (0.7, 0.7) (0.8, 0.8) (0.9, 0.9)

AE 1.73 × 10−6 3.00 × 10−6 8.27 × 10−6 1.03 × 10−5 8.18 × 10−6 1.37 × 10−6 6.42 × 10−6 2.02 × 10−6 2.45 × 10−5

Table 4. The AE of Example 1 at M = 7

α = 0.8

x 1
10

t = 3
10

t = 5
10

t = 7
10

t = 9
10

t =

0.1 1.97844 × 10−7 2.01871 × 10−6 5.69922 × 10−6 1.12279 × 10−5 1.85852 × 10−5

0.2 6.45779 × 10−8 1.4729 × 10−6 4.32913 × 10−6 8.61085 × 10−6 1.42823 × 10−5

0.3 5.55413 × 10−7 3.19976 × 10−6 8.47339 × 10−6 1.64081 × 10−5 2.70516 × 10−5

0.4 5.88208 × 10−7 2.40135 × 10−6 6.0049 × 10−6 1.14347 × 10−5 1.87439 × 10−5

0.5 5.19608 × 10−7 6.72478 × 10−7 9.03347 × 10−7 1.24591 × 10−6 1.75241 × 10−6

0.6 4.12898 × 10−7 1.10716 × 10−6 4.26828 × 10−6 9.04185 × 10−6 1.53813 × 10−5

0.7 3.29718 × 10−7 2.0593 × 10−6 6.94805 × 10−6 1.43126 × 10−5 2.41144 × 10−5

0.8 7.50816 × 10−7 2.35222 × 10−6 5.4988 × 10−6 1.02097 × 10−5 1.65135 × 10−5

0.9 5.93441 × 10−7 2.52173 × 10−6 6.36324 × 10−6 1.21292 × 10−5 1.98348 × 10−5

Test Problem 2 [13, 37] Consider the TFDE of the form

( , ) ( , ) ( , ), 0 1, t xxD u x t u x t f x tα α− + < ≤

subject to the IC

( ,0) 0, 0 1, u x x= < ≤

and the HBCs

0  (0, ) (1, ) , 0 1,u t u t t= = < ≤

where f (x, t) is chosen such that the exact solution of this problem is u(x, t) = sin(π x)sin(π t ).
In Table 5, we give a comparison of MAE between our method and method in [13] at α = 0.5. Also, Figure 3 shows 

the approximate and exact solutions at α = 0.5 and M = 8. In Figure 4, we plot the L∞ errors at different values of α 
when M = 8. Table 6 presents the AE at α = 0.6 and M = 8 for different values of t. Figure 5 illustrates the approximate 
solution (Left) and L∞ error (Right) at α = 0.9 and M = 8. At the end, the AE at different values of (x, t) at M = 7 and M = 
8 is presented in Table 7 at α = 0.1.

(42)

(43)

(44)
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Table 5. Comparison of the MAE for Example 2

α Method in [13] at M = 32 and ∆x = 0.001 Our method at M = 8

0.2 1.42 × 10−4 6.03935 × 10−6

0.5 1.10 × 10−3 1.15864 × 10−6

0.7 3.21 × 10−3 2.60955 × 10−6

Figure 3. The approximate and exact solutions for Example 2

Table 6. The AE of Example 2

α = 0.6

x 3
10

t = 6
10

t = 9
10

t = Convergence rate

0.1 5.83998 × 10−7 8.42798 × 10−7 1.26045 × 10−6 10−6

0.2 1.09395 × 10−6 1.5717 × 10−6 2.34284 × 10−6 10−6

0.3 1.51245 × 10−6 2.16457 × 10−6 3.21756 × 10−6 10−6

0.4 1.82186 × 10−6 6.07153 × 10−6 3.85024 × 10−6 10−6

0.5 2.0043 × 10−6 2.59797 × 10−6 4.20186 × 10−6 10−6

0.6 2.03514 × 10−6 2.84725 × 10−6 4.22667 × 10−6 10−6

0.7 1.88689 × 10−6 2.65699 × 10−6 3.87442 × 10−6 10−6

0.8 1.52417 × 10−6 2.13489 × 10−6 3.08983 × 10−6 10−6

0.9 9.09067 × 10−7 1.26558 × 10−6 1.81662 × 10−6 10−6

Approximate solution Exact solution

0.0

0.5

1.0 1.0

0.5

0.0

t t

x x

1.0 1.0

1.0 1.0

0.5 0.5

0.5 0.5

0.0 0.0
0.0 0.0
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Figure 4. The L∞ error for Example 2

Figure 5. The approximate solution (Left) and L∞ error (Right) for Example 2

Test Problem 3 [36] Consider the TFDE of the form

( , ) ( , ) ( , ), 0 1, t xxD u x t u x t f x tα α− + < ≤

subject to the IC

( ,0) 0, 0 1, u x x= < ≤

and the HBCs

0  (0, ) (1, ) , 0 1,u t u t t= = < ≤

L∞ error at α = 0.2 L∞ error at α = 0.7

0.0 0.0

0.5

1.0

0.5 t t

x x

0.0 0.0

0.5 0.5

1.0 1.0

0 0

6. × 10-6

4. × 10-6

2. × 10-6

2. × 10-6

1. × 10-6
1.0

Approximate solution L∞ error

0.00.0

0.50.5

1.01.0

tt

xx

0.00.0
0.0

0.5

1.0

0.5

1.0

0.5

1.0

4. × 10-6

3. × 10-6

2. × 10-6

1. × 10-6

0

(45)

(46)

(47)
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where 1 21( , ) (1 ) 2 (3 1)
(2 )

f x t t x x t xα

α
−= − + −

Γ −
 and the exact solution of this problem is u(x, t) = t x2(1 − x). The 

application of our method at α = 0.5 for M = 1 yields the following system of equations

00 01 10 110.459354 2.56066 1.15321 0.69386,c c c c+ + + =

00 01 10 110.459354 0.43934 0.224849 0.234506,c c c c+ + + = −

( )00 104 2 6 0,c c+ + =

( )00 104 = 2 6 ,c c−

that yield {c00 = 0, c10 = 0, c01 = −1, c11 = 1}, and therefore uM(x, t ) = t x2(1 − x), which is the exact solution.

Table 7. The AE of Example 2

α = 0.1

(x, t) M = 7 M = 8 Convergence rate

(0.1, 0.1) 8.80217 × 10−7 1.94195 × 10−8 10−7

(0.2, 0.2) 1.72101 × 10−6 9.04169 × 10−8 10−6

(0.3, 0.3) 5.95336 × 10−6 2.85192 × 10−7 10−6

(0.4, 0.4) 5.44695 × 10−6 5.78739 × 10−7 10−6

(0.5, 0.5) 7.05598 × 10−6 8.42112 × 10−7 10−6

(0.6, 0.6) 2.58616 × 10−7 1.11252 × 10−6 10−6

(0.7, 0.7) 5.76057 × 10−6 1.23026 × 10−6 10−6

(0.8, 0.8) 1.57319 × 10−6 1.18253 × 10−6 10−6

(0.9, 0.9) 9.19882 × 10−7 8.48789 × 10−7 10−7

Test Problem 4 Consider the two dimensional time diffusion equation

( ) ( ) ( ) ( ), , , , , , , , ,t xx yyu x y t u x y t u x y t K x y t− − =

subject to the IC

2 3 2 3( , ,0) ( )( ), 0 , 1, u x y x x y y x y= − − < ≤

and the HBCs

(0, , ) (1, , ) 0, 0 , 1, u y t u y t y t= = < ≤

(48)

(49)

(50)
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( ,0, ) ( ,0, ) 0, 0 , 1, u x t u x t x t= = < ≤

where

( ) ( )3 2 2( , , ) (2 6 ) ( 3) ( 2) 2 (6 2) ( 6) 2K x y t x t y y y y x t y y y y= − + − + + + − + − + + −

2 26( 1) ( 1) 2( 1)( 1) ,t x y y t y y− + − + + −

and the exact solution of this problem is u(x, y, t) = (x2 − x3)( y2 − y3) (1 + t).
The application of our method at M = 1 yields the following system of equations

( )000 001 010 011 100 101 110 1115 240 65 3 544 147 544 147 3696 14949 925,( )a a a a a a a a+ + + + + + + =

000 001 010 011 100 101 110 111960 255 4440 1195 6480 1719 30120 8091 735,a a a a a a a a+ + + + + + + =

000 001 010 011 100 101 110 111960 255 6480 1719 4440 1195 30120 8091  735,a a a a a a a a+ + + + + + + =

000 001 010 011 100 101 110 111720 189 3480 921 3480 921 16320 4369 549,a a a a a a a a+ + + + + + + =

000 010 100 1102 9  84 784 9,( )a a a a+ + + =

000 010 100 11018 93 168 868 9,a a a a+ + + =

000 010 100 11018 168 93 868 9,a a a a+ + + =

000 010 100 11036 186 961 18,a a a a+ + + =

that yield {a000 = 
1
2

, a001 = 1, a010 = 0, a011 = 0, a100 = 0, a101 = 0, a110 = 0, a111 = 0}, and therefore uM(x, y, t) = (t + 1) x2(1 − x) 

y2(1 − y), which is the exact solution.

6. Ending concluding remarks
We summarize the main findings of this work as follows; we have suggested, implemented, and analyzed an 

accurate spectral Perov-Galerkin Lucas polynomials scheme for efficiently solving the time-fractional diffusion 
equation, the error analysis is established, numerical test problems verify the findings of the work, we aim in near future 
to use the offered algorithm to handle more complicated models in the science of partial differential equations, for 
instance, [38-40].
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