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Abstract: In this article, we investigate the behaviors of the measles viral pandemic using fuzzy susceptible-infectious-
recovered (SIR) model. To examine the effects of various compartment phases, we analyze disease-free equilibrium 
points along with basic reproduction number. The measles model is stated to be globally asymptotically stable at 
the disease-free equilibrium point. In order to mathematically simulate the measles, we use a first-order nonlinear 
differential equation. The numerical solution is computed using the Runge-Kutta method, and the model’s feasibility is 
also covered.
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1. Introduction
Measles is unquestionably one of the most harmful of the various ailments that have harmed humankind throughout

the years. History demonstrates that measles epidemics have happened quite often. Here, we recommend an analytical 
method for analyzing epidemics that is based on the established susceptible-infectious-recovered (SIR) model. We 
discover that this method may produce a prediction parameter that can be utilized to determine whether a local or global 
immunization campaign should be launched. In the SIR model, S represents the proportion of the population that is 
at risk of contracting the disease, I represents the proportion of the population that is already ill, and R represents the 
proportion of the population that has recovered.

Prior to the invention of the measles vaccine in 1963 and extensive vaccination, measles caused about 1.2 billion 
casualties annually. Rapid immunization has significantly decreased the number of measles deaths. From 2000 until 
2017, there were only 110,000 cases of measles globally, an 80% fall from 545,000 cases.

A high body temperature appears between ten and twelve days after being exposed to the measles virus. 
Congestion, leaky eyes, red eyes, and a stuffy nose, as well as little white patches within the cheeks, might also appear 
in the early stages. After a couple of days, rashes on the face and the top of the neck will typically appear. After three 
days, the rashes move to the feet and hands before disappearing five to six days later. As a result, the rash will typically 
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start to form.
Finding possible outbreaks in small pockets of a certain geographic area before the virus spreads to the entire 

country or the world is a challenge for epidemiologists. As a result, the suggested approach has been developed that 
enables one to decide whether an outbreak constitutes an epidemic or not based on the resolution of the SIR model’s 
differential equations.

Most deaths associated with measles are caused by consequences. Encephalopathy, eyesight issues, irritable bowel 
syndrome, exhaustion, or extreme lung problems, including bronchitis, are among the most significant side effects. 
Undernutrition, infants, particularly those lacking vitamin A, or individuals whose physical health has been disrupted by 
HIV/AIDS or other disorders are more likely to get severe measles.

Certain measles consequences can be managed with intensive care that provides correct nutrition, appropriate 
hydration intake, and dryness therapy with an oral rehydration solution suggested by the World Health Organization. 
Major public health measures to lower the number of measles deaths worldwide include routine vaccination of children 
against the disease and bulk immunization drives in nations with high rates of cases and fatalities [1].

In order to evaluate the accuracy and sensitivities of identifying the anomalies present in the data under a minimum 
expense false-positive rate, an adaptive target level identification method is developed by Mohtashemi et al. [2] and 
Wu et al. [3] found that whenever the funding for vaccination is constrained such that perhaps the overall quantity of 
infected persons is as low as possible throughout the lifetime of an epidemic, an optimal design utilizing a structured 
susceptible-infectious (SI) model is constructed to achieve the best vaccination rates for separate categories at varying 
risk levels. In cases where the treatment’s capability is low, a backward bifurcation was discovered by Zhou et al. 
[4]. The propagation of tuberculosis was discussed in this article by Side et al. [5], utilizing the Susceptible-Exposed-
Infected-Recovered (SEIR) model. Utilizing data about the number of TB cases, the SEIR model for transmission of TB 
was examined, and calculations were run. The majority of researchers look at a model’s phenomenological behavior, 
including steady state, fundamental reproduction numbers, local and global stability, and bifurcation analysis [6-9]. They 
provide a detailed check of the connections between different literary genres in order to highlight a potential possibility 
for future modeling of the behaviors of the disease. Vaccination and rehabilitation have been employed as functionalities 
for vulnerable and infected persons in an efficient control issue with an objective function. [10-17] formally describe 
the dominating eigenvalue of a positive linear operator as the anticipated number of subsequent implementations 
integrated by a particular affected person throughout its whole duration of transmissibility in a maximally vulnerable 
community. These studies [18-12] propose a nearly compressible model based on the characteristics of the mumps virus 
as described by a series of nonlinear equations. The model’s numerical simulation demonstrated whether vaccination 
can lower the demographics’ exposure and infectiousness [23-25]. The majority of research articles [26-32] furthermore 
performed some sensitivity analysis on the basis of numerous model parameters, where it was demonstrated that raising 
the immunization rate, boosting the effectiveness of vaccine administration, and educating the public about rubella all 
contribute to the control and subsequent eradication of the disease. Vellappandi et al. [33, 34] have derived an optimal 
control problem for schistosomiasis disease by using the Caputo fractional derivative. Zarin et al. [35] reformulated and 
analyzed a co-infection model consisting of Chagas and HIV epidemics.

In this paper, we have constructed an SIR mathematical model to study the equilibrium points, stability of measles 
mellitus, basic reproductive number as well as fuzzy basic reproduction number, analysis using a fuzzy system, and 
comparison of the analytical approach by variation iteration method and numerical approach using the Runge-Kutta 
method without genetic factors.

2. Preliminaries
2.1 Fuzzy number

Let X be a nonempty crisp set. A fuzzy subset S of X is denoted by S  and is defined as 



( ){( , ) : }s xS x x Xµ= ∈

where : [0,1]s Xµ →  is a membership function associated with a fuzzy set S , which describes the degree of 
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belongingness of x with X.
Here, we use the membership function μ(x) to indicate the fuzzy subsets S. Also, μ(x) is called fuzzy number if X 

is the set of real numbers. 

2.2 Triangular fuzzy number

A fuzzy set is called a triangular fuzzy number if the membership value can be represented by a triangular function. 
This function by a three parameters F(x: a, b, c) [5] such as: 

0, if ,

, if ,
( : , , )

if ,

0, if ,

x a
x a a x b
b aF x a b c
c x b x c
c b

x c

<
 − ≤ <
 −=  − ≤ ≤
 −
 >

2.3 Fuzzy measure and fuzzy expected value

Let Ω be a nonempty set and P(Ω) denote the set of all subsets of Ω. Then μ: Ω → [0,1] is a fuzzy measure [5], if
(i) μ(φ) = 0 and μ(Ω) = 1,
(ii) For A, B ∈ P(Ω), μ(A) ≤ μ(B) if A ⊂ B.

Let μ: Ω → [0,1] be an uncertain variable, i.e., μ is a fuzzy subset and μ a fuzzy measure on Ω.
Then, the fuzzy expected value (FEV) of μ is the real number, defined by the Sugeno measure [10].

{ }FEV( ) sup ,0 1min( , , ( ))d a kµ µ µ αα= = ≤ ≤∫

where { }( ) .: ( )k α µ ω µ ω α= ∈Ω ≥

2.4 Fuzzy mathematical model

The following SIR fuzzy mathematical model includes the transmission rate, mortality from disease rate, and 
recovery rate as fuzzy parameters because we assumed that there is population heterogeneity. Based on the quantity 
of interactions with infected (I) people and the rate of transmission of the virus, people go from S to I. When people 
recover from the infection, they move from the I compartment to the R compartment. Here is the virus load for the 
disease.

Susceptible: They are the people who are exposed to the spread of the disease out of the overall population (N).
Infected: People who exhibit infectious disease symptoms are classified as the infected population. They can 

transmit the disease because they are also contagious. 
Recovered: Persons who have undergone treatment or taken vaccination and recovered from the infectious disease 

are termed the recovered population.

( )SIdS
dt N

η Ω
= − (1)

( ) ( )SIdI I
dt N

η
δ=

Ω
− Ω (2)

( )dR I
dt

δ= Ω (3)
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S + I + R = N is the total of human population.

Table 1. Parameter description

Parameters Description of parameters

η Transmission rate

δ Recovery rate from infection

S Susceptible

I Infected

R Recovered

Ω Virus load

3. Stability analysis
The stability analysis of the model shows that the system is globally asymptotically stable at the disease-free

equilibrium point.

3.1 Measles-free equilibrium

The trivial equilibrium is thought to be a measles-free equilibrium in our context. So, the measles-free equilibrium 
is λ0 = (0,0,0). 

3.2 Basic reproductive number

The average number of secondary infections brought on by a single infected person over the course of their entire 
contagious lifetime is known as the basic reproduction number. The symbol for the number is R0. The next generation 
matrix approach [4, 5] is used to obtain the fundamental reproduction number R0 for the system, 0 .SR

N
η
δ

=

3.3 Global stability analysis

The Lyapunov function V1 for our model is ( )1 1, , , 'f t S I R a I=  where  dII
dt

′ =  from equation (2).

We found that [ ]1
1 Idf a

dt
δ= −  by choosing 1  as 1 a

δ
− it is clear that 1 0 if 0dv I

dt
= = .

While substituting I = 0 in our model system of equations, we found that S approaches to 0, R approaches to 0 as 
t tends to infinity. Hence, by Lasalle’s invariance principle, the system of equations is stable at λ0. Hence, the system is 
globally asymptotically stable at λ0.

4. Analysis of fuzzy system
We take into account the different grades of measles susceptibility and infectiousness. Because of the population’s

diversity, we assume in this study that the contact transmission rate and recovery rate are fuzzy variables. The 
probability that an infected person will spread the disease to a susceptible person after just one encounter with them. We 
use the membership function to express the membership function of transmission rate and recovery rate, which was first 
developed by Barros [30] and applied by Bhuju et al. [31] and Verma et al. [32].

Let η = η(Ω) be a representation of the virus load-dependent transmission rate demonstrated in [3].
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min

min,
min

min,

max

0, if ,

if ,( )

1, if ,

M
M

M

η

Ω < Ω
 Ω−Ω Ω ≤ Ω ≤ ΩΩ = Ω −Ω
 Ω ≤ Ω ≤ Ω

where Ωmin signifies the lowest amount of virus in the society, ΩM signifies the mid-range amount, and Ωmax is the highest 
virus load per person in the population. Figure 1 depicts the membership function of transmission rate.

Ωmin

η(Ω)

1

ΩM Ωmax

Figure 1. Membership function of transmission rate

Let’s use the symbol δ(Ω) to represent the infectious measles recovery rate that depends on viral load. As the illness 
is treated more slowly, the viral burden grows. Identifying the fuzzy integer that this model’s recovery rate is using the 
following membership function

0
max

max

1
( ) 1,  if 0  

( )δ
δ

Ω
−

Ω Ω+ <Ω < Ω

where Ω is the viral load, and 0 < δ0 is the population minimum recovery rate. Figure 2 displays the recovery 
membership features.

δ(Ω)

Ωmax

1

δ0

Figure 2. Membership function of recovery rate

We predict that the viral concentration may vary based on the individual. This makes it a linguistic variable that, 
in accordance with the expert’s classification, can be mild, moderate, or heavy. Each division in the linguistic variable’s 
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membership function is divided by [2].

0, if ,

, if ,
( )

( ) , if ,

1, if ,

x
x x

x
x x

x
x

π

 Ω < Ω−

Ω−Ω+ Ω− ≤ Ω ≤ Ω

Ω = 
− Ω−Ω− Ω < Ω ≤ Ω+

 Ω > Ω+

4.1 Fuzzy basic reproduction number

By examining the stability of the equilibrium point, the basic reproduction number R0 can be determined. 0
SR
N

η
δ

=

for the SIR model rises with an increase in virus load; this value cannot be a fuzzy set because it may be more than 1. 
We therefore introduced δ0R0(Ω) to be less than 1 as a result. Thus, δ0R0(Ω) ≤ 1, where FEV[δ0R0(Ω)] is well-defined 
and is a fuzzy set. We first determine the FEV values for R0(Ω), δ(Ω) < 1, δ(Ω), 1. Since we already know that δ(Ω) < 1, 

we get 0 1S
N

δ η
δ

< . We introduce the fuzzy basic reproduction number [16] in this approach.

The fuzzy basic reproduction number is given by

[ ]0 0 0
0

1 FEV ( )FR Rδ
δ

= Ω

To obtain FEV, we need to define fuzzy measure of ξ where FEV(R0(Ω)) = sup {min (ℨ, k(ℨ))}, 0 1,≤ ≤Z   
k(ℨ) = { }0 0: ( ) ( ),R Xµ δ µΩ Ω ≥ =Z  which is a fuzzy measurement. By applying the fuzzy measure, we determine FEV. 
The possibility measure is provided by [16] for this purpose 

) sup ( ), ,X X X R

From FEV(δ0 < R0(Ω)), it is evident that R0(Ω), where the set X = max, Ω Ω  is the answer to the equation given, is not 
diminishing one, and the answer to the following expression is Z,

0  S
N

δ η
δ

= Z (4)

Thus, k(ℨ) = μ max, Ω Ω  = sup π(Ω) with max ,Ω ≤Ω ≤ Ω  where k(0) = 1 and k(1) = π(Ωmax).
Three categories make up the population’s “amount of virus,” which was thought to have linguistic importance, 

and each of them displays confusing behavior. There are various viral loads, from minor to extreme. This is reliant 
upon η(Ω) and δ(Ω). In this fuzzy model, there are three different categories of people, and each has a unique rate of 
transmission and recovery. So, each category will be used to determine R0F. We obtain fuzzy basic reproduction numbers 
using different amounts of virus load.

Case 1: Weak virus min( )Ω . The viral load in this instance is low (i.e.) when min   xΩ + ≤ Ω .

Here, η(Ω) = 0 and δ(Ω) = 0

max

1( )1δ −
Ω +

Ω
, we have calculated FEV [δ0 R0(Ω)].  

[ ] ( )( ){ }
{ }

[ ]

0

0 0
0

0

0

1min , : 0
sup

0

,min( , ( ))
0
1

FEV ( ) sup ,0

FEV ( )F R

R

R

π
δ

δ
δ

≤℘

Ω

Ω = ≤Ω ≥
=
=

=

= Ω

ZZ
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In the event that R0F = 0, it means that the disease will eventually become obsolete.
Case 2: Medium virus ( )ΩM . The viral burden in this instance is medium (i.e.) when minxΩ− ≥ Ω  and 

  MxΩ + ≤Ω .

Here, min

min

( )
M

η =
Ω
Ω −Ω

Ω
−Ω

 and ( )0

max

1
( )

δ
δ

−
Ω

Ω = Ω + 1. We have calculated FEV [δ0R0(Ω)].

[ ] { }0 0 1FEV ( ) sup ,min( 0, ( ))R kδ = ≤Ω ≤ ZZ Z

when 0 < Z < 1 with Z is the solution of the following equation.

0  S
N

δ η
δ

=Z

For 0 < Z < 1, we divide into three parts. k(Z) for 0 ≤ Z ≤ 1

0 0

0 0 0 0

0 0

1, if 0 ( ),
( ) ( ), if ( ) ( ),

0, if ( ) 1.

R
k R R x

R x

δ
π δ δ

δ

 < ≤ Ω
= Ω Ω < ≤ Ω+
 Ω+ < ≤

Z

Z Z

Z

So, if Z, k(Z) is continuous, and decreasing function with k(0) = 1 and k(1) = 0. Hence, FEV(δ0R0(Ω)) is the fixed 
point of k and R0F

( ) ( )
( )

0 0 0 0 0 0

0 0 0

FEV ( ) ,
.

( )
( ) F

R R R x
R R R x
δ δ δ≤ Ω ≤ Ω +

Ω
Ω
≤ ≤ Ω +

As the function R0(Ω) is increasing and a continuous function, then by the intermediate value theorem there exists 
Ω with  xΩ <Ω <Ω +  such that R0F R0(Ω) > 0 ( )R Ω .

There is enough virus load that R0 and R0(Ω) are equal. Additionally, the average number of secondary cases R0F is 
larger than the average number of secondary cases 0 ( )R Ω  due to the medium amount of virus.

Case 3: Strong virus (Ωmax). In this case, the virus load is strong (i.e.) when MxΩ+ ≤ Ω  and maxxΩ+ ≤ Ω .

Here, η(Ω) = 1 and 
( )0

max

1
( )

δ
δ

−
Ω

Ω = Ω  +1, we have calculated FEV [δ0R0(Ω)].

[ ] { }0 0 1FEV ( ) sup ,min( 0, ( ))R kδ = ≤Ω ≤ ZZ Z

when 0 < Z < 1 with Z is the solution of the following equation.

0 S
N

δ η
δ

= Z

For 0 < Z < 1, we divide into three parts. k(Z) for 0 ≤ Z ≤ 1

0 0

0 0 0 0

0 0

1, if 0 ( ),
( ) ( ) ( ) ( )

0, ( ) 1.

R
k R R x

R x

δ
π ξ δ δ

δ

 < ≤ Ω
= Ω < ≤ Ω+
 Ω+ < ≤

Z

Z Z

Z

Since the function of k is continuous and decreasing, we can directly calculate FEV [δ0R0(Ω)] and R0F
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0 0 0 0

0 0 0
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( )  FEV( ( )) ( ),
1( )  FEV( ( )) ( ),
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R R
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R
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δ δ

δ
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+
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Thus, R0F > 1. We can predict that such disease will really be endemic.
If the population’s transmission and recovery are not zero, we derive the fuzzy model’s basic reproduction number, 

R0(Ω) ≤ R0F  ≤  R0(Ω + x). 

5. Feasibility analysis
5.1 Feasible solution

It is prudent to assume that the parameters employed and the variables in all classes are non-negative, that is, t ≥ 0. 
We shall show evidence that, under the given non-negative initial circumstances, all model variables are non-negative.

The model’s collection of possible solutions, which is positively invariant, is provided by:

{ }Let ( , , ) such that ( ) ( ) ( ) ( ) 0S I R N t S t I t R tξ = = + + →

The set ξ is positive invariant and attracts all the solutions in R3 

0.dN dS dI dR
dt dt dt dt

= + + =

Hence, N is constant implies N is bounded.

All the variables in this model are positive

Let the initial data set be (S, I, R) (0) ≥ 0 → ξ.
The solution set of the given model is positive for all t > 0.
Proof. We have, from equation (1),

.dS SI
dt N

η−
=

While integrating the above equation, ( ) , 0
It

NS t ke k
β−

= > .
When t approaches 0, S(t) tends to k, which is positive.

Also, for ,dI SI I
dt N

η δ= −  we get ( )
S t

NI t ke
η δ − 
 =  and for ,dR I

dt
δ=  we get ( ) .R t It kδ= +  

Hence, we prove that all the variables are positive.

5.2 Existence of solution 

Let 1 2,SI SIf f I
N N
η η δ− −

= = − and 3f Iδ=

1 ,I
N

f
S

η−
=

∂
∂

2 ,f
NS
Iη

=
∂
∂

 3 0,f
S
∂
∂

= 1 ,Sf
I N

η δ−
= −

∂
∂

3 ,f
I

δ
∂
∂

= 1 0,f
R
∂
∂

= 32 ff
R R

=
∂∂

∂ ∂
=

, ,i i if f f
S I R
∂ ∂ ∂
∂ ∂ ∂

 less than infinity where i varies from 1 to 3. It is clear that all the partial derivatives exist, continuous and 



Volume 5 Issue 1|2024| 905 Contemporary Mathematics

bounded. Hence, by uniqueness and existence theorem, there exist unique solution.

5.3 Numerical approach 

The initial values for this model’s numerical simulation were S(0) = 99,000, I(0) = 1,000, and R(0) = 0 the 
parameters’ values are given below.

Table 2. Parameter value

Parameters Values

η 0.2

δ 0.1

S 99,000

I 1,000

R 0

By using Runge-Kutta for fourth order, we found the following values for consecutive 100 days (Table 3) and 
corresponding graphs (Figures 3 to 7) are drawn.

Table 3. Susceptible, infected, recovered, basic reproduction number uing Runge-Kutta (RK) method

Days S(RK) I(RK) R(RK) Y(R0)

0 99,000 1,000 0 1.98

1 98820.52 1103.075 105.1708 1.976410489

2 98622.89 1216.349 221.1821 1.97245783

3 98405.38 1340.74 349.1065 1.968107577

4 98166.13 1477.227 490.1133 1.963322516

5 97903.13 1626.85 645.4744 1.958062549

6 97614.23 1790.712 816.5717 1.952284603

7 97297.13 1969.969 1004.902 1.945942565

8 96949.36 2165.832 1212.086 1.938987258

9 96568.32 2379.555 1439.868 1.931366466

10 96151.25 2612.426 1690.128 1.923025016

11 95695.25 2865.752 1964.879 1.913904934

12 95197.28 3140.845 2266.272 1.903945695

13 94654.23 3438.997 2596.598 1.893084565

14 94062.85 3761.454 2958.28 1.881257074

15 93419.88 4109.385 3353.875 1.868397614

16 92722.01 4483.848 3786.063 1.854440199

17 91965.97 4885.742 4257.633 1.839319376

18 91148.57 5315.762 4771.47 1.822971321

19 90266.76 5774.345 5330.533 1.805335108

20 89317.71 6261.614 5937.826 1.786354154

21 88298.89 6777.316 6596.365 1.765977829

22 87208.16 7320.76 7309.141 1.744163217
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Table 3. Continued

Days S(RK) I(RK) R(RK) Y(R0)

23 86043.85 7890.755 8079.072 1.720876975

24 84804.86 8485.557 8908.949 1.696097261

25 83490.78 9102.813 9801.382 1.669815654

26 82101.95 9739.527 10758.73 1.642038994

27 80639.55 10392.04 11783.05 1.612791054

28 79105.7 11056 12875.99 1.582113937

29 77503.45 11726.44 14038.75 1.550069099

30 75836.9 12397.76 15272.03 1.516737908

31 74111.08 13063.82 16575.92 1.48222163

32 72332.04 13718.08 17949.85 1.446640799

33 70506.7 14353.69 19392.59 1.410133913

34 68642.77 14963.64 20902.18 1.372855469

35 66748.67 15540.96 22475.92 1.334973365

36 64833.29 16078.91 24110.38 1.296665756

37 62905.87 16571.13 25801.41 1.258117491

38 60975.81 17011.85 27544.21 1.219516264

39 59052.43 17396.04 29333.36 1.181048676

40 57144.82 17719.54 31162.91 1.142896376

41 55261.62 17979.19 33026.49 1.105232452

42 53410.91 18172.88 34917.38 1.068218243

43 51600.03 18299.58 36828.64 1.032000671

44 49835.51 18359.32 38753.22 0.996710195

45 48122.97 18353.17 40684.09 0.962459423

46 46467.12 18283.13 42614.3 0.929342368

47 44871.72 18152.03 44537.16 0.897434326

48 43339.62 17963.43 46446.22 0.866792305

49 41872.8 17721.46 48335.45 0.837455904

50 40472.43 17430.68 50199.23 0.809448562

51 39138.95 17095.97 52032.43 0.782779062

52 37872.16 16722.38 53830.43 0.757443197

53 36671.28 16315.01 55589.13 0.733425514

54 35535.05 15878.92 57305 0.710701055

55 34461.85 15419.04 58975 0.689237047

56 33449.72 14940.08 60596.63 0.668994477

57 32496.48 14446.51 62167.89 0.649929547

58 31599.75 13942.49 63687.24 0.631994972

59 30757.06 13431.86 65153.59 0.615141117

60 29965.85 12918.09 66566.23 0.599316979

61 29223.55 12404.33 67924.83 0.584471013

62 28527.59 11893.36 69229.4 0.570551817

63 27875.43 11387.63 70480.24 0.557508686
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Table 3. Continued

Days S(RK) I(RK) R(RK) Y(R0)

64 27264.6 10889.27 71677.89 0.545292053

65 26692.69 10400.11 72823.12 0.533853821

66 26157.38 9921.668 73916.91 0.523147616

67 25656.45 9455.222 74960.38 0.513128967

68 25187.77 9001.798 75954.79 0.503755412

69 24749.33 8562.206 76901.52 0.494986573

70 24339.21 8137.06 77802.01 0.48678417

71 23955.6 7726.799 78657.79 0.47911202

72 23596.8 7331.707 79470.43 0.471935999

73 23261.2 6951.933 80241.51 0.465223991

74 22947.29 6587.509 80972.65 0.45894582

75 22653.66 6238.366 81665.46 0.453073172

76 22378.98 5904.349 82321.56 0.447579516

77 22122 5585.23 82942.52 0.442440013

78 21881.57 5280.722 83529.93 0.437631425

79 21656.6 4990.487 84085.3 0.433132033

80 21446.08 4714.148 84610.16 0.42892154

81 21249.05 4451.297 85105.95 0.424980994

82 21064.63 4201.5 85574.1 0.421292699

83 20892.01 3964.31 86015.97 0.417840136

84 20730.39 3739.264 86432.9 0.414607891

85 20579.08 3525.896 86826.16 0.411581578

86 20437.39 3323.734 87196.98 0.408747774

87 20304.7 3132.309 87546.54 0.406093954

88 20180.42 2951.156 87875.97 0.403608428

89 20064.01 2779.817 88186.35 0.401280289

90 19954.97 2617.84 88478.7 0.399099356

91 19852.81 2464.786 88754.02 0.397056126

92 19757.09 2320.226 89013.25 0.395141727

93 19667.39 2183.745 89257.27 0.393347875

94 19583.34 2054.939 89486.93 0.391666836

95 19504.57 1933.419 89703.05 0.390091385

96 19430.74 1818.812 89906.39 0.388614773

97 19361.53 1710.757 90097.68 0.387230693

98 19296.66 1608.909 90277.6 0.385933252

99 19235.85 1512.937 90446.81 0.384716944

100 19178.83 1422.524 90605.93 0.383576619
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Figure 3. Susceptible population using Runge-Kutta method
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Figure 4. Infected population using Runge-Kutta method
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Figure 5. Recovered population using Runge-Kutta method
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Figure 6. Graph of basic reproduction number uing Runge-Kutta method
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Figure 7. Comparison of susceptible, infected, and recovered population using Runge-Kutta method

6. Discussion and results
We must start implementing the following procedures in order to stop measles:
• By decreasing the transmission rate from the susceptible population to the infected compartment.
• It has been discovered that the risk of contracting measles dramatically falls if the virus is infectious, as

determined by avoiding contact tracking, screening, or the illness’s spread.
• Preventing the mixture of infected and recovered populations
• Using strong medical support and good treatment for the people who are infected
• Applying more effective methods to determine the confirmed cases.
• The proverb “prevention is better than cure” should be properly followed by everyone in order to ensure that the

sickness doesn’t spread further.
• Examining the impacts of the factors (such as tracing and screening of contacts) on the measles outbreak, an

equation with piecewise constant arguments is suitable for a population with a changeable size structure.
• The Runge-Kutta method is used in this model to find numerical simulations. It is found that the equilibrium

point is globally asymptotically stable under certain conditions.
• Finally, based on the data, we discovered that as infection levels rise and recovery rates rise, the susceptible

population gradually declines. By comparing the R0 graph with the infective graph, it’s found that when R0 > 1,
infection increases, while when R0 < 1, infection decreases.

• Figures 3, 4, 5, and 6 represent the susceptible, infected, recovered population and the basic reproduction
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number, which are depicted using the Runge-Kutta method. Figure 7 shows the dynamical behavior of the model 
using the Runge-Kutta method.

7. Conclusion
In this research, we looked at a mathematical model for measles sickness in a fuzzy setting. For the models in fuzzy

situations, stability analysis and fundamental reproduction numbers are explored. We used the iterative Runge-Kutta 
solution. While seeing the graph of R0 and infections, it’s clear that the infection increases when R0 > 1 and decreases 
when R0 < 1. In the future, we will research and analyze the applicability of the suggested methods in a different 
epidemic model with a fuzzy environment.
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