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Abstract: This study aims to define a new subclass of multivalent analytic functions in the open unit disk. Jackson’s
derivative operator has been used to generate this subclass. Before getting coefficient characterization, we look at certain
needs for the functions related to this subclass. We can see several fascinating features, including coefficient estimates,
growth and distortion theorem, extreme points, and the radius of starlikeness and convexity of functions belonging to the
subclass are shown using this technique.
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1. Introduction and definition
Let us use the notation Â to refer to the class of all analytic functions of the type

f (z) = z +
∞∑

η=2

aη zη ,

that are defined on the open unit disk U =
{

z ∈ C : |z| < 1
}
on the complex plane C. Let Â(p) (p ∈ N= {1, 2, 3, ...})

be the class consisting of all functions f has the Taylor series expansion of the form

f (z) = zp +
∞∑

η=p+1

aη zη , aη is complex number
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which are analytic and p-valent in the open disk U on the complex plane C. We note that Â(1) = Â. Let us use the
notation S(p) to represent the subclass of Â(p) that is comprised of multivalent functions in U . In addition, consider the
S∗p(α) and Cp(α) to be illustrations of the classes of p-valent functions that are starlike of order α and convex of order
α , respectively, given the range of values 0 ≤ α < p. In specifically, the classes S∗p(0) = S∗p and Cp(0) = Cp are the
well-known classes of starlike and convex p-valent functions in U , respectively.

Let T (p) (p ∈ N= {1, 2, 3, ...}) be the subclass of S(p), consisting of functions of the form

f (z) = zp −
∞∑

η=p+1

aη zη , aη > 0 (1)

defined on the open unit disk U =
{

z ∈ C : |z| < 1
}
. When the function f ∈ T (p) has negative coefficients, we refer

to it as a p-valent function with negative coefficients. The subclasses of T (p) designated by S∗T , p(α) and CT , p(α) for
0 ≤ α < p are p-valent functions that are starlike of order α and convex of order α , respectively.

According to Silverman [1], the class T (1) = T was established and investigated. In [1], Silverman discovered the
subclasses of T (1) indicated by S∗T , 1 (α) = S∗T (α) and CT , 1(α) = CT (α), which respectively starlike of order α and
convex of order α where 0 ≤ α < 1.

Let U(k, ℘, ℓ) be the subclass of T consist of functions f ∈ T satisfying the condition

Re
{

℘z3 f ′′′(z)+(1+2℘)z2 f ′′(z)+ z f ′(z)
℘z2 f ′′(z)+ z f ′(z)

}

> k
∣∣∣∣℘z3 f ′′′(z)+(1+2℘)z2 f ′′(z)+ z f ′(z)

℘z2 f ′′(z)+ z f ′(z)
−1

∣∣∣∣+ ℓ.

where 0 ≤℘≤ 1, 0 ≤ ℓ < 1 and k ≥ 0 for all z ∈ U . This class of functions was studied by Shanmugam et al. [2].
In this section, we recall some known concepts and basic results of (i, j)-calculus. Throughout this paper, we let i, j

be constants with 0 < j < i ≤ 1. We give some definitions and theorems for (i, j)-calculus, which will be used in these
papers [3–11].

For 0 < j < i ≤ 1 the jackson’s (i, j)-derivative of a function f ∈ Â(p) is, by definition, given as follow

Di, j f (z) :=


f (iz)− f ( jz)
(i− j)z

, z ̸= 0,

f ′(0), z = 0.

(2)

From (2), we have

Di, j f (z) = [p]i, j zp−1 +
∞∑

η=p+1

[η ]i, j aη zη−1 (0 < j < i ≤ 1),

where [p]i, j =
ip − jp

i− j
and [η ]i, j =

iη − jη

i− j
.
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Note that for i = 1, the jackson (i, j)-derivative reduces to the jackson j-derivative operator of the function f ,D j f (z)
(refer to [12–14]). Note also that D1, j f (z)→ f ′(z) when j → 1−, where f ′ is the classical derivative of the function f .

Clearly for a function g(z) = zη , we obtain

Di, jg(z) =Di, jzη =
iη − jη

i− j
zη−1 = [η ]i, j zη−1,

and

lim
j→1−

D1, jg(z) = lim
j→1−

1− jη

1− j
zη−1 = ηzη−1 = g′(z),

where g′ is the ordinary derivative.
The theory of j-calculus are used in describing and solving various problems in applied science such as ordinary

fractional calculus, quantum physics, optimal control, hypergeometric series, operator theory, j-difference and j-integral
equations, as well as geometric function theory of complex analysis. The application of j-calculus was initiated by
Jackson [13]. Kanas and Raducanu [15] have used the fractional j-calculus operators in investigations of certain classes
of functions which are analytic in U . For details on j-calculus one can refer [10, 13, 15–19] and also the reference cited
therein.

Along with the development of the theory and application of j-calculus, the theory of j-calculus based on two
parameters (i, j)-integers has also presented and recievedmore attention during the last few dacades. In 1991, Chakrabarti
and Jagannathan [20] introduced the (i, j)-calculus. Next, Sadjang [5] studied the fundamental theorem of (i, j)-calculus
and some (i, j)-Taylor formulas. Recently, Tunc and Göv [10] defined the (i, j)-derivative and (i, j)-integral on finite
intervals. Moreover, they studied some properties of (i, j)-calculus and (i, j)-analogue of some important integral
inequalities. The (i, j)-derivative have been studied and rapidly developed during this period by many authors.

Using the above defined (i, j)-calculus, several subclasses belonging to the class Â(p) have already been investigated
in geometric function theory. Ismail et al. [21] were the first who used the j-derivative operatorD j to study the j-calculus
analogous of the class S∗ of starlike functions in U .

From now on we introduce some general subclass of analytic and multivalent functions associated with (i, j)-
derivative operator as follows.

Definition 1.1 For 0 ≤℘≤ 1, 0 ≤ ℓ < 1, k ≥ 0, 0 < j < i ≤ 1 and p ∈ N= {1, 2, 3, ...}, we letU(k, ℘, ℓ, i, j, p)
consist of functions f ∈ T (p) satisfying the condition

Re
{

℘z3 (Di, j f (z))′′′+(1+2℘)z2 (Di, j f (z))′′+ z(Di, j f (z))′

℘z2 (Di, j f (z))′′+ z(Di, j f (z))′

}

> k
∣∣∣∣℘z3 (Di, j f (z))′′′+(1+2℘)z2 (Di, j f (z))′′+ z(Di, j f (z))′

℘z2 (Di, j f (z))′′+ z(Di, j f (z))′
−1

∣∣∣∣+ ℓ. (3)

The growth and distortion theorem is one of our other findings, alongwith the coefficient inequalities for the functions
f ∈ U(k, ℘, ℓ, i, j, p). The extreme points are then obtained. Let’s first investigate the coefficient inequalities. And the
technique which studied in [22–25].
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2. Coefficient inequalities
Our first finding, is a necessary and sufficient condition for the function f belongs to the class U(k, ℘, ℓ, i, j, p).
Theorem 2.1 Let 0 ≤℘≤ 1, 0 ≤ ℓ < 1, k ≥ 0, 0 < j < i ≤ 1, and p ∈ N= {1, 2, 3, ...}. A function f given by (1)

is in the class U(k, ℘, ℓ, i, j, p) if and only if

∞∑
η=p+1

µη aη ≤ µp, (4)

where

µη = [(k+1) |2−η |+1− ℓ]
[
(℘(η −2)+1)(η −1) [η ]i, j

]
. (5)

Proof. We have f ∈U(k, ℘, ℓ, i, j, p) if and only if the condition (3) is satisfied.
Let

w =
℘z3 (Di, j f (z))′′′+(1+2℘)z2 (Di, j f (z))′′+ z(Di, j f (z))′

℘z2 (Di, j f (z))′′+ z(Di, j f (z))′
,

so

w =

∞∑
η=p+1

Tη (η −1)aη zη−1 −Tp (p−1)zp−1

∞∑
η=p+1

Tη aη zη−1 −Tpzp−1

,

where Tη = (℘(η −2)+1)(η −1) [η ]i, j.
Considering that,

Re(w) ≥ k |w − 1 | + ℓ if and only if (k + 1) |w − 1 | ≤ 1 − ℓ.

Now
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(k+1) |w−1|

= (k+1)

∣∣∣∣∣∣∣∣∣∣∣

∞∑
η=p+1

Tη (η −1)aη zη−1 −Tp (p−1)zp−1

∞∑
η=p+1

Tη aη zη−1 −Tpzp−1

−1

∣∣∣∣∣∣∣∣∣∣∣

= (k+1)

∣∣∣∣∣∣∣∣∣∣∣

∞∑
η=p+1

Tη (2−η)aη zη−1 −Tp (2− p)zp−1

Tpzp−1 −
∞∑

η=p+1

Tη aη zη−1

∣∣∣∣∣∣∣∣∣∣∣
≤ 1− ℓ,

equivalent to

(k+1)

∣∣∣∣∣∣∣∣∣∣∣

∞∑
η=p+1

Tη (2−η)aη zη−p −Tp (2− p)

Tp −
∞∑

η=p+1

Tη aη zη−p

∣∣∣∣∣∣∣∣∣∣∣
≤ 1− ℓ. (6)

The above inequality reduces to

(k+1)

∣∣∣∣∣∣
∞∑

η=p+1

Tη (2−η)aη zη−p

∣∣∣∣∣∣−|Tp (2− p)|


|Tp|−

∣∣∣∣∣∣
∞∑

η=p+1

Tη aη zη−p

∣∣∣∣∣∣
≤ 1− ℓ.

After that

(k+1)

 ∞∑
η=p+1

Tη |2−η |aη −Tp |2− p|


Tp −

∞∑
η=p+1

Tη aη

≤ 1− ℓ, (7)
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where |z|< 1.
Then

(k+1)

 ∞∑
η=p+1

Tη |2−η |aη −Tp |2− p|

≤

Tp −
∞∑

η=p+1

Tη aη

(1− ℓ) . (8)

Therefore,

∞∑
η=p+1

(
(k+1) |2−η |+1− ℓ

)
Tη aη ≤

(
(k+1) |2− p|+1− ℓ

)
Tp. (9)

Which yield to (4).
Suppose that (4) holds and we have to show (3). That is equivalent to (6). From condition (4) we have (8) and then

(7). Now it is suffices to show that,

∣∣∣∣∣∣∣∣∣∣∣

∞∑
η=p+1

Tη (2−η)aη zη−p −Tp (2− p)

Tp −
∞∑

η=p+1

Tη aη zη−p

∣∣∣∣∣∣∣∣∣∣∣

≤

∞∑
η=p+1

Tη |2−η |aη −Tp |2− p|

Tp −
∞∑

η=p+1

Tη aη zη−p

. (10)

Since,

∣∣∣∣∣∣Tp −
∞∑

η=p+1

Tη aη zη−p

∣∣∣∣∣∣≥ |Tp|−

∣∣∣∣∣∣
∞∑

η=p+1

Tη aη zη−p

∣∣∣∣∣∣ ,

≥ Tp −
∞∑

η=p+1

Tη aη ,

where |z|< 1. And hence (10) obtained.
Theorem 2.2 Let 0 ≤℘≤ 1, 0 ≤ ℓ < 1, k ≥ 0, 0 < j < i ≤ 1, and p ∈ N= {1, 2, 3, ...}. If the function f given by

(1) be in the class U(k, ℘, ℓ, i, j, p) then

aη ≤
µp

µη
, η = p+1, p+2, p+3, ..., (11)
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where µη is given by (5).
Equality holds for the functions given by,

f (z) = zP −
µp zη

µη
. (12)

Proof. Since f ∈ U(k, ℘, ℓ, i, j, p) Theorem 2.1 holds.
Now

∞∑
η=p+1

µη aη ≤ µp,

we have,

aη ≤
µp

µη
.

Clearly the function given by (12) satisfies (11) and therefore f given by (12) is inU(k, ℘, ℓ, i, j, p) for this function,
the result is clearly sharp.

3. Growth and distortion theorems for the subclass U(k, ℘, ℓ, i, j, p)
The growth and distortion theorem and the covering property for functions in the classU(k, ℘, ℓ, i, j, p) will both

be covered in this section.
Theorem 3.1 Let 0 ≤℘≤ 1, 0 ≤ ℓ < 1, k ≥ 0, 0 < j < i ≤ 1, and p ∈ N= {1, 2, 3, ...}. If the function f given by

(1) be in the class U(k, ℘, ℓ, i, j, p) then for 0 < |z|= l < 1, we have

lp −
µp

µp+1
lp+1 ⩽ | f (z)|⩽ lp +

µp

µp+1
lp+1. (13)

Equality holds for the function,

f (z) = zp −
µp

µp+1
zp+1, (z =±l, ±il),

where µp and µp+1 are found by (5).
Proof. We only demonstrate the right side inequality in (13) since the other inequality may be supported by reasons

that are comparable.
Since f ∈ U(k, ℘, ℓ, i, j, p) by Theorem 2.1, we have,

∞∑
η=p+1

µη aη ≤ µp.
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Now

µp+1

∞∑
η=p+1

aη =
∞∑

η=p+1

µp+1aη ,

≤
∞∑

η=p+1

µη aη

≤ µp.

And therefore

∞∑
η=p+1

aη ⩽ µp

µp+1
, (14)

since

f (z) = zp −
∞∑

η=p+1

aη zη , aη > 0,

we have,

| f (z)|=

∣∣∣∣∣∣zp −
∞∑

η=p+1

aη zη

∣∣∣∣∣∣ ,

≤ |z|p + |z|p+1
∞∑

η=p+1

aη |z|η−(p+1),

≤ lp + lp+1
∞∑

η=p+1

aη .

With the help of inequality (14), the right-side inequality of (13) is obtained.
Theorem3.2 If the function f given by (1) is in the classU(k,℘, ℓ, i, j, p) for 0< |z|= l < 1 andηµp+1 ≤ (p+1)µη

where η = p+1, p+2, p+3, ..., then, we have

plp−1 −
(p+1)µp

µp+1
lp ⩽

∣∣ f ′ (z)
∣∣⩽ plp−1 +

(p+1)µp

µp+1
lp. (15)
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Equality holds for the function f given by

f (z) = zp −
µp

µp+1
zp+1, (z =±l, ±il),

where µp and µp+1 are given by (5).
Proof. Since f ∈ U(k, ℘, ℓ, i, j, p) by Theorem 2.1 we have

∞∑
η=p+1

µη aη ≤ µp.

Now,

µp+1

∞∑
η=p+1

η aη ≤ (p+1)
∞∑

η=p+1

µη aη ≤ (p+1)µp.

Hence

∞∑
η=p+1

ηaη ⩽ (p+1)µp

µp+1
, (16)

since

f ′(z) = pzp−1 −
∞∑

η=p+1

η aη zη−1.

Then, we have

p |z|p−1 − |z|p
∞∑

η=p+1

ηaη |z|η−1−p ⩽
∣∣ f ′(z)

∣∣ ⩽ p |z|p−1 + |z|p
∞∑

η=p+1

ηaη |z|η−1−p,

where |z|< 1. By using the inequality (16), we now have Theorem 3.2, which concludes our demonstration.
Theorem 3.3 If the function f given by (1) is in the class U(k, ℘, ℓ, i, j, p) then f is starlike of order δ , where

δ = 1−
µp p

−µp +µp+1
.

The result is sharp with
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f (z) = zp −
µp

µp+1
zp+1,

where µp and µp+1 are found by (5).
Proof. It is sufficient to show that (4) implies

∞∑
η=p+1

aη(η −δ ) ≤ 1−δ . (17)

That is,

η −δ
1−δ

≤
µη

µp
, η ≥ p+1. (18)

The above inequality is equivalent to

δ ⩽ 1−
µp(η −1)
−µp +µη

= ψ(η),

where η ≥ p+1.
And ψ(η) ≥ ψ(p+1), (18) holds true for any 0 ≤℘≤ 1, 0 ≤ ℓ < 1, k ≥ 0, 0 < j < i ≤ 1 and p ∈N= {1, 2, 3, ...}.

This completes the proof of Theorem 3.3.

4. Extreme points of the class U(k, ℘, ℓ, i, j, p)
The following formula shows the extreme points of the class U(k, ℘, ℓ, i, j, p).
Theorem 4.1 Let fp(z) = zp, and

fη(z) = zp −
µp

µη
zη , η = p+1, p+2, p+3, ...,

where µη is given by (5).
Then f ∈ U(k, ℘, ℓ, i, j, p) if and only if it can be represented in the form

f (z) =
∞∑

η=p

yη fη(z) (19)

where yη ≥ 0 and
∞∑

η=p

yη = 1.

Proof. Suppose f can be represented as in (19). Our aim is to demonstrate that f ∈ U(k, ℘, ℓ, i, j, p).
By (19) we have
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f (z) =
∞∑

η=p

yη

{
zp −

µpzη

µη

}
.

Then

f (z) = zp −
∞∑

η=p+1

aη zη

= zp −
∞∑

η=p+1

µpyη

µη
zη .

So that

aη =
µp yη

µη
, η ⩾ p+1.

Now, we have

∞∑
η=p+1

yη = 1 − yp ≤ 1.

Setting

∞∑
η=p+1

yη
µp

µη
×

µη

µp
=

∞∑
η=p+1

yη = 1− yp ⩽ 1.

It follows from Theorem 2.1 that the function f ∈ U(k, ℘, ℓ, i, j, p).
Conversely, it suffices to show that

aη =
µp

µη
yη .

Now we have f ∈ U(k, ℘, ℓ, i, j, p) then by previous Theorem 2.2.

aη ⩽ µp

µη
, η ⩾ p+1.

That is,
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µη aη

µp
⩽ 1,

but yη ≤ 1.
Setting,

yη =
µη aη

µp
, η ⩾ p+1.

Which yields to the desired result. This completes the proof of the theorem.
Corollary 4.2 The extreme point of the class U(k, ℘, ℓ, i, j, p) are the function

fp(z) = zp,

and

fη(z) = zp −
µp

µη
zη , η = p+1, p+2, p+3, ...,

where µη is given by (5).
Theorem 4.3 The class U(k, ℘, ℓ, i, j, p) is closed under convex linear combinations.
Proof. Suppose that the functions f1(z) and f2(z) defined by

fi(z) = zp −
∞∑

η=p+1

aη , i zη , (i = 1, 2; z ∈ U) (20)

are in the class U(k, ℘, ℓ, i, j, p).
Setting f (z) = c f1(z)+(1− c) f2(z) (0 ≤ c ≤ 1), we find from (20) that

f (z) = zp −
∞∑

η=p+1

(caη , 1 +(1− c)aη , 2)zη , (0 ≤ c ≤ 1; z ∈ U).

In view of Theorem 2.1, we have

∞∑
η=p+1

µη (caη , 1 +(1− c)aη , 2) = c
∞∑

η=p+1

µη aη , 1 +(1− c)
∞∑

η=p+1

µη aη , 2

≤ cµp +(1− c)µp = µp,
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which shows shat f (z) ∈U(k, ℘, ℓ, i, j, p). Hence the theorem.
Finally, in this paper we consider the radius of starlikeness and convexity.

5. Radius of starlikeness and convexity
The following theorems specify the radius of starlikeness and convexity for the class U(k, ℘, ℓ, i, j, p).
Theorem 5.1 If the function f given by (1) is in the classU(k, ℘, ℓ, i, j, p), then f is starlike of order δ (0≤ δ < p),

in the disk |z|< R, where

R = inf
[

µη

µp
×

(
p−δ
η −δ

)] 1
η−p

, η = p+1, p+2, p+3, ..., (21)

where µη is given by (5).
Proof. Here (21) implies

µp (η −δ ) |z|η−P ≤ µη (p−δ ) .

It suffices to show that

∣∣∣∣ z f ′(z)
f (z)

− p
∣∣∣∣ ≤ p−δ ,

for |z|< R, we have

∣∣∣∣ z f ′(z)
f (z)

− p
∣∣∣∣ ≤

∞∑
η=p+1

(η − p)aη |z|η−p

1−
∞∑

η=p+1

aη |z|η−p
. (22)

By aid of (11), we have

∣∣∣∣ z f ′(z)
f (z)

− p
∣∣∣∣⩽

∞∑
η=p+1

µp (η − p) |z|η−p

µη

1−
∞∑

η=p+1

µp |z|η−p

µη

.

The final expression is bounded above by the p−δ if
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∞∑
η=p+1

µp (η − p) |z|η−p

µη
≤

1−
∞∑

η=p+1

µp |z|η−p

µη

(p−δ ) ,

and it follows that

|z|η−p ⩽
[

µη

µp

(
p−δ
η −δ

)]
, η ⩾ p+1

which is equivalent to our condition (21) of the theorem.
Theorem 5.2 If the function f given by (1) is in the classU(k, ℘, ℓ, i, j, p), then f is convex of order ε (0 ≤ ε < p),

in the disk |z|< w, where

w = inf
[

µη

µp
×

(
p(p− ε)
η (η − ε)

)] 1
η−p

, η = p+1, p+2, p+3, ...,

where µη is given by (5).
Proof. By using the same technique in the proof of Theorem 5.1, we can show that

∣∣∣∣ z f ′′(z)
f ′(z)

− (p−1)
∣∣∣∣ ≤ p− ε, for |z| ≤ w,

with the aid of (11). Thus we have the assertion of Theorem 5.2.

6. Conclusion
This article proposes to identify a significant subclass of multivalent analytic functions in the open unit disk, that have

been characterized using Jackson’s derivative operator. Futher to study certain sufficient requirements for the functions
belonging to this class, one of the main requirements needed to satisfy coefficient characterization. This approach, for
example, can provide several many fascinating features.
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