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Abstract: In this article, we use a new technique called conformable fractional reduced differential transform (CFRDT)
with Adomian decomposition to estimate the solution of one and two-dimensional time-fractional partial linear and
nonlinear differential equations with initial values. We explain the convergence analysis of this technique. The obtained
results illustrate that the novel method is efficient and easy to use to find approximate solutions for the time-fractional
partial differential equations (PDEs). Thus, the suggested method has a significant impact on how engineering, physics,
and other disciplines solve fractional PDEs. Furthermore, we analyze the solution of problems with a 2D or 3D
graphical representation by using Mathematica software.
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1. Introduction

The area of fractional calculus is one of the numerous applied mathematics disciplines. Instead of integer order,
it deals with arbitrarily ordered derivatives and integrals, as well as their applications [1-3]. A system of fractional
partial differential equations (FPDEs) can be used to simulate many processes in a variety of disciplines, including fluid
mechanics, biology, finance, and material science. Even with linear fractional differential equations (FDEs), finding the
precise solution is challenging. Therefore, approximate solutions are required. Many authors, including Ertiirk et al.
[4], who used the differential transform (DT) approach, pointed out the solution of the system of FPDEs. The method
of fractional-complex transformation was studied by Ghazanfari et al. [5]. An iterative Laplace transform was given
by Jafari et al. [6]. The Laplace transform and the Adomian decomposition technique are combined to generate the
Laplace-Adomian decomposition method (LADM) [7-8]. Numerous different kinds of nonlinear equations, includ-
ing differential equations of integer and fractional order, can be solved using this method. This approach was used
by Jafari et al. [6] to solve the linear and nonlinear fractional diffusion and wave equations. The precise solution of
nonlinear fractional differential equations (NLFDEs) has been determined using a variety of mathematical techniques
that have been developed and examined. For example, the Adomian decomposition method (ADM) makes it possible
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to solve nonlinear ordinary or partial fractional differential equations analytically and effectively without the need for
linearization or perturbation techniques found in [9-12], while Momani et al. [13] and Kharrat [14] have used ADM in
order to resolve fractional Riccati differential equations. In the Caputo notion, the fractional derivatives are defined,
and besides the homotopy analysis method (HAM) [15], variational iteration method (VIM) [16], finite difference
method (FDM) [17], differential transform method (DTM) [18-20], LADM [21], Teppawar et al. [22-23], developed the
conformable fractional differential transform method (CFDTM) with Adomian polynomials has been used to solve
nonlinear and singular Lane-Emden FDEs. Tamboli et al. [24], used the fractional reduced differential transform method
(FRDTM) to evaluate the time-fractional generalized Burger-Fisher equation (TF-GBFE) and the modified fractional
differential transform method (FDTM) for solving nonlinear FDEs which can be found in [25]. Recently, Keskin et al. [26]
have introduced the reduced differential transform method (RDTM) for partial differential equations and the FRDTM
found in [26-27]. Muneshwar et al. [28] have found the solution of linear and nonlinear FPDEs considering partial
differential equations of integer order that involve derivatives with regard to time or space variables. In [29], Kumar
et al. developed a new version of the L1-predictor-corrector (L1-PC) approach for solving multiple delay-type FDE:s.
Mahatekar et al. [30] derived a new numerical method to solve FDEs containing Caputo-Fabrizio derivatives.
Along with the derivation of the algorithm of the method, error and stability were analyzed, and the validity and
effectiveness of the method were briefly explored. Marasi et al. [31] provided two arrays that contained the coeffi-
cients of the fractional Adams-Bashforth and Adams-Moulton techniques, as well as recursive relations to generate the
members of these arrays. Kumar et al. [32] were to propose generalized forms of three well-known fractional numerical
methods, namely Euler, Runge-Kutta 2-step, and Runge-Kutta 4-step, respectively. The new versions they present of
these methods are derived from concern with a non-uniform grid, which is slightly different from previous versions of
these algorithms. Odibat et al. [33] used the generalized differential transform scheme to simulate impulsive differential
equations with non-integer order. Thabet et al. [34] have provided a novel iterative approach for finding an analytical
solution to nonlinear fractional partial differential equations (NFPDEs). Thorat et al. [35] addressed the geometrical
meaning of the modified alpha-derivative by using the notion of fractional cords.

2. Preliminaries

In [1-3] and the references referenced within, you may find a variety of definitions and theorems of fractional
integrals and derivatives.

Definition 2.1. [3] The Riemann-Liouville time-fractional partial derivative of function u(&,{) of order a for
aeR, m—1<a<meN is defined as follows:

m

‘- T)mald(x t)dr, §>0.

RLDa ,
u(é,¢) = agmjo -

Definition 2.2. [3] The Caputo time-fractional partial derivative of the function u(£,{) of order a, for @,{ € R
andm—1<a<meN, >0 is defined as follows:

pru - [ S e,
Diu(£, ) = Fuer8) ;e

og™”

Theorem 2.3. [3, 34] Let o, &, € R, such that n —1< ¢, <n,m—1<a, <m, n# m for n,m € N. Then, in general

{D?D?u(cf,é“) =D D7 u(s,¢) =D u(S,6),
DA DI u(E, ) # DI DI uE, ).

Theorem 2.4.If (£,¢, ) € 1, £, > 0 and u(&,¢) € C*[1] with a € (0,1], then
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u(E.0)=y -

~ otk

[Dluc.o], . (§-6)".

where, I =R x(0,) and D:'“’ denotes time-fractional partial derivative for k-times.
Definition 2.5. If (cf, I ) el,,>0andu(¢,d) e C*[1] with a € (0,1], then the time-fractional partial differential
transform (TFPDT) of u(&,C ) is defined as:

1

gUa(é:’k): akk!

[DruEO], 6>

where I = R x (0, 0).

2.1 Conformable fractional partial derivative (FPD)

Definition 2.6. Given a function u(&,¢): Rx(0,00) & R. Then the conformable time-fractional partial derivative
(CTFPD) of order a for a function u(¢£,{) is defined as:

(&, ¢ +e¢™)-u(é.9)

€

T,u(é,¢) =lim ()

forall ¢ >0, a € (0,1].
Table 1 shows the function ¢ and 7, (#($)) when « € (0,1] and u(&,¢), v(£,{) be a-differentiable functions at (&,
¢) e Rx(0,0).

Table 1. Conformable derivative of function ¢ at (£,{) € Rx(0,0)

No Function ¢ T (4(9)

1 (T, (au+bv) a,Tu+bTyv

2 T.(¢7) pSr e peR
3 u(é,§)=2 2, (H=0

4 T, () uTv+v Tu

s T.wiv) AT~ ul Ty

; v
6 Tu(EQ) o ou(s,¢)

o
7 TN€-a")  pC-a)".VpeR

8 7T [e((;”u]] /'Lel(%]

a

a

0 ;T;[(c—a)“] .

Lemma 2.7. Let u(&,{) to be k-times differentiable at (£,4) € Rx(0,), a € (0,1] and define v, (&,4) = u(&, ). Then,
the k-times CTFPD for a function u(&,{) at the point (£, {) can be represented as

0L (6.0)

Vk(fag):“:T/{akal(gag):éllia agk

Definition 2.8. Let function # : R x(0,0) > R, & € (n,n+1]and # = & — n. Then, the CTFPD for u of order a, such
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n

that 6; exists, is defined by

[ u,6) =

55

Theorem 2.9. If u(¢,{) is infinitely a-differentiable function, for & € (0,1] at a point (£,{,). Then,

wEO) =Y TouEO] (6-&)

~ a’k! (5,§0)(

l
for0< ¢, <d <, +R* R>0,where g’TAi“ -times CTFPD.
Definition 2.10. Let 0 <a <1,u(£,¢) e C*[I] at a point ({,{). Then, the conformable time-fractional reduced

differential transform (CTFRDT) of u(&,{) is defined as

ak (5) kk||:(77‘iﬂ (é’g)](éﬁo)

Definition 2.11. The CTFRDT of initial conditions for integer order derivative is defined as:

1| o™ , .
. —' a_ka ifkaeZ 5
Ui @)= (@0 )

0 ifkaeZ”,

fork= 10,1, 2, .. .,(i—lj where 7 is the order of conformable time-fractional partial differential equation.
a

Definition 2.12. Let .U, (§) be the CTFRDT of the function u(¢,{). Then, inverse of .U, (&) is defined as

0

w(E, )= U (S -&)"

L Tau o], (6-¢)"

wherek= 0,1, 2, ... ,nand 0<a <1.
Definition 2.13. Let (£,4,) 1,4, >0and u(£,4) € C*[I] with at a point o € (0,1]. Then, the CTFRDT of u(&,0) is
defined as

U&= ,Ck,[ngif &0,
Theorem 2.14. If v(£,{) = au(&,<), then we have

Vi (§) =a Ui (&),

where a is a constant.
Proof.
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VE@ = TGO

k
— 1 o
=L Tea&O]

a

=l Tau.0)]
=a,. U/ (x).

(¢.60)

Theorem 2.15. If u(£,) = v(£,S)w(S, ), then (U (5) = Z FIEWE(S)

Proof. By using the Definition 2.12, u(&,{) and v(&,{) can be written as:

VE) = i;V“(é) (-2,
WED =D HIOE4)".

Then, u(&,() is as follows:

u(f:(){iﬂ/ ©(¢-<) j (Z;W”‘(S) (¢-¢) )

(Vi @+ @ =6,) V7@ =6,)" +++)

A IO+ W O(E =)+ WO =E)" ++)

=V @M+ VI 0+ VI D) ¢ -)
+( V@I )+, UL (), W (ED+ VW E) (S -6,) +

ok

=3V E WO -E)

k=0 r=0

U (&) = Z VEWE (&)

In general, for [U(,¢8) =v(&,8)v,(&,8) v, (&,¢), we have

kn k2

gUf(f) = Z Z ;Vk].a (5) chjojk, (g)x"'qVk(,,}:—l)a (5) ngTik,,,, (5)

k,1=0 k=0

Theorem 2.16. If u(&,4) = g’ij‘?v(é,g’), for 0 <p<1. Then, U/ (&) =a(k+1) V7, (x).
Proof. Assuming the following is v(,{) is conformable time-fractional partial differential transform (CTFPDT):

VO = TED]

For u(&,8) = [ T°w(&,4), we have
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UL = kkl[iTkin( T(fw(f,())lm)
1
= /k'[4 Tinav(€s QLC)
k+1
_%[4 naV(Ss g)]
=a(k+1)V ().

_ TDlka+pB+1)

Theorem 2.17. If u(£,¢) = T/ W(E, &) for B € (m—1,m). Then Uf (£) = Ttk fm) Ve (©).
¢

Proof. We look for CTFRDT of function u(&,{). We have

TEWED) = T {V(f ) mZ T" (&, :)]

u(é,o:;zﬁ(i COE-6)" Z(g If) I, c:)J
Efl ka
ué,O) = T | V@ -¢)" - Z(iﬁ) ﬁ‘iv(é,;)}

8

-

=0

L
= T X VEOE-8)" QZ;V"(ZE)Q“ &) ]

DS EE(E-&) J

7
a

F(ka+l) ka-p
Zr(k y EOE-4)

I'ka+ p+1)
gnkaw mEAICICRT O

o I'ka+ p+1)
gUk (&)= —F(k atp- )4 k+ﬂ/a(§)

Theorem 2.18. Ifu(&,¢) = ({ -4, )p g($), then U/ (§) = 5(1( —ng(f), where
a

1, ifk=0,
o(k) = .
0, ifk=0.

3. Modified conformable fractional reduced differential transform
Consider the following system of FPDE:
Dlu,(&,7)+ Lu (E,0)+ Nu;(§,7) =r,(£,7),£,120,m—-1< f<m, j=12. ()
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The conformable sense is used in the expression of Equation (2). £ and N stand for the linear and nonlinear terms,
respectively and 7, (&, ) is the remaining terms with the initial condition.

uif(f)(éao):f;k(f): k:0,1,2,,m—1 (3)
Applying the conformable reduced differential transform on both sides of Equation (2), we get

[‘(ka+ﬂ_m) rUj,k+ﬂ/a(§) - Gj,k(f) [‘CrUj,k(g)‘FNTUj,k(g)]. (4)

Where U?, (&), N. U7 (&) and G7 (&) are transformation of the functions Lu, (£, 7), Nu,(&,7) and r;(&,7) respectively.

7 j.k
By representing the solution as an infinite series given by in the second phase of the conformable reduced differential
decomposition approach, we can:

WED=D U, 4(E) )
In the problem, the nonlinear term is given as
Niy(£0) =34, . ©)
where
4, =i{d—k{Ni(ﬂru ‘)ﬂ ,j=12 (7)
tOoRNdA = R |

known as Adomian polynomials. By replacing Equation (4) with Equations (5) and (6), we obtain

2 U, (=G (x) —[[LZ U@+ 4, D
k=0 k=0 k=0
Reduced differential decomposition method, we get

TUj,O (5) = G;l k (5),

U, ()= [[L‘Z U, (H+D.4,, D k>0. ®)
k=0 k=0
Then, the inverse transformation of the set of values { U7, (£)};_, gives the n-term approximation solution as follows
u,(£,0)=3 US (&)™
k=0

Consequently, the precise solution to the problem is provided by

u(é,7)= lin;un (&,7).
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3.1 Analysis of convergence and error estimate

In this section, we analyze convergence and error estimates for this new technique in approximately solved problems.
Particularly in close proximity to convergence, when nonlinear systems exhibit linear behavior and error estimation is
most required.

Theorem 3.1. If B be a Banach space, then the series solution of the system (2) converges to S; € B, for j=1...,n if
Jo €[0,1) such that, "U " < o’"U/(m ])"Vm eN

Proof. Let the sequences S be a partial sum of the series given by the system (8) as

SjO :Ujo(ég)
Sjl :Uj0(§)+Ujl(§)
U;p(0)+U,,(E)+U (&)
S, =U () +U (D) +U () +-+U ,(S), )

then we must prove that in Banach space B, {Sjm}mio are Cauchy sequences. We examine the following factors in this
regard:

[ 100 =Sin = [V s O] < U@ <[V 0 (O] < 0™

U, ()| (10)

For every m,r € N, m > r, by using the system (9) and triangle inequality successively, we have

”S./'m i ™S FS iy = Simay TS0 =S,
S"Sjm_ Jm- 1>||+||S/(m—1> - 2)||+ +|| () Sj,,"
-1 r+l
<o"|U, @+ |U,u @)+ U0

=g (1 +to+to" )"Uf'o (§)||

r+l 1
<o
1

—o""
el 0

AsO<o<l,sol—c™" <1then

"S w = Si

Jjm

o +1
<o V@)
forj=1,2,...,n. Since U (&) is bounded then

lim 5, - S,[=0, j=12,..n

m,r—»0

As a result, the sequences {S f'"}:zo in the Banach space, B are Cauchy sequences, and the series solution specified in
system (5) converges.

Theorem 3.2. The series solution (5) of the nonlinear fractional differential system (2) is determined to have a
maximum absolute truncation error of (5).

,.

sup|U,0(§)| j=12,.

Jk
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where the region ® c R""".
Proof. We deduce the following from Theorem 3.1:

o't

sup|u (&) (n

||S. - S.,||s
Jm J 1_0 (£)e0

However, we suppose that S, = ZU (&) and since m — oo, we obtain S, — u,(&,7), so the system (11) can be
rephrased as k=0

r+

o
<

1
Sup|U,o(£)], j =1,2,....m.
1-0 ¢o

e (€00-5, | =, 6.0~ >0, @)

As a result, in the © region, the maximum absolute truncation error is

Gr+1
<— .=
< sup ‘Ujo(f)‘,] 1,2,...,n

e -0 ¥eo

(¢&,7)e®

r

and this completes the proof.

4. Solution of the one and two-dimensional partial fractional differential equations
(PFDEs)

Example 4.1. Considering the following fractional damped Burgers’ equation

1
4’];§°u+uu +u +§u=0, O<a<l, (12)

3 &

subject to the initial conditions
1
u(e‘,o):gé (13)

Now, apply the conformable fractional reduced differential transform method (CFRDTM) can be expressed as follows:

1 .Ul 1
U (&)= ———| =4, —— -~ U |, 14
¢ k+1(§) a(k+1){ K 652 5¢ k:| (14)

U, (&) are the transformed functions. 4,(¢) is transformed form of the nonlinear terms are as follows:

0
A, =gUo%gUos
0 0
Al = §U1£§U0+ §U0£§U1’
0 0 0
AZ = gUz%gUo—f— §U1%§U1+ §UO%§U2’
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37 ¢ %: ¢ %c ¢ %c ¢ %43
from initial condition
|
U=t (15)
5
Now, substituting (15) with (14) respectively, we obtain
-2 3 13
U(E)=——¢&, U(E)=———¢&, U*(E)=———&,--
U 25a§ U (©) 125a2§ U5 () 18735a3§

Taking the inverse transformation of the set of values {U L (& )}Z:O gives the fourth-term approximation solutions as follows
4
i,(£,8) =D UL (€)E" = Ug &)+ U (€S + Us (6™ +vUs (£)5™
k=0

3
+
125¢°

13
187354°

1 —2 a 2a _ 3a
—§§+25a§é“ e ge.

The error between the exact and fourth-order approximation solution u of system by Laplace reduced differential

transform method (LRDTM) is shown in Table 2, when & =1, =0.05 and 0.01,0 < & < 2.

Table 2. The error between the exact and fourth-order approximation solution u of system by LRDTM for o = 1, {=0.05 and 0.01,0<¢<2

¢ c Exact App;ozi]mate Apgrzxoi'nglate Absoll‘li:jrfr Zuptjlr a=1
0 0.05 0 0 0 0
0.5 0.09802957 0.10202996 0.10306569 0.00400038
1 0.20405991 0.20405991 0.20613138 0.00800077
1.5 0.29408872 0.30608987 0.30919707 0.01200115
2 0.39211829 0.40811983 0.41226275 0.01600154
0 0.01 0 0 0 0
0.5 0.0996012 0.1004012 0.10070812 0.0008
1 0.19920239 0.2008024 0.20141623 0.00160001
1.5 0.29880359 0.3012036 0.30212435 0.00240001
2 0.39840479 0.4016048 0.40283247 0.00320001
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Figure 1 shows the approximate and exact solutions of u(¢,{) for different o values for Example 4.1.

“0.0
2.0
(a) For @ = 0.7 and 0.9 approximate solutions (red, (b) For a = 1 approximate and exact solutions (blue,
green colored of surfaces, respectively) of u(£,() yellow-colored surfaces, respectively) of u(¢,0)

Figure 1. 4th-order of approximation solutions for different values of & and exact solution of u(&,{) for Example 4.1

Example 4.2. Considering the following nonlinear fractional partial differential equation

47;§”u—uu5§—u§—u:0, O<a<l, (16)
with initial condition
u(&,0) =2, (17)

Now, apply the CFRDTM can be expressed as follows:

1

:—a(k+1)[Ak+Bk + U] (18)

gUI?H (5)

U($) are the transformed functions. 4,(¢) and B,(¢) are transformed form of the nonlinear terms, then the first few
nonlinear terms are as follows

i 0 ’
Ao(”a”):: U, 0524(]09 Bo(”av):(%gUoJ >
0 0 0 0
Al(u,u)=§ U]a—étngo-f-gUOa—éng], Bl(u,v):2%§U0%§U1, 2
0° 0? 0? 0 0 0
Awuw)=U,— U+ U— U+ U — U,,BWuvy=2— U,— U+ — U, |,
2 ¢ 26524 0T ¢ 166524 17 ¢ 08524 29[ aé,g oacfg 1 af; 0
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from initial condition, .U, (&) = \/E .
Now, substituting (17) with (18) respectively, we obtain

Jé

;U(’(sg):?, Ui (@)=

Jé

2062’4

Jé

e’

Ui ()=

Taking the inverse transformation of the set of values { U (f)}lio gives the fourth-term approximation solutions as
follows 7

W)=Y UL = U @)+ UT QL + USO8 +vUs (4™
= \/E+£§“ +£§2§2a +£3é/3a.
a 2a 3la

The error between the exact and fourth-order approximation solution u of system by LRDTM is shown in Table 3,
whena =1, =0.05and 0.01,0< & <2.

Table 3. The error between the exact and fourth-order approximation solution  of system by LRDTM for a =1, {=0.05and 0.01,0<¢<2

¢ c Exact App;o:ilmate Ap};rzxoi.r;late Absoh‘lixiirfr :ﬂpf;lr a=1
0 0.05 0 0 0 0

0.5 0.74336092 0.74336092 0.76214881 1.85687932¢-09
1 1.0512711 1.05127109 1.07784119 2.62602406e-09
1.5 1.28753888 1.28753888 1.32008047 3.21620930e-09
2 1.48672184 1.48672184 1.52429762 3.71375863e-09
0 0.01 0 0 0 0

0.5 0.71421332 0.71421332 0.71966916 5.89972515e-13
1 1.01005017 1.01005017 1.01776589 8.34443625¢-13

1.5 1.23705376 1.23705376 1.24650356 1.02207132e-12
2 1.42842664 1.42842664 1.43933833 1.17994503e-12

Figure 2 shows the approximate and exact solutions of u(¢,{) for different a values for Example 4.2.
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3

1.0 2

s, =

0 0

0.0
0.0
05 » 03 ¢
0.3 0.5
1.0 1.0
¢ ¢
1.5 1.5
20 0.0 20 0.0
(a) For @ =0.7 and 0.9 approximate solutions (red, (b) For o = 1, approximate and exact solutions (blue,
green colored surfaces, respectively) of u(¢, {) yellow colored surfaces, respectively) of u(&,()
Figure 2. 4th-order of approximation solutions for different value of & and exact solution u(&,{) of Example 4.2
Example 4.3. Consider the system of fractional-order partial differential equations (PDEs)
o"u ou
Frv_tu= 1
ocr  0¢
o’y ov
C—u——v=1, 0<p<l, (19)
ocr  og
with the initial conditions

u(é,0)=e", w&0)=e". (20)
Now apply the CFRDTM can be expressed as follows:

a _ 1 a
Ui (§) = ld®ra+ Ui ]

a _ 1 _ _ a
(&) =g le®-B v ]

@n

U,($) are the transformed functions. 4,(¢) and B,(¢) are transformed form of the nonlinear terms. For the convenience of
the reader, the first few nonlinear terms are as follows

o.U,
A u)= Vo ——

0.V,
0; Bo(”av):gUoﬁa
0¢ 0¢
o.U, 0.U, 0.V, 0.V,
A=yt R B(uy)= Uy—+ U —

— 4 _—
vor e
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8CU2 6¢U, 6¢U0 6§
Az(v,u)ng0 oc +4V1 o¢ +§V2 z ,Bz(u,v)ng

from initial conditions, .U, (&) =€, V(&) =€
Now, substituting (20) with (21) respectively, we obtain

e —e°

UM )= aagU“(i)— 2,;U“(§)

o o —5
)= p » V(8 =7 2:§Va(§)_

4 4
Now, taking inverse transformation of the set of values {U . (é)}/ﬁo and {U ; ()c)}ki0 gives 4-terms approximation
solutions as follows

u,(s,6) = Z;W(é)?” = Ug )+ U (L + U ()¢ +vUS ()¢

4

&
e e
—ef Sy
[04

vi(8,¢) = Z;V;’(é)("“ = V5 (O+ VS + V(O + V(€)™

-¢ -¢ -¢ -¢
e e e
T+
a 2la 3la

e
4ot

- §3a + 41411'

The error between the exact and fourth-order approximation solution u of system by LRDTM is shown in Table 4,
whena =1, = 0.01and 0.05,-2<£<2.

Table 4. The error between the exact and fourth order approximation solution u of system by LRDTM for o = 1, {=0.01 and 0.05,-2< <2

: I Exact App;o;(ilmate Apzrzxoi'rgate AbsolTZ:Crtr?r LL{::?lr a=1
-2 0.01 0.13398867 0.1329729 0.1261997 1.12548859¢-13
-1 0.36421898 0.36421898 0.36145782 3.06032977e-13
0 0.99004983 0.99004983 0.98254422 8.31890112¢-13
1 2.69123447 2.69123447 2.67083211 2.26174635¢-12
2 7.31553376 7.31553376 7.26007439 6.14708284e-12
-2 0.05 0.13398867 0.1287349 0.12556143 3.49519469¢-10
-1 0.36421898 0.34993775 0.34131136 9.50092505¢-10
0 0.99004983 0.95122942 0.92778047 2.58261923e-09
1 2.69123447 2.58570966 2.52196879 7.02028702¢-09
2 7.31553376 7.02868758 6.85542194 1.90831191e-08

iporary Math tics 866 | R. A. Muneshwar, et al.




The error between the exact and fourt-order approximation solution v of system by CFRDTM is shown in Table 5,
whena =1, = 0.01and 0.05,-2<£<2.

Table 5. The error between the exact and fourth-order approximation solution v of system by CFRDTM for o = 1, {=0.05 and 0.01,-2<¢<2

¢ c Exact App;o;(ilmate Apgrzxégate AbSOITsz:rfr :lli(jlr a=1
-2 0.01 7.46331735 7.46331735 7.52032928 6.16484641e-12
-1 2.74560102 2.74560102 2.76657453 2.26840768¢-12
0 1.01005017 1.01005017 1.01776589 8.34443625¢-13
1 0.37157669 0.37157669 0.37441515 3.07032177e-13
2 0.13669543 0.13669543 0.13773964 1.12965193e-13
-2 0.05 7.76790111 7.964229 8.80623461 1.94038376e-08
-1 2.85765111 2.92987611 3.23963267 7.13827353e-09
0 1.05127109 1.07784119 1.19179425 2.62602406¢-09
1 0.38674102 0.39651561 0.4384366 9.66060232¢-10
2 0.14227407 0.14586994 0.16129181 3.55393714e-10

Figure 3 shows the approximate and exact solutions of u(&,{) and v(£,{) for different o values for Example 4.3.

4

10

= 2 -~
5

0 0
1.0 0.0
) 2
1
-1
0.5 0 0.5
0 ¢ & ¢
¢ -1
1
2 10

5 00

(a) For a=10.7, 0.9 and 1 approximate and exact solution (red,
green, blue and yellow-colored surfaces, respectively) of

wé&o)

(b) For & =0.7, 0.9 and 1 approximate and exact solution (red,
green, blue and yellow-colored surfaces, respectively) of
(9]

Figure 3. 4th-order of approximation solutions for different value of a and exact solution () and v(& () of Example 4.3

Example 4.4. Consider the following system of nonlinear FPDEs.
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Tju—uﬁ = 2uu, + (uv), =0,

Tju—vﬁ—2vv§+(uv)‘f =0, O<ac<l], 22)
subject to the initial conditions
u(&,0)=siné, v(&,0)=cosé. (23)

Now, the CFRDTM can be expressed as follows:

., 1 82 Ua
gUk+1(ég):—|: - 2k +Ak_Bk_Ck:|

alk+1)| o&
., ~ 1 62 Ua
‘{Vk”(x)_a(k+1)|: o7 +D, - B, C} (24)

U(¢) are the transformed functions. 4,(E), B,(¢), C(¢) and D (<) are transformed form of the nonlinear terms. For the
convenience of the reader, the first few nonlinear terms are as follows

0.U, oV,
Ay (u,u)=2 Uy —— 6§ Bo(u,V)=gUo§,
oV, 0.V,
Auu)=2| . oY au‘) B(u,v)= U,—~—+ U —+,
+U Log ) ' os T o5
o.U, 0.U, oy, on 0.V,
A, (u,u) =2 +. U, gUZ - Bz(”av): — T U gUZg_’
o5 o5 " og o5 o5
o.U, o.U, 0.U, 0.U, 0.U, 0.U, o.U,
A (u,u)=2 +.U o¢ gUz oF +.U; oF )| By(u,v) = _U, o¢ + U —= o¢ + U, —= o¢ +.U; o
o.U, o.U,
Co(u,v) = o0& gVO’ DO(VDV):ngO o0& >
o.U o0.U o.U o0.U
Cuy)=——2V, +—== 7, D(v,v)=2| Uy——+ U —"|,
o¢ o¢ © St eE ¢ o¢
oU o0.U o.U 0.V, on 4
Cy(u,v) =—2> Vy+—=L V,+—=2 V,, D,(v,v)=2| V=24 V=4 V=
o¢ *© o0& ° o¢ © ©0 & o0& T o0&
o.U, o.U, oU, 0.U, B 0.V, oV, oV oV,
C,(u,v) = oF Vit oF J+ oz I+ oF Yoo D;(v,v)=2| F, oF + V= oF + V= oF + oF

from initial conditions, ,U,(&) =sing, [V, (§) =siné.
Now, substituting (23) with (24) respectively, we obtain

guf(x);m‘f Us(x) = S‘Zf,gU;(x)zgs'mf,...
@ =T =S =

Taking the inverse transformation of the set of values {U . (cf)}4 and {U o (Jc)}i:0 gives the fourth-term approximation

k=0
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solutions as follows

1,(8,8) =2, UF (&)™ = Uf 0+ U (" + U (™ +vUy ()™

siné

sin sin

sin

é’(l

=siné —

;20{ _

+
214’

3a
3o’ cr

41¢a*

4440(’

vy(6,6) = z V@G = V(@) + NHOE + V(S + V(9™

sin&

sin

sin

4305 +

sin

=sin& -

The error between the exact and fourth-order approximation solution « and v of system by LRDTM is shown in Table 6,

whena =1, =0.01,0.05and 0.1-2< £ <2,

Table 6. The error between the exact and fourth-order approximation solution # and v of system by LRDTM for o =1, {=0.01, 0.05 and 0.1,

a 2a
o 2la’ J

3la?

4t

44(1.

-20<¢£<20

¢ c Exact App;o;(ilmate Apirzxoi.r;ate Ab(sxoiuie ‘e;::ibi arulip\:lfor
-20 0.01 -0.90386129 -0.90386129 -0.89700908 7.59503571e-13
-10 0.53860801 0.53860801 0.5345248 4.52526905e-13
0 0 0 0 0.00000000e+00
10 -0.5386080 -0.53860801 -0.5345248 4.52526905e-13
20 0.90386129 0.90386129 0.89700908 7.59503571e-13
-20 0.05 -0.86842039 -0.86842039 -0.84701277 2.35778996¢-09
-10 0.51748889 0.51748889 0.50473216 1.40499934e-09
10 -0.51748889 -0.51748889 -0.50473216 1.40499934e-09
20 0.86842039 0.86842039 0.84701277 2.35778996¢-09
-20 0.1 -0.82606702 -0.8260671 -0.79377164 7.48286815¢-08
-10 0.49225066 0.4922507 0.47300594 4.45901684¢-08

0 0 0 0 0.00000000e+00
10 -0.49225066 -0.4922507 -0.47300594 4.45901684¢-08
20 0.82606702 0.8260671 0.79377164 7.48286815¢-08

Figure 4 shows the approximate and exact solutions u(&,{) and w(&,{) for different a values for Example 4.4.
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(a) For @ = 0.7 and 0.9 approximate solutions (red, green (b) For a = 1 approximate and exact solutions (blue, yellow
colored surfaces, respectively) of u(&,{) and V() colored surfaces, respectively) of u(&,{) and v(&,()

Figure 4. 4th-order of approximate and exact solution u(&,{) and v(&,{) of Example 4.4 for different values of a

5. Conclusion and discussion

In this article, we explored the use of the conformable RDTM in conjunction with the Adomian decomposition to
solve one and two-dimensional NFPDEs. We used this novel approach to estimate the solutions of nonlinear systems of
equations and discussed convergence analysis and absolute error for the proposed technique to solve these problems. To
illustrate the theoretical aspects and the effectiveness of the numerical approximation, certain numerical examples are
provided as well as a 2D or 3D graphical presentation using the Mathematica software.

In Tables 2,3, and 6, the numerical values of the approximate solutions for & = 0.9 and 1 and exact solutions for
Example 4.1, Example 4.2 and Example 4.4 respectively, show the accuracy and efficiency of our technique at different
values of &, 7. In Tables 4 and 5, the numerical values of the approximate solutions for o = 0.9 and 1 and the exact
solutions for Example 4.3, show the accuracy and efficiency of our technique at different values of &, 7. The absolute error
between an exact and a fourth-order approximate solution. In Figure 1(a), we plot the graph in different colors of fourth-
term approximate solutions for Example 4.1, when o = 0.7 and 0.9 and Figure 1(b), we plot the fourth-term approximate
solution when o = 1 and the exact solution. In Figure 2(a), we show the graph of the fourth-term approximate solution for
Example 4.2, when a = 0.7 and 0.9 and Figure 1(b), we plot the fourth-term approximate solutions for Example 4.2, when
o =1 and exact solutions are shown in different colors. In Figure 3(a), we plot the graph of approximate solutions for
Example 4.3, when o = 0.7 and 0.9 and in Figure 3(b), we plot fourth-order approximate solutions for Example 4.3, when
o =1 and exact solutions are shown in different colors. In Figure 4(a), we plot a graph of the fourth-term approximate
solutions for Example 4.4, when a = 0.7 and 0.9, and in Figure 4(b), we plot the fourth-order approximate solutions for
Example 4.4, when a = 1 and the exact solution is shown in different colors.
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