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noninteger order makes this study more useful.
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1. Introduction

These days, the study of infectious diseases and their cures is widely practiced in many different fields [1, 2].
We can better anticipate future disease outbreaks with the help of mathematical models that consider existing data.
Fractional differential equation (FDE) models were extensively used to study the spread of viral infections [3-7]. To
date, several models have been developed to investigate chlamydia transmission. The authors defined an optimal control
derivation for chlamydia modeling in [8]. In [9], an optimal control is used. A model of chronic Chlamydia trachomatis
disease was developed, taking into account a combination treatment with tryptophan and antibiotics. Because of their
memory effect, FDEs have gained importance in modeling many scientific and engineering fields. Vellappandi et al. [10]
also studied the chlamydia disease model in fractional order. There is no precise method for dealing with fractional-
order differential equations. Several numerical and analytical methods have been used to obtain the approximate solution
of FDEs, viz., the homotopy perturbation method (HPM) [11], the homotopy perturbation general transform method [12],
the residual power series method [13], the homotopy analysis method [14], the L1-Predictor-Corrector method [15], the
Caputo-Fabrizio derivatives [16], etc.

In this work, we examine a nonlinear chlamydia model discussed by Shah et al. [17]. The prime parameters utilized
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in the described model are the susceptible class as S(¢), the exposed class as E(f), infected individuals due to sexual
activity as /(f), infected individuals due to the unhygienic environment as /,(f), and the recovered class as R(¢). This
model is specified using a set of differential equations, as mentioned below

ds
O = B aSOEW) + aR(0)~ pS(0),
dE
o a,S(E(t)—a,E(t)—a,E(t)— uE(1),
dl
-=a,E(1) —ad (1) - pl (1),
dt
dl
== aE() —agl, (6) = ul, (D),
dt
dR
= a0+l (1)~ aR(O) - uR(), (1)
where initially we take the values as
S(0) = S,, E(0) = £, 1,(0) 15,1, (0) = fuy, R(0) = R, 2

We consider the total population of the system as N(¢), where

NO)=SO+E@)+I.()+1, ()+R(). 3)

Table 1. Chlamydia model parameters

Notation Value Description
s 0.018 The average global birth rate
a, 0.8 The rate of transmission from S to £
a, 0.67 The rate of transmission from E to /;
ay 0.32 The rate of transmission from E to /,
a, 0.92 Recovery rate from /;
as 0.95 Recovery rate from /,
ag 0.05 The rate of transmission from R to S
u 0.01 Escape rate

u

Figure 1. Diagram of chlamydia model
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2. Preliminaries

Definition 1. The Caputo time-fractional derivative [18] of u(x, f) with order a > 0 is

! J‘t(t—a)”’“’lmdoy n-l<a<n

o Dy (1) = gﬂ(n_a) 0 o
—W(O-), a=neN. (4)
oo”"
Definition 2. The Laplace transform of (4) is given by [18],
L{p(0)} =s"L{w ()} Es’“k “O)n-l<a<n (5)
The solution of FDE [19]

o Dy (0) = f (e where £(1) € C([0.T)),a € (0,11, ©

with y(0) =y, is given by
v=vot o), j (t-0)"" f(o)do. )

Theorem 1. [20, 21] Let V' = C [0, T] be the Banach space of continuous real valued functions defined on [0, 7.
Define a Banach space B=V x V'x V' x V' x V, with norm,

lwll=|IS.E.1,.1,.R||= sup S(t)+E@)+1,(t)+1,(t)+R(2), (8)

where w e B and S,E,[ I ,R eV.Moreover, consider a convex subset 4 of Banach space B. If the operator X on 4
are such that they satisfy the following three conditions, then there exists at least one fixed point we 4 for X; i.e.,

1. Xwe A, Aw € A.

2. Xis a contraction.

3. Xis continuous and compact.

3. Qualitative analysis

For system (1), we construct a function

FSO.E0).1,(0.1,(0.R0) = B~ a,SOE) + a,R(1) ~ pS (1),

LS. E@).1,(0).1,(0).R(1)) = a,S(O)E(®) - a,E(0) - a, E () - E(@),

S.S@.E@.1,(0), 1,0, R0) = a, E(t) = a1, (6) ~ ul (1),

LSO, E@).1,(0).1,(0,R(0) = a,E(0) ~ a5, (1) ~ uI, (0),

S6.S@.E@).1,(0).1, (0. R©) = 4,1, (1) + a1, (1)~ a R()) ~ 1R (2). ©)

Also, we generalize (6) as

¢ DAy () = oty (1), (10)
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where 0<a <1,1€[0,T],w(0) =y,.

As mentioned in equation (7), then (10) yields

vO=yi [0 o(oye)do,

where

S(t) S, I

E(7) E,

(O =|1.0) |, vy =| ), |, o(t,y(0)=

1,() (1)

R(1) R, I
and

4. Existence and uniqueness

Let us consider the following axioms and Lipschitz conditions to prove existence and uniqueness:

1:(0,5(0), £(0),7,(0).1,(0), R(0))
£>(0,5(0), £(0), £,(0),7,(0), R(0)

£4(0,5(0), £(0), £,(0),7,(0), R(0)

(.S, E@),1,(1),1, (), R(t)
L (68O, E@0),1,(1),1,(), R(1)
L (SO, E@®),1,(0),1,(),R(1)
f (8O, E@0),1,(1),1,(), R(1)
S5 (£SO, E@0),1,(0),1,(), R(1)

(

( )
£,(0,8(0), E(0),1,(0),1,(0), R(0)) |.
( )

( )]

/5(0,5(0),£(0),1,(0),7,(0), R(0)

Hypothesis 1. There exist C, and D,, such that

a)(t’W(t)) < Cfu "l//"+Dw

Hypothesis 2. There exist L, > 0 such that

Theorem 2. Considering Hypotheses 1 and 2, system (10) has at least one solution to (11) if L, < 1.

Yy, € B, aty)-ot.y) <L, |y~

Proof. Proof of theorem is given by following two steps:
1. Consider 7 € 4, where A={y € B,|y| < p,p >0} is a closed and convex set. For X(y) from equations (13)

and (14),

X)X @) = sup |ty @) -ty )< L, Jy -7,

Hence, X is a contraction.

)
)
)
)
)]

(11)

(12)

(13)

(14)

(15)

2. Here, we show that the operator X is relatively compact, i.e., X should be equicontinuous and bounded. It
follows that if @ is continuous, then X is also continuous for all y € 4,
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[l = sup ) e ) L[ t-0 o(rw @),

T !
“o(r,y(r))dr,
F( 1l (r.w (@)
+D,
r( ) ® l//" (u:l
< C D,|. 16
F(a)[ ,P+D,] (16)
Thus, X is bounded.
For equicontinuity, we consider ¢, >t,Vt,,t, €[0,T], such that
X (@)~ X (y(1,) = r( I =0 oy @)es
- jo (t, 7)o (z,p(1))d4],
<! ||C
r( ) 17)

As t, > t,, we have |tl" —t§| — 0, and from (17),

| X (w(t))- X (w(t,)) > 0.

Therefore, X is uniformly continuous and bounded. From the Arzela-Ascoli theorem, we say that X is relatively compact
and entirely continuous. Hence, from Theorem 1, we conclude that (11) has at least one solution

a

Theorem 3. Let us consider Hypotheses 1 and 2, system (10) holds a solution as (11) if

<1.
I +1)
Proof. For Banach space B, the operator X : B— B defined as
X[w®)]=v, +$ (t-1) o(ny(0)dr, (18)
For v,y € B, we get
X < — a-1 a-1
" (w)-X " . ts[%};] J. (t—1) " o(r,y(r)dr - J. (t-7) " o(r,p(r))dz|,
<; st;}:; j |(t—r)“ 1||a) T,y (r))- (r,y7(z'))dr|,
< 19
@ +1) v~ (19)

From (19), X is contraction. Now, using Banach fixed point theorem, operator X has a unique fixed point, w(?), i.e
X(w()) = w(f), which gives the unique solution of generalized FDE (10).
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5. Stability analysis
5.1 Local stability

We will find equilibrium points to discuss the local stability of our system.

5.2 Equilibrium points
There are two equilibrium points in our chlamydia system (1).

i) Disease-free equilibrium point £

E, = (ﬁ,o, 0, 0,0). (20)
u

It means when there is no infection £ =1, = I,= R = 0. Thus, the model (1) has a unique equilibrium point E|,.
ii) Endemic equilibrium point E, ,:

E,, =(S.E.I.I.R), 21)

where

¢ +a,+u
a, ’

B (as + )@ + p)ay + p) (=4 +(=a, —a) 1+ fay )

auli’ +(a, +a, +a, +a -I-aé),u2 +{(a, +a, +as+ag)a, +

(a, +a,+ag)a; +(a, +a3)ab},u+{(a2 +a, +a,)as -|-a3aé}a4 +a,a;a,]

*

. (615 +/u)a2(ae +/u)(_,u2 +(_a2 _a3)/u+:8a1)
: otl,u[,u3 +(a,+a;,+a, +a; +a{,),u2 +{(a, +a,+a, +a,)a;

+(a, +a, +ay)a, +as(a, +a)} u+((a, +a, +ag)a, +asa,)a; +a,a,a;]

x (a(, +ﬂ)a3(a4 +,u)(_,uz +(_a2 _as)ﬂ+ﬁa1)
“aupd +(a, va, +a, +asva)’ +{(a, +a, +ag +ag)a, +
(a, +a, +ag)as +ag(a, +a)ypu+{(a, +a, +a)as +a,ata, +a,asag)

((a2a4 +a,a;)p1+a,a,(a, -1-113))(—,L12 +(—a, —a3)y+ﬂa1)

5

W+(a, +a, +a, +a; +ag)’
au +((a2 +a,+as+ag)a, +(a, +a, +ay)a, +as(a, +a3))/1

+((a2 +a, +ag)a; + cz3616)a4 +a,a;a,

5.3 Basic reproduction number

A basic reproduction number R, is calculated to get the transmission rate of chlamydia disease, using the next-
generation matrix (NGM) algorithm [22, 23].
Let X =(S,E,I,I,,R), then the model can be rewrite as
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X'=F(X)-V(X),

a,SE E(a, +a,+ u)
0 -, E+1 (a,+ u)
where F(X)=| 0 |andV(X)= —a,E+1 (as+ u) . (22)
0 —a,d —a,l, +R(ag+ )
0 | “B+aSE—aR+uS |

Here, F(X) and V(X) are the rate of appearance of new infections in the compartment and the rate of transfer individuals
respectively. By calculating Jacobian matrices at E,, we get

D(F(E,)) :[g g} and D (V' (E,)) = { ’ JO }

(S 0 0 0 aF
0 000 O
where f =M= 0 0 0 0 O |and
o, 0 000 O
|10 0 0 0 O
[a, +a,+u 0 0 0 akE
—-a, a,+u 0 0 0
v=aV"(E°)= -a, 0 a+u O 0
oK, 0 -a, —-as;  ag+u 0
S 0 0 -a, aE+u (23)

Now, we calculate NGM fv ', and find the largest eigenvalues of fv ' is

af

"l +ay+p1) @)

Theorem 4. The system (1) with disease-free equilibrium point E, is locally asymptotically stable if
B <% +a,+u
a

®

Proof. The Jacobian matrix for the system (1) at E, can be evaluated by

- _af 0 0 ag
M
J(E,) = 0 a,—a, — 0 0 0 25)
0 a, -a,—u 0
0 a, 0 —as— U 0
0 0 a, as —ag — U

Therefore, the eigenvalues of matrix J(E,) are
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ﬂ“l = K
/12 = - (aG +/,l),
ﬂ"} = - (aS +1u)7
/14 = - (a4 +/J)’
Ba, — pa, +a; + p)

S

(26)
U

+a, +
Here, we can clearly see that 4,, 4,, 45, and 1, are negative. Moreover, if E < M, then A <O0.
H a
As we can see that all eigenvalues are negative. So, the system (1) with E| is locally asymptotically stable.
Theorem 5. The system (1) with endemic equilibrium point E,, is locally asymptotically stable if

en
2
. a
S <max<—=, 2L
a, a,ds

Proof. The Jacobian matrix by linearizing the system (1) at E, , can be defined as

——alE* —u -a,S" 0 0 ag
aE asS —a,—a,—pu 0
J(E") = 0 a, —a,— U
0 a, 0 —as— U 0
0 0 a, as —ag— U | 27)

By basic matrix calculation, we get

* *
S’a, <a;and S"a,a; < 1°,
2

=5 <Bands <H,

aq a,ds

2
=5 Smax{a—s, # } (28)

a4, a,ds
Hence, theorem is proved.

5.4 Global stability

The stability analysis of FDEs is one of the significant factors [24]. There are various forms and types of stability,
and Ulam-Hyers (UH) stability represents one of the significant types. This stability was proposed by Ulam in 1940
and further investigated by Hyers [25]. Rassias extended this stability into a more general form known as Ulam-Hyers-
Rassias (UHR) stability.

Let us consider S = C[0, 7] as the Banach space of real-valued continuous functions in [0, 7], and let us define
Banach space B =S x S x S having norm ¢ € B, as a sup norm. Now, taking positive real number F, :QQ — R" and for
¢ >0, and assuming following Ulam’s stability postulates

|$ D (1) - 0 (1.9(0))| < &, (29)

| D gty - oo (1,6(0))| < EF,, (30)
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¢ D gt - (1. 9(1))| < F,, (31)

where VteQ and & =max(&), fori=1,2,3.
Definition 3. The fractional chlamydia model (4) is UH stable, provided for each £ >0 and ¢ € B of (29). For a
positive real number F, > 0, the existence of w € B for model (4) ensures

lp()—w ()| <&C,.teQ, (32)

where & =max(¢;) and C, =max(C, ), fori=1,2,3.

Definition 4. The fractional model as given in (4) is said to have the stability of the type generalized Ulam-Hyers
(GUH): corresponding to a continuous function F : R — R having condition F, (0)=0,if V& >0 and V¢ e B of (30),
then ¥ € B of model (4) having

lp(t)-w ()| <F, (&)t eQ, (33)

where & =max(S;) and F, =max(F,),i=12,3.

Remark 1. A mapping ¢ € B will be the result of (29), provided equivalently, we have a mapping 4 in B so that
the following conditions are satisfied:

(@) [9(0)|< ¢, =max(F),

(b) 5 DI P(1) = w(t,4(1))+9(t),Vi e Q.

Lemma 2. For 0 <a <0 if ¢ is a member of the Banach space B, and is the result of (29), then ¢ satisfies

a

T
(- X (y ()| < Farn s (34)

Proof. Let ¢ be a result of (29) and therefore from Remark 1(b), we get

SDeg(t) = w(t,4(1)) +9(t),t €[0,T],
#(0)=¢, 2 0. (35)

Following that, the solution of (35) can be written as

1
T(a+1)

1
<
T(a+1)

#(t) = [[(t=2)" o(tg@)ar,

[[(t=2)" 9()ar. (36)
Now, using Remark 1, we get

>

1 ! a-1
‘(Iﬁ(l‘)—% —mjo(t -7) o(t.¢(r))dz

1 t a1
S‘F(CHUJO(I—r) 8(e)de|,
1 t
< —7)" " 9(r)|dr,
<l ot
T(I
= I'(a+1) - G7)
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Hence, the proof holds.

Theorem 4. Considering a real-valued continuous map w on [0, 7] x B (or [0, T] x B), so that for every
v()eB,weC ([0, T]x B,R). Therefore, under the assumption of Hypothesis 2 and conclusion of Theorem 3, fractional
chlamydia system (4) is UH stable on [0, T].

Proof. Suppose that ¢ > 0 and let ¢ € B be any response of (29). Considering ¥ € B to be the only outcome of the
system (11), as

s Dy () =o(t,é@)),t €[0,T], with y(0) =y,, (38)

where

v(t)=vw, +;J‘;(t - r)‘H o(t,y(r))dr.

C(a+1) (39)
In the light of Lemma 2, and Hypothesis 2, we get
1 t a-1 t a-1
|lp() —w(2)| < s jo (t-7)"" @(t,4(z))dr - Fasl) jo (1-7)" o(t,w(2))dz|,
T aC, t a1
: T(a+1) ot T(a+1) Io (1=2)" p@) -~ (0],
T r°C, ~
< r(a+1)§+r(a+1) #(@) -y (7). (40)
It follows that
AE T
o) -y (1) < —ac’ where A = TarD’ 41)

Corollary 1. Considering F (&) = £C, in Theorem 4, such that F, (0) = 0, we have the fractional chlamydia system
(4) GUH stable.

Definition 5. Let F,, be continuous positive real-valued function over [0, T] = [0, 7], i.e., F, € C([0,T],R"), the
fractional chlamydia model (1) is UHR stable, if we have real constant K, >0, such that for every ¢ > 0 and every
result ¢ of (30), there lies the result y in B, such that

g -y () <K, oF, (0.t €[0,T], (42)

where & =max(¢), F,, =max(F, ), and K, = max(K, ), fori=1,2,3.
Definition 6. The fractional chlamydia model (4) is generalized Ulam-Hyers-Rassias (GUHR) stable if there exist
areal constant K. >0 and a mapping F, € C([O, T],R" ), such that for each ¢ of (31), there exists a solution i € B of

(G
g -y <K, F, 01 <[0,T], (43)

where F, =max(F,) and K, =max(K, ), fori=1,2,3.
Remark 3. A rﬁapping @ € B is solution of (30), provided mapping 8 € B such that
(a) |0(1) | < &,60 = max(6)),
(b) s DI (1) = (1,4(1)) + 6(1),Vt €[0,T].
Hypothesis 3. For £, € B and 34, >0, such that for V¢ e[0,7] inequality of
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fractional integral is
o I'F, < A F,(0). (44)

Lemma 3. For0<a <1, if ¢ € B is aresult of (30), then ¢ satisfies

o)~ ¢, —

INC -‘rl)'[ (t T) i a)(tﬂ¢(7))df chﬂﬁqu(l‘). (45)

Proof. Let ¢ € B be an outcome of (30) and considering Remark 3(b), we get
o DIp(t) = o(t,4(t)) + 6(2),t €[0,T],4(0) = ¢,. (46)

The solution of (46) is given by

< ! J‘Ol(t—r)w1 O(r)dr. (47)

Now, using Remark 3, we get

‘qﬁ() 4~ ( =) oled@)de

1 t -1
ol [[(t=2)" o),

1 t a-1
< P jo (t-7)"|o(o)|dx,

<&, F,(0). (48)
Hence, proved.
Theorem 5. Considering the mapping @ € C([0,T]x R, R)V w € B, the fractional chlamydia system (4) is UHR

stable on [0, 7] by assumptions of Hypothesis 2 and (11).
Proof. In the view of Lemma 3, Hypotheses 2 and 3, we get

()~ ()| <

1)_[ (1- T)a o(t, ¢(T))d‘l'— j (t—r)wl w(t,y(r))dr

T aC,
< £+
I'a+1) T'(a+1)7°

(1)

[ (=) b -v(@)dr,

E, (D¢ +

49
( 1) (49)

It follows that
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|p()—w ()| < K, EF,(t) where K, = # (50)

12

T(a+1)

Hence, the theorem is proved.
Corollary 2. Considering & = 1 in Theorem 5, we have the fractional chlamydia system (4) is GUHR stable.

6. Working of homotopy perturbation Laplace transform method

Consider a generalized FDE with Caputo derivative as:
CDw(t)+ Ry )+ Ny ()= f(t),t>0,n-1<a<n,neN, (&)

such that

(52)

dy(0) d’y(0) d" 'y (0)
I//(O):CO, dt :Cl’ dtz :CZ""’T:Cn—I’

where (Dt = Ej is fractional differential operator, R is linear terms, N is nonlinear terms of w(f), and f{¥) is continuous
t

function.
Operating Laplace transform to equation (51),

LLS DIy ()} =—L{Ry (O} - L{Ny (D)} + L{f (1)}, (53)

and using differentiation properties (5),

-1

s“L{u)} = s ut (0) =—L{Ry (1)} - L{Nw ()} + L{f (1)} (54)

k=0

3

From equation (52), we get

Liy ()} = {%V’(O) +L2_dl//(0) o4 W(O)}

st dt™!
+S%[—E{Rw(t)} ~L{Ny )} +L{fD}]. (55)

taking inverse Laplace transform (ILT) to equation (55),
4] 1 1
vO=00-£| LRV L) | 50

where w(f) is ILT of first and last terms of equation (55). Applying HPM [11] to equation (56) gives
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. S%E{R[ip"w,a)j}
2 v = e®O-pL"| " . (57)
=0 +S7£{N(ZP"//,-(¢)J}

to determine nonlinear terms of the above equation (57), we use He’s [26] polynomial,

Ny(0)=3 p"H, ). (58)

m=0

where H (l//o,l/ll,l/lz,...,l//m)=—'|: — N[Zp gz/i(t)ﬂ ,m=0,1,2,....
m!| dp —ry 0

Substituting equation (58) into (57), and comparing the coefficients of p’, p', p’, ..., we have

po 1y, (1) = w(2),
pl ‘Y @)= -L" |:SL,1‘C{R‘//0(I)} +((1_a;—j+aJ£{H0}:|’
p2 (1) = -L |:SL0,£{R‘//1 (t)} +((1_02—j+aJ£{Hl }:|’
(59)

The solution of equation (51) can be obtained as
w(0)= Y Py, () =y, (O + Pu (O + Py () + . (60)
i=0

as p — 1 gives

(O =y, (O +y, O+, (0 .. (61)

7. Approximate solution of chlamydia model
In this section, we present the analytical approach to system (1) given by
SDES(t)= B —a,S(t)E(t)+a R(t)— uS(t),
o DYE(t) = a,S()E() —a, E(1) = a, E(t) — HE(D),
o D) = a,E(t) —a 1 ()~ pl (1),
0 DI1,(6) = a,E(0) = asl, (1)~ ul, (1),
SDYR(t)=a,l (t)+a,l,(t)—a,R(t)— uR(t). (62)

Applying Laplace transform to (62) in Caputo sense, we achieve
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S DIS(0)) = L{B-a,SOE®) +a,R(t) - uS(®)},

S DYE()| = L{a,S()E() — a,E(t)—a,E(t)— uE (1)},

SDII(t)) = L{a, E()—a, ], (t)— ul, (1)},

o DAL () = L{a,E(1)—asl, (t)— ul, (1)},

DR} = L{a, ], (6)+asI, (1) - a,R() - uR(1)}, (63)

[ e N e

using differentiation property (5), we get

s“L{S(0)}—s"7'S(0) = L{B—a,S()E(1) +a,R(t) — uS(1)},

S“E{E(t)} -s“"E(0) = £{a1S(t)E(t) —a,E(t)—a,E(1)— pE(t)},

s E{I (t)} s 1[3,(0):E{azE(t)—aA‘IS(t)—,u]l‘_(t)},

s“ﬁ{] (t)} s (0) = ﬁ{a3E(t) ald (t)—ul, (t)}

s E{R(t)} s“7R(0) = E{a4l ) +ad,(t)—a.R(t)—- uR(t)} (64)

Applying (4) and taking inverse Laplace, we have

S(t)=S,+L" [iL B—a,SEE®F)+a,R(t)— ,uS(t)}}
S

E()=E,+L" [iL a,S()E(t) - a,E(t)— a,E(t) - yE(t)}},
S

o:l,_‘

I(t)y=1Is,+L 1[ — L{a,E(t)—a,I (t)— pl, (t)}}

1,(6)=Tuy+ L {

rnl__

L{ azE(t)—asll,(t)—ﬂlu(t)}},
R(t)=R,+L [ Lia, (1) +asl, (1) —a,R(t)— ,uR(t)}} (65)
S

Now, we applying HPM [11] to equation (65),

0

Zp"Sn<r)=S0+pL'{ { azp S, (0E, (r)+a62p R,(0)- ﬂZp s (r)H

n=0

> p"E,(6)=E, + pL PL{al
n=0 S

4'3[\’]8

'S, (0E, (r)—azﬁp"Eﬂ (r)—aép"En (r)—uip"E,z (r)H,

€L

Zp"]sn (t)=1Is,+ pL { — L{azzp”En ®) —a4Zp"Isn ) —,uZp”Isn (t)H,
n=0 =0 n=0 n=0

N

o:l_

n=0

i:p"lun(t)zlu0 +pL” [ L{chp E (t)-a ZP Iu, (t)— ,uZp lu, (t)}:|

ZpR(r) R, +pL { {a42p Is (r)+a52p Tu, () - aész(t) uZpR(t)H (66)

In above equation (66), nonlinear terms are decomposed using He’s [26] polynomial H,,
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H, =S,E,,

H, =S,E +SE,
H,=8,E,+SE+S,E,,
H,=S8,E,+SE,+S,E +S,E,,
: (67)

[T 1)

Comparing “p” terms of equation (66), yields

P’ S, (@) =S5,
E\(1) = E,,
Is,(t) = Is,,
Tuy (1) = Iu,,
Ro(t) = RO:

o] 1
piSo="L" |:S_aL{:B+a6Ro — HS, _alHO}:|7

t(l

:(ﬂ+a6RO —,LlSO —a]SOEO)m,

1
E@ =L' [S_ L{-a,E, —a,E, - uE, + alHo}},

t[l
= (—aon —(13E0 —ﬂEO + CZ]SOEO)m,

Is(t) =L"' LLGL{%EO —a,ls, —,u]so}}

t(l

= (a2E0 —a4IS0 —/JISO )m,

1
Iu(t) =L" L—QL{%EO —aglu, —,uluo}}
t(l
= ({13E0 —a5]u0 —,u[uo )m,

1
R(@) =L" |:S—aL{d4ISO +a,lu, —a,R, —,uRO}}

t(l
rd+a)’

!
P’ :S2(t):Ll[ - L{ﬂ+a6R1—ySl—a1Hl}},

N

= (a4ISO +aglu, —aR, — ,uRO)

ta
=/ I(1+a)
- a8, (—a2E0 —a,Ey — uE, +a1SoEo)

+[a6 (a,Is, +asluy —aRy — pRy ) — p( B +agRy — uS, —a,S,E,)

2a

t

-akE; (ﬂ+a6Ro —uS,—a S E, )]m;

4] 1
E, (=L I[STL{ﬁ+a6Rl—ySl —alHl}},
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1
= L’l |:S_DZL{_a2E] —a3E] _/,lEl +alH1}:|’

t2a

- (a2 +a,+u +a1S0)(—a2EO -a,E,— nuE, +aS,E, ):|

r(+2a)’
Is,(t)="L" LJL{azE1 —a,ls, —,ulsl}},
L s
t2a
= [az (-a,E, —a,E, — uE, +a,S Ey ) —(a, + 1) (a,E, — aIs, — uls, )}m,
Iu,(t)=L" %L{%El —a,lu, —,u[ul}},
L s
t2a
= I:a3 (—a2E0 _aSEO —ﬂEO +a1S0E0)—(a5 + ,u)(a3E0 —a51u0 —,U[MO )]m,

1
R,(t)=L" {—HL{%ISI +aslu, —aR, —,uRl}},
s

= [a4 (a2E0 —ayls, — uls, ) +a; (a3E0 —aglu, — ,u[uo)
t2a

— (aﬁ +,U)(G4IS0 + a5[u0 —aGRO —/JRO )]m,

(68)

Thus, the solution of equation (62) can be obtained using (61) as

S =8,@)+S,@)+S,@)+...

=3, +(2,B +a,R, — uS, —alSOEO) ) +[a6 (a4ls0 +a,lu, —agR, —,uRO)

_r
INl+a
—u(B+aRy—uS,—a,S,E,)—a,S, (—a,E, — a,E, — uE, +a,S,E, )
t2a

_ alEO (ﬂ+a6R0 —ﬂSO —alSOEO )}m'ﬁ‘

E(f) = E,(t)+ E,(t)+ E, (£) +...

a

t
=E,+(-a,E, - a,E, — pE, + a,S,E, )m+[a1E0 (B+asR, - uS, —a,S,E,)
t2a
_ (a2 + a, + Y2 + alSO)(_aZEO —a3E0 —/IEO + aISOEO )]m'l‘

1.(t) = Isy (£) + Is, () + Is, (£) +..

a

t
=Is, +(a,E, —a,Is, — pls, )m+ [az (-a,E, —a,E, — HE, + a,S,E,)
2a
—\a, +u)\a,Ey—a,dsy — plsy ) | ———+...
( 4 ,u)( 2Ly ASy —H 0):|F(1+20£)
I ()= Tu,(t)+ Tu (t) + u,(t) +...
= lu, +(a,E, —aslu, — plu,) i -i—[a2 (-a,E, —a,E, — HE, +a,S,E,)
I'l+a) ’

2a

t
= (a; + u)(a,E, - aslu, — pulu, )]m*‘

R(t) =Ry (t)+ R (1) + R, () +...
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=R, + (a4[S0 +aglu, —aR, — ,uRO)

+as(ayEy — asluy — pluy ) —(ag + p)(a,ls, + aslu, —a,R) — 1R, )]

8. Conclusions

a

_r
I'l+a

) +[a4 (azE0 —a,ls, —ylso)

_—+....
r(1+2a)

(69)

In this work, we have studied a nonlinear mathematical model of chlamydia transmission using FDEs in the
Caputo sense. As a means of speculating about potential chlamydia epidemics, we have run several simulations under
a wide range of parameters and studied the memory properties of the system using the different noninteger orders of
derived FDEs. By using this method, we can attain a more comprehensive understanding of the chlamydia model. The
effectiveness of the technique is shown by the findings in (69). The research has considerable significance in predicting
the future of the disease and its treatment. The data shows that homotopy perturbation Laplace transform method may
outperform conventional approaches. Figures 2-6 show the results for various fractional orders a for S(¢), E(¢), (), 1,(¢),
and R(f). Table 2 depicts the approximate solutions to the chlamydia model for five separate a values: 1, 0.9, 0.8, and 0.7.
This study is beneficial for medical research institutions to track and understand the spread of disease.

Table 2. The approximate solution of chlamydia model for distinct order a

Order

The approximate solution of chlamydia model

=09

0=0.8

a=0.7

S(t) = 233824096 — 9.352964073 x 10"t — 8.729087285 x 10*'F + ...
E(f) = 500000 + 9.352963790 x 10"+— 4.676481895 x 10" + ...
I(1) = 200904 + 1.4815928 x 105 + 3.133242862 x 107 + ...
I(f)=250000 — 800007 + 1.496474210 x 10137 + ...

R(f) = 225000 + 1.671433426 x 10" 1 + 6.399838705 x 10°% + ...

S(f) = 233824096 — 9.724783063 x 10"1" — 1.041352252 x 1077 + ...

E(f) = 500000 + 9.724782769 x 10"** — 5.578893637 x 10"¢'* + ...
I(1) =200904 + 1.540492239 x 10°*° + 3.737858728 x 10"/"* + ...
I(f) = 250000 — 83180.33075 x (" + 1.785245969 x 10°#* + ..
R(f) = 225000 + 4.250844295 x 10°*° + 21340.19289/"% + ...

S(f) = 233824096 — 1.004200885 x 10""%— 1.221171983 x 107° + ...

E(t) = 500000 + 1.004200855 x 10"/** — 6.542251762 x 10”7 + ...
I(1) =200904 + 1.590743629 x 10°"* + 4.383308670 x 10"/ + ...
I(f) = 250000 — 85893.70192 x "+ 2.093520570 x 10"/ + ...
R(?) = 225000 + 4.389508307 x 105" + 25025.19740 x ¢ + ...

S(f) = 233824096 — 1.029338034 x 10"/"7 — 1.405458494 x 1077 + ...

E(f) = 500000 + 1.029338003 x 10"*/"7 — 7.529540016 x 10"¢"* + ...
I(1) =200904 + 1.630563112 x 10°/"7 + 5.044791799 x 10°* + ...
I(f) = 250000 — 88043.79244 x ("7 +2.409452812 x 1074 + ..
R(?) = 225000 + 4.499386447 x 10" + 28801.73862¢* + ...
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Figure 3. The behavior of the exposed class E(#) at various order a
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Figure 4. The behavior of the infected class due to sexual activity /(¢) at various order «
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