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Abstract: In this paper, we will introduce a well-known transformation technique, the modified a-fractional differential
transform, to the differential equation of fractional order. We derive some new results with proof using new techniques
that never existed before. By using this new technique, we are attempting to solve the nonlinear fractional-order
mathematical epidemic model. Furthermore, the fractional epidemic model’s solution obtained by using this new
technique is correlated with the solution of the same model calculated for a different fractional order by the modified
o-fractional differential transform method. Moreover, using the Python software, we can numerically and graphically
represent the solution of fractional differential equations.
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1. Introduction

In recent decades, the theory of fractional derivation has gained prominence in mathematical studies. There is no
standard form of fractional derivative definition. But the definitions that are most widely used are those that employ
integration: The definitions of Riemann-Liouville and Caputo are found in [1].

Here, these fractional derivatives lack several properties, including an algebra of derivatives and
mean value theorem (MVT). To avoid some of these and other issues, Khalil et al. [2] proposed a new
concept of fractional derivative and demonstrated some outcomes using his new fractional derivative
definition, which can be found in [3-10]. In [11], Almeida et al. proposed the limit definition of a fractional
derivative. He also used his definition of fractional derivatives to draw several significant conclusions about
fractional derivatives. This study’s main objective is to offer a limited definition of a fractional derivative that
adheres to traditional concepts. For undefined and unexplained concepts and terms, readers can see [12-14].

The fractional differential transform method (FDTM) is one of the numerical methods, and it is used to
determine the solution to various differential equations. Zhou [15] first introduced the concept of the differential
transform method (DTM), and by using this new DTM method, he solved linear as well as nonlinear initial value
problem (IVP) in electrical science. Recently, to solve fractional differential equations, a novel analytical method known
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as the FDTM has been devised, which can be found in [16]. This approach, FDTM, creates fractional power series in
the same way that the DTM forms the Taylor series. Many authors have done studies using FDTM about solutions for
different types of fractional differential equations (FDEs).

Erturk et al. [17] utilized the principles of fractional calculus (FC) and looked into the motion of a beam on an
internally bent nanowire. They start to formulate the standard Lagrangian, then the standard Euler-Lagrange equation.
Furthermore, the fractional Euler-Lagrange equation offered a versatile model with more detail than the traditional
explanation. Yang et al. [18], reviewed some articles in ten sub-fields: image enhancement, image denoising, image
edge detection, image segmentation, image registration, image recognition, image fusion, image encryption, image
compression, and image restoration. Mahatekar et al. [19] derived a new numerical method to solve FDEs containing
Caputo-Fabrizio derivatives. An analysis of the fractional climate change model and the fractional delay dynamical
model can be found in [20-21]. The major characteristics and applications of artificial neural networks (ANNs) have
been compiled in [22], which utilized a bibliographic analysis employing FC theory. A study of a fractional boundary
value problem (FBVP) for modeling the human corneal shape dynamics and a strongly nonlinear boundary value
problem with multi-fractional derivatives that comes in chemical reactor theory can be found in [23-24]. Kumar et al. [25]
derived a new version of the L1-predictor-corrector (L1-PC) method by using some previously given methods to solve
multiple delay-type fractional differential equations. A study to simulate the dynamics of the alkali-silica reaction (ASR)
by using the Caputo fractional derivative can be found in [26].

In [27], we developed the notion of a-fractional derivative and integral by making the conventional changes in the
classical definition of a derivative, which is defined as follows:

Definition 1.1. a-fractional derivative [27]. If @ € (0,1] and y :[0,0) — R then a-fractional derivative of order « is
expressed as

ey
T,(2() = lin%M_ .
> P
Theorem 1.2. [27] If y at point { > 0, is a-differential function then
o d
T, () =g 428D, o

dy

In this paper, we present a novel modified a-fractional differential transform method (Ma-FDTM) for modified
o-fractional derivatives. Ma-FDTM represents modified a-fractional power series in the same way that FDTM
represents the fractional power series and DTM represents the Taylor series.

2. Some properties of modified a-fractional derivative

By using Definition 1.1 of a modified a-fractional derivative, we obtain the following useful results:
Theorem 2.1. If y and Q are a-differentiable functions at point 9 > 0, then

If y at point $ > 0 is an a-differentiable function, then y is continuous at point 3.

T,(Bx) =BT, (%), V peR.

I, (x + () =T, () + T, (Q(I).

T, GA)(S) = 1T, () + QT ()(I).

5T ( z ] )= £Q(9>Taz(9) —z(smﬂ(s))

Q(9y
6 T, (ij:_Ta?.
Q Q

7. T,(*) =T,y (QUINTUI).
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2.1 a-fractional derivative of some standard functions

If0 < @ <£1and ¢ € R, then, using Theorem 1.2, we have
1. T,l (19;1) — n19n+lfa.

2. Ta( ! T‘HJ:I.
a-1

T,()=0,V B eR.

Ta(ecr) _ eczcz_Zfa.

T,(sin ¢7) = e’ “cos(ct).
2—a

3
4
5.
6. T,coscr)=—ct “sin(ct).
7
8
9

T(log7)=17"
T(a") = (a" log a)t
. T(tan7) =7 “sec’r.
10. T,(cot7)=—7 “csc’.
Theorem 2.2. If o € (1,2], ¢ € C*[0,0) and &, €[0,0), then

(T, " (E)(E =& Va
= < , <E<E+RY,R>0 3
P(S) Z P S <&<é, 3)
where (7,4)" (&,) represents the kth fractional derivative.
Theorem 2.3. Let € (1,2] and ¢ be an infinitely a-differentiable function in a neighborhood of a point &, then ¢
features a depiction of the power series (3) like that | (7 ¢)"*" | < M, for some M >0 and n € N.
If & € (&,,&, + R), then

M

|R:(§)|§m

(E=&) ™, 4)

« & (TLH)"Y (G —1,) & (LY (ENE-&)
where R = = = - 2 :
) 2;1 (a—=1)k! 7 k:z,,;l (a=1)'k!
Proof. The method for proving the theorem is same as that used in conventional calculus, by applying 75" instead of
integration.

Remark. As the functions (&) = sin Jh(E) = ¢(E) = and #(&) = ———

(5_50)% ,g(f) =cos-=2_=07 (§ égo)a
a—1 a—

1

_ &
a-1

are not differential at £ = &; and therefore these functions have no power series expansions about & = &, for a € (1,2]. By

using Equation (3), the a-fractional power series expansions of these functions at point &, are as follows:

a -1 © _ (2k+1)(a-1)

_1)(2k+1)(2k 1)!> ¢ €[&y,0).
2 et é’al i( )% £ e[&,).
k(a-1)
3. @ ;(g(aéo)l) .
) 1@#_;(‘5 N R
a-1

Definition 2.4. The a-fractional exponential function is denoted by E, and for every & > 0 defined as
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E,=exp (c & J (%)

a-1
By using the Theorem 1.2, we have
DL E,(¢c,&) =cE,(c,$), (6)

here, £, (-1,£) (2.4) is an eigenfunction of D; having an eigenvalue of 1.
Lemma 2.5. Suppose that 7 is a continuous, non-negative function on 0 < £ < T and a,b €[0, %) such that

H&<a+| rs)d,o.
Then
r(§) <ak, (c,(&—a)).
Proof. Consider R(&) = a+ [ kr()o" ds = a+I:(kr(@))(£). Then, R(a) = a, R(£) 2 r(£), and

T R(E) ~ kR(E) = kr(&) —kR(E) < kr(&) k(&) = 0. )

_ ™!
Multiply Equation (7) by K(§)=e  «' . With the help of chain rule, we see that T’ K () = —kK (&) and hence, by the

product rule, we conclude that 7' K(£)R(&) < 0. Since K(&)R(&) is differentiable on (a, b), then

LT K(ERE) = K(ER(E) - K(a)R(a) = K(E)R(E)-a < 0.
Hence,

RERO
ae ' .,

a

IGE

r(§)<R(S) <

3. Modified a-fractional DTM

Definition 3.1. If @(7) € C”[0,%) and « € (1,2), then @(r) has a modified a-fractional differential transform (Ma-
FDT) and is given as

1 0 \@)
Fa(5)=m[(5 o)) . v

where (T, a’“w)(‘” (7) represents the fractional derivative of @ (7) taking J times.

Definition 3.2. If F(0) is the Ma-FDT of @ (7) then there is an inverse. The a-FDT has been modified to F(d) and
is defined as

o (r)= iFa (8)(r -7, )(11—1)5 _ im[(gﬂw)@ (r)} (r-1, )<a—1)5 . ©)

5=0 =7y

For integer-order derivatives, the initial condition Ma-FDT is defined as
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if (a—1)5 e Z* ! {d(aww“)} ,for5:0,1,2,...,[ " —1)
F (0)= (a=1o)!| dr'* ™ (ax—1)

=1,

if (a-1)5eZ* 0

where 7 is the order of the modified a-fractional ordinary differential equation (Ma-FODE).
Theorem 3.3. Let Y ({), W({) and Z,({ ) be the Ma-FDT of the relevant functions, y({), w(¢), and z({).
Then
1. Ifa(&)=u()xv(), then F,(6)=U_(0) £V, (J).
2. Ifo(é)=cu(é), then F (o) = cU(0), where c be a constant.

3. Ifa(&) =u(@)v(E), then F,(5) = i U, (W, (5-1).

4. Ha(&) =T (&), then F () =(a— 1)+ DU+ 1).
[(S(a-1)+B+1)
I(S(a-1)+B-m)

5. Ha(&) =T, (&) form< f<m+1,then F,(8)=U,(5+f/(a-1)

6. Ita(()=(T7u )& (T7u,)&)..(T7u,) (&), then F ( )=Where( "1 eZ'andm < ,<m +1fori=12,...,n.

7 Ifw(f)—(f—g)" then F (8)=A| 6 — p where A(5) = I, if6=0
. 0 > o (a _1) 0’ lf 5 " 0
ZM ié’
8. Iflisconstantandw(é)=e < ,then F,(5)=————.
(a-1)°9!

Definition 3.4. [28] A modified a-fractional partial differential transform (Ma-FPDT) of ¢(¢; &) is defined as

S S(a-1 n(p-1 1 0 5
4066 = 23Uy G )" =) [T @),

where 0 < &, # <1, and the Ma-FDT of a function, ¢({, ¢) is

1

©.s(0:) = (a1’ f—-1)'n!

[ TEHETIH™ ()]

(o)

Theorem 3.5. [28] Let Y, ,(d, n), W, ,(d, n) and Z, ,(J, 17) be the Ma-FDT of the functions, y(, &), w({, ¢) and z(¢, ©),
respectively. Then
Lo Ify(g,8) =w(¢, &)t z(L, &), then Y, (6, m) =W, ,(0, 1) +Z, ,(9, ).
2. WG =ew(( 9, ceR, then Y, (6, n)=cW, (9, n).

3. WG O =w(E Qz(C 9, then ¥, 4(0,n) = ZiWa,ﬂ (r,n—0)Z, 4,(6—r,0).

6=01n=0
S-r n n-o

4. WG Q) = WG WG 9z(C ©), then ¥, 4, (6,17) = z z V,y(rnn—o—=pW, ,(§,0)Z, ;(6—r—¢,p).

r=0 £=0 5=0 p=0

5. Ify(w=(¢co)”"(:f@",thenYa,ﬂ(é,n):A(k— . ]A(n—(ﬂ"_n]-

(a-1)
-G, (G4 )”J

6' Ify(g’é) _ el[ o 5 /I(Hﬂ

a’s\fn!

roa-n)+y+1
7. Ify(g’,é‘):gngw(é',f),m<7Sm+1,thenYa,ﬂ(5,77):Wg’ﬂ(é#%, jl“((§((3_1))+;—m)).

Theorem 3.6. If u((, &) = WG OWE ), then LU, (£,8) =Y. .V, (&)W, (£S5 —r).

where 4 is constant, then Y, ,(5,7) =
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Proof. With the assistance of Definition 3.4, u({, &) and v({, £) can be written as

NEOED WA R

w(¢,6) = Z (O (E-&)

Then, u({, &) is obtained as follows:

u(¢.8)= (Z LCO(E-6)" “j [Z P r:o)"‘“”j
(éVa(C 0)+ .V, (& D(E- §O)<a H b @ (e~ 50)2“‘ ’ )
(gWa(J 0)+ W, ({D(E-E&)+ W, (,2)(6-&) "+ )
=V, (£.0) I, (£.0)+( .V, (£.0)W, (S D)+ V, (S W, (. 0)(E-&) "
(07,2 + U (D, (D + V(6D ,(E0)(E-E) "+
= Zw:i T E-r)(E-& )

6=0 r=0

S,Ua(é',é)=ZVa(é’,r)5Wa(§,5—r).

In general, for U(4, &) =v,(¢,&) - v, (x,1)---v,({, &), we have

5,

gUa(§»5)— Z Z Vla §5 (W§ 5) : §V(n—l)a(é”5n—l)l/na(é”5n_511—1)'

Theorem 3.7.If y(¢,8) = , T/ w(¢,6), 0<a <l thenY, ,(5,7) =(a—I)(S+DW, ,(5+1,7).
Proof: By applying definition to w(¢, &) and  T/u(£,$), 0 < <1, we have

1 a S ¥ m a
vem= (a—1)55!(ﬁ—1)"77![(40 TE) T/ 9) )[Co L u(g’r)ﬂ(om’
_ (5+ 1) a g\(5+1) 7 4\(m)
G = el F O ],
Thus,
W(S,m)=(@-1)6+DU, , (5+1,7).

Theorem 3.8. If w(¢,&) = . T/u({, &), n <0 <n+1, then

T(B-D+0+D) ., (577 0 ]
a.p
(B-1)

(10)
LB -D+6-n)

W,z (6.m) =

Proof. Consider the initial condition of the problem:
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Tu(¢,6) =, {

0
P

(1)
u(£.E)~HE)x Z"’n(o)@ éo)"}

n (1)
¢(C)XZ‘I’,;(77)(§—§0)”’] —¢(§)szn—,(0)(§—§o)”}-

Substituting #(# — 1) in place of # in the second series and considering the initial conditions, we get

© ) (l(ﬁ 1)
TG E) = T | XX W, (DE =5~ 40 % Z py RGN
0 | © (D) (/;9 ) l//(ﬂ(ﬁ '))(0) (A
= T MO T e £ ) 3 H e

icb(z;)(z;

= ZCD(C (=
_T(B-

D+6+1)

(B-D)!

n=0

2| 4O Z W, (E - &) ”}
=5y

Z, )5(a Dy i ‘Pﬂ( ) Cn(B-1)+1) (é_go)q(ﬂ—l)—b‘
(=)

P ramB=1)-n)

Ir(p(p-1)+6+1)

_ # \i(B-D-6
Tf-1)+0—n )(5 ¢o)

&)™ Z‘P )

n=0

C(n(B-

- a,/j(

3.1 Applications

+6-n)

5377) =

w 5 ka On(ﬂ b}
a,/{ e 1)j(4 &)(E-4)

e

rnp(f-H+6+1
LC(n(B-1)+60—n)

s
B

Example 3.9. Consider the system of nonlinear fractional differential

Ty, =2y,
T/}f)ﬁ =Ths

l<a<2,

1< <2,

Tf)% =0y 1<y <2,
subject to the conditions
1 (0)=0, »0)=1L y(0)=1.

By using Theorem 3.5, the set of equations in (11) when converted, looks like this:
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1
Y, (5+1 y A(I-1)Y,(5-1
)= 1)(5+1){; ( )}
Y, (6+1)= oo 1)(6“){;1@(1)&(5—1)}. (12)

The initial conditions of transformation are
Y (0)=0, Y,0)=1, Y¥(0)=1. (13)

Using Equations (12) and (13), ¥(d) ford =1,2,...,n, Y,(d) for 6 =1,2,3,..., n and ¥,(0) for 6 =1, 2 are computed
and transformation inverse is the rule used in Equation (4), y,(£), y,(&) and y4(¢) are calculated for various values
of a, p and y. Using Equations (12) and (13), y,(&), y,(¢) and y,(&) are obtained up to 6 = 40. The following series
solutions are produced with the help of inverse transformation procedure in Equation (9). a = 3/2, f = 1.4 and
y = 1.3, the solutions x(&), y(£) and z(<£) are evaluated up to five terms.

() =4£" 2‘5

f”
MO =1

0.3 0.6 0.9 1.2
z(f)—1+—(’E 9 + 9 + °
03 0.18 0.162 00388

If we take values of a = f =y = 2, then we find approximate series solutions

x(&)=2&+ 254 +
O =12,

Cgesl 856
z(§)-1+§+2+6+24+

Figure 1 demonstrates the rough answers for the values of system (11): a =3/2, f=1.4 and y = 1.3.

700 4 *

<= ™
Il
wWkan
*
*

600 -
500 4 «

400 a o**

x (f)
*

300 { s
200 oo2¥

100 |
i

0 2 4 6 8 10

Figure 1. Graph of approximate solution of (11) for different values of o, £, y
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Example 3.10. Consider the system of linear Ma-FPDE:s:

Tfu—vg =0, l<a<2,

T[';tv—u§=0, 1< fp<2,

(14)
subject to the conditions
u(,0)=¢", v(,0)=e". (15)
By using Ma-FDTM, we can rewrite Equation (14),
(@=-D(+DU @G, n+1)=(S+DV (5 +1n),
(B-D+1V(6,n+1)=(6+DUS+1n). (16)
The initial conditions of transformation are
U(s,0)= 1
B - 5'9
V(5,0)= S (17)
s

Putting (17) in (16), we obtain the closed-form solutions.

. 52(11—1) . §(a—1) 53(0:—1)
u(ld,)=e [1+—2!(a_1)2+...]+e [(a—l)+3!(a—1)3+m R

. gD s S0
v, &) =e [1+—2!(ﬂ—l)2+mj e ((,3—1)+3!(ﬁ—1)3+m .

As a = f = 2 which are identical to the solutions obtained by homotopy analysis method (HAM) when it converges to
closed-form solutions,

u(¢,&) =ef coshé +e* sinh &,
W¢,E) =e ¢ cosh& —ef sinh &,

In Figure 2, for a = 1.75, f = 1.85, the approximate solutions obtained by Ma-FDTM are u({, &) and v({, &)
respectively.

500000 = 0.0
400000 @ -0.25
-0.50

, 300000 03s
200000 Z 0
100000 -1.25

(a) Approximate solution of u({, &) for a =1.75 (b) Approximate solution of v({, &) for f=1.85
Figure 2. Graph of the approximate solution of (14) for different values of a,
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Example 3.11. Consider the system of non-linear FPDEs:

Tju—ux —2uu, +(uv), =0,
Tfu—vg—2vv§+(uv)4:0, O<(ax-1)<1, (18)

subject to the initial conditions

u($,0)=sing, v(¢,0)=cos(.

Using DTM, we can write

(a-D(n+HUG,n+1) = (5+1)(5+2)U(5+2,77)+2ZS:ZH:U(r,7]—O')(5—r+1),

r=0 o=0

x U(5—r+1,0)—ii(r+l)U(r+1,77—0')V(5—r,0')

r=0 o=0

—ii(r+1)V(r+1,77—0')U(5—r,0'),

r=0o=0

(B-D+ DV (S,n+1)=(S+1)(S+ 2V (S +2,7) + 2532”11/@,;; —o)S—r+l),

r=0 0=0

X V(5—I’+1,U)—Z§:Zﬂ:(l"+1)U(}’+1,77—O')V(5—F,O')

r=0o0=0
I3 n
DD (r+ W (r+ln-o)U(S-r,0).
r=0 o=0
The transformed version of the initial conditions
0, 0=0,2,4,...
! o=15
U(5,0)=V(9,0) 5’ T
1
—p 9737 (19)

We found the following closed-form answers by substituting (19) in the above.

(¢ & o, (g
M(g,f) _(1_!_3_!-’-.”)(14-;”!((1_1)" J,

(¢ & o (=€)
v(g,g)_(“ 3!+"'}(1+Zn!(a—1)"j'

n=l1

Ifa=2, we get

u(¢,&)=sine™,
W<, &) =sinde”.

Those are the precise solutions to the equation system.
Figure 3 shows the graph of the approximate solution of Equation (18).
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4000 1

2000

- 2000

-4000 T

- 6000 1

Figure 3. Graph of the approximate solution of (18)

4. Discussion and conclusion

In Figure 1, we plot the graph of the third-term approximate solution for Example 3.9 when a = 1.5, f = 1.4 and
y = 1.3. In Figure 2(a), we plot the graph of the third-term approximate solution for Example 3.10 when a = 1.75. In
Figure 2(b), we plot the graph of the third-term approximate solution for Example 3.10 when f = 1.85. In Figure 3, we
plot the graph of the third-term approximate solution for Example 3.11 when o = 1.60 and 1.75.

In this article, we introduced Ma-FDTM to find the analytical solution for FDEs. Here, we have derived some
results on Ma-FDTM, and these results are applied to various fractional differential equations. Modified fractional
differential transform method (MFDTM) is found to be an efficient approach for Ma-FODE. In some cases, the series
solution generated through the use of MFDTM can be compared to the exact solution. It is found that the solutions
obtained by MFDTM and exact solutions are approximately equal. Otherwise, if the solutions do not match, then the
number of terms is increased so that we get the most accurate solution.
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