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Abstract: In this work, the Benjamin-Bona-Mahoney-Burgers equation has been examined, which includes the  
dual power-law nonlinearity and diffraction term. By using the modified exp-function method, the exact solutions of 
the governing equation have been obtained. The resulting traveling wave solutions have been found to exhibit various 
characteristics, such as being dark solitons, periodic, and singular, depending on the values of certain constants. To 
further illustrate these solutions, 3D, 2D, and contour graphs have been displayed. To the best of our knowledge, this is 
the first time in literature that the dark solitons, periodic soliton, and singular soliton solutions of considered equations 
have been obtained by utilizing the modified exp-function method.
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1. Introduction
It is completely obvious that nonlinear partial differential equations (NLPDEs) have been used to explain a 

great deal of the mathematical and physical models that arise in the many disciplines of science, including quantum 
mechanics, classical mechanics, optical fibers, plasma physics, and biological science. Finding solutions to many 
distinct types of NLPDEs has caught the interest of numerous researchers. Since NLPDEs have such a broad variety 
of applications in applied mathematics, it is essential to look for different sorts of solutions to NLPDEs. There are 
different methods that have been utilized to derive the analytic solutions of NLPDEs, like tanh method [1, 2], Jacobi 
elliptic function method [3, 4], G′/G method [5-7], F-expansion method [8, 9], modified simple equation method [10, 
11], etc. The Lie classical method [12-14], nonclassical method [15-20], and direct method [21] can also be used to find 
the exact solutions of NLPDEs. Also, the fractional natural decomposition method [22] is a strong approach to finding 
iterative solutions to partial differential equations (PDEs). The q-homotopy analysis transform technique [23] is used to 
analyze the nature and capture the corresponding consequences of the solutions obtained for PDEs. The modified exp-
function method [24] is also an efficient method that can be used to find singular, periodic, dark, and bright solitary 
wave solutions.

In this manuscript, we consider the Benjamin-Bona-Mahoney-Burgers (BBMB) equation with dual power-law 
nonlinearity,
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This equation is a variant of the more general Benjamin-Bona-Mahoney (BBM) equation [25], which is itself a 
modification of the Korteweg-de Vries (KdV) equation [26, 27]. The BBM equation and its variants are used to model 
a wide range of physical phenomena, including fluid dynamics, plasma physics, and nonlinear optics. This equation 
explains the unidirectional propagation of long waves with small amplitudes in water. The Benjamin equation [28] 
explains the one-directional movement of low-amplitude, long internal waves that occur at the interface between two 
layers of fluid, subject to the combined influences of surface tension and gravity. Khater et al. [29] obtained the solitary 
wave solutions of the BBMB equation with dual power-law nonlinearity by using the extended tanh function method. 
Wang et al. [30] derived the shock wave solutions of the BBMB equation with the Lie symmetry analysis.

The modified exp-function method is a powerful mathematical tool used to obtain exact solutions for NLPDEs 
that arise in various fields of physics, engineering, and applied mathematics. The main idea behind this method is to 
transform the original NLPDE into an ordinary differential equation (ODE) by introducing a wave transformation. This 
transformation leads to a reduction in the number of independent variables, which simplifies the problem considerably. 
The traveling wave solutions of the reduced equation are assumed to be in the form of an exponential function exp(−
ϕ) solution, where ϕ is a solution of the first-order differential equation. The obtained solutions are then represented 
graphically, enabling a better understanding of the physical properties exhibited by the considered equation. By studying 
the graphical representations, various physical parameters can be extracted, such as the speed of propagation of the 
wave, the amplitude, and the shape of the wave. The computational software MAPLE is used to solve the system of 
nonlinear equations and to depict the graphical representation of the exact solutions obtained.

The structure of this manuscript is as follows: in Section 1, the introduction provides a brief overview of the paper’s 
objectives and motivation. It includes a description of the problem under consideration and its significance in the field 
of mathematics. In Section 2, a description of the modified exp-function method to find the exact solutions of NLPDE 
is given. In Section 3, the modified exp-function method is successfully applied to the equation (1). The exact solutions 
obtained using the method are presented and discussed. In Section 4, graphical representations of the derived analytic 
solutions for some specific values of constants are given. The figures help to illustrate the behavior of the solutions and 
provide insight into the physical interpretation of the results. In Section 5, the paper’s key findings and conclusions are 
summarized. The authors provide their final remarks on the modified exp-function method and its usefulness in solving 
NLPDEs. They may also suggest avenues for further research in the field.

2. Modified exp-function method [31]
Consider the following NLPDE

                                                                        ( ), , , , , , 0,x t xt tt xxF V V V V V V … =                                                                    (2)

in which V = V (x, t) is function of x and t, F is polynomial of V (x, t), and its derivatives. The following are the key 
concepts behind this method:

Step 1: Applying the traveling wave transformation to equation (2), which is clearly described as

                                                                           1( , ) ( ), ( ),V x t V x c tξ ξ= = −                                                                      (3)

where c1 describes the wave velocity. Equation (2) is changed into the nonlinear ODE using the above wave 
transformation

                                                                          1( , ) ( ), ( ),V x t V x c tξ ξ= = −                                                                       (4)

where prime denotes the derivatives with respect to ξ.
Step 2: Suppose that equation (4) has the following form of solution:
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where ' (0 )iA s i N≤ ≤  are the constants to be determined later such that 0NA ≠  and ( )φ φ ξ=  is the solution of first-
order ODE

                                                                  ( ) exp( ( )) exp( ( )) ,φ ξ φ ξ δ φ ξ θ′ = − + +                                                              (6)

where δ and θ are real constants.
Equation (6) has five exact solutions, which are given below:
•	 When 20, 4 0,δ θ δ≠ − >  
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•	 When 20, 0, 4 0,δ θ θ δ= = − =  

                                                                                  ( ) ln( ).Eφ ξ ξ= +                                                                             (11)

The constants to be obtained subsequently are the coefficients 0 1 2, , ,... ,NA A A θ , and δ. Comparing the nonlinear 
term with the highest order derivative term, the value of N is obtained. 

Step 3: Substituting the equation (5) with the obtained value of N into equation (4) and using equation (6), a 
system of nonlinear equations is obtained by comparing the coefficients of various powers of exp( ( ))φ ξ−  to zero.

Step 4: The obtained system is solved for the constants 0 1 2, , ,... ,NA A A θ , and δ to obtain the traveling wave 
solutions of equation (2).

3. Exact solutions of the BBMB equation with dual power-law nonlinearity
Consider the BBMB equation with dual power-law nonlinearity,

                                                              ( )2
1 2 3 4 5 0,n

t x x xx xxtv v v v v v v+ + + + + =                                                             (12)
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where ϵ1 indicates the intensity of defection or drifting, the parameters ϵ4, ϵ5 are the dissipative diffraction coefficients, 
the exponent n is the power-law nonlinearity parameter and ϵ2, ϵ3 quantify the strength of the two nonlinear terms.

Substituting n = 1 in above equation, we get the following form of equation (12)

                                                               ( )2
1 2 3 4 5 0.t x x xx xxtv v v v v v v+ + + + + =                                                             (13)

Using ( , ) ( ),v x t u ξ=  where 1( ),x c tξ = −  above equation becomes

                                                             ( ) ( )2
1 1 2 3 4 5 1 0.c u u u u u c u′ ′ ′′ ′′′− + + + − =                                                          (14)

Suppose that equation (14) has the following form of traveling wave solution

                                           0 1
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Balancing u2u′ and u′′′ in equation (14), we obtained (2N +N +1 = N +3) ⇒ (N = 1), so the equation (14) can be rewritten 
as

                                                                           0 1( ) exp( ( )),v A Aξ φ ξ= + −                                                                     (16)

where 1 0.A ≠  Substituting equation (16) along with equation (6), we obtained a system of nonlinear equations after 
comparing the various powers of exp( ( )),φ ξ−  solving the obtained system of nonlinear equations, the following values 
of the constants are obtained.
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Taking the values of constant from Set 1 and using equations (7-11), we obtained the following solutions of the 
considered equation:

•	 When 20, 4 0,δ θ δ≠ − >  
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•	 20, 0, 4 0,δ θ θ δ= ≠ − >
If system of nonlinear equations is solved with δ = 0, we obtained the following solution of the considered 

equation.
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•	 20, 0, 4 0,δ θ θ δ≠ ≠ − =  solving the system of nonlinear equation using the condition 2 4 0,θ δ− =  the 
following solution of the original equation is obtained
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where A1 is given by
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where A0 and A1 are given by
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•	 When 20, 0, 4 0,δ θ θ δ= = − =  the following solution of original equation is obtained.
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where values of θ and A0 are from Set 2.

4. Physical interpretation
One of the most effective means of comprehending the physical dynamics of real-world systems is through visual 

representation. In this regard, we have illustrated the graphical characteristics of the analytical solutions derived in the 
previous section. By selecting appropriate parameter values, we have rendered the dark, singular, and periodic solutions 
in various graphical forms, including 3D, 2D, and contour plots. In order to illustrate various dynamical wave patterns 
of derived exact solutions to the considered problem, this study extensively uses the modified exp-function technique. 
Figure 1 represents the singular dark soliton solution v1(x, t) with values of parameters A1 = 3, ϵ1 = 3.5, ϵ2 = 9, ϵ3 = −7, ϵ4 
= 5, ϵ5 = 4, E = 1, θ = 1. Figure 2 displays the periodic singular solution v2(x, t) with values of parameters A1 = 1, ϵ1 = 3, 
ϵ2 = −4, ϵ3 = 4, ϵ4 = 5, ϵ5 = 4, E = 1, θ = 1. The 2D plot in Figure 2 shows the periodic behavior of the obtained traveling 
wave solution. Figure 3 shows the 3D, 2D, and contour plots of the exponential singular solution v3(x, t) with the values 
of the constants A1 = 1, ϵ1 = 4, ϵ2 = 3, ϵ3 = 11, ϵ4 = 3, ϵ5 = 5, E = 1. From the 2D plot of Figure 3, it can be observed that 
the line y = –1 is an asymptote of the obtained traveling wave solution. Figure 4 shows the singular soliton solution 
u6(x, t) with unknown values A1 = 1, ϵ1 = −0.4, ϵ2 = 9, ϵ3 = −1.5, ϵ4 = 3, ϵ5 = 2.5, E = 1. By exploiting the traveling wave 
solutions obtained in this manuscript, it is possible to predict the shape and speed of waves in water as they propagate 
through these environments. This information can be useful in designing structures such as breakwaters and seawalls to 
mitigate the impact of waves on coastal communities.
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5. Conclusion
The modified exp-function method has been utilized to obtain the traveling wave solution of equation (12). The 

considered equation has been reduced to an ODE by assuming the wave variable. The periodic, singular, and dark 
soliton solutions of the considered equation have been obtained by considering the solutions of the reduced ODE 
in the form of an exponential function. The obtained solutions have been validated by plugging them back into the 
original equation, and their behavior has been depicted through a graphical representation of the resulting traveling 
wave solutions. The computational software Maple has been utilized to illustrate the visual depictions of the acquired 
solutions. By making certain modifications to this method, it can be utilized to tackle other intricate models that arise in 
the fields of mathematics, physics, and applied mathematics.
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