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1. Introduction, preliminaries and motivation
The gradual improvement in the study of sequence spaces leads to the advancement of the concept statistical

convergence, which is quite more prevailing than the usual convergence. The credit of such development goes to two
eminent mathematicians Fast [1] and Steinhaus [2], and this concept makes the convergence analysis much wider. Now-a-
days, this potential idea has been applied in numerous disciplines of pure and appliedMathematics and analytical statistics
as well. In particular, it is very much useful in the study of Machine Learning, Soft Computing, Number Theory, Measure
theory and Probability theory, etc. For some latest works, the interested learners may refer [3] and [4].

Suppose Y ⊆ N, and setting Yk = {ζ : ζ ≦ k and ζ ∈ Y}, we define the asymptotic (natural) density d(Y) of Y by

d(Y) = lim
k→∞

|Yk|
k

= ρ,

where the number ρ ∈ R is finite, and |Yk| denotes the cardinal number of the set Yk.
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It is familiar that, a sequence (yk) converges statistically to a if, for every ϵ > 0,

Yε = {ζ : ζ ∈ N and |yζ −a|≧ ε}

ensures the natural (asymptotic) density zero (see [1] and [2]). Hence, for every ε > 0,

d(Yε) = lim
k→∞

|Yε |
k

= 0,

and let we write it as

stat lim
k→∞

yk = a.

The principal edition monograph of Zygmund [5], printed in the year 1935, served as the foundation for the statistical
convergence concept and subsequently, Fast [1] was investigated and studied such concepts in a new direction over
sequence space and presented a note on that basis. Later on Schoenberg [6], independently developed the same concepts
on sequence space with some specific fundamental limit concepts. In recent trends of sequence space, the rudimentary
idea of statistical convergence has been expanded to a wider class and has becoming a very active research area in the
study of various spheres of Mathematical Analysis such as, theory of approximation, Banach spaces, measure theory,
locally convex spaces, summability theory and Fourier analysis etc.

In the second half of nineteenth centaury, so many works stated on statistical convergence by a few researchers, such
as in the year 1980, Šalát [7] investigated the theory of statistically convergent real numbers sequences and studied the
boundedness properties of such statistical convergence. After that, Fridy [8] discussed the concrete definition of Cauchy
criterions of statistical convergence and accordingly established some rudimentary results based on summability means.
Subsequently, in the year 1988, Maddox [9] considered the locally convex space for the extensive study of statistical
convergence and accordingly established certain relevant results. Gradually, in view of more advance study in the such
direction, Fridy and Orhan [10] presented the lacunary statistical summability means for sequence of real numbers and
obtained some prominent results.

The notion of the fundamental limit conception on statistical Cesàro summability and its applications was first
introduced by the eminent mathematician Móricz [11]. Again, Mohiuddine et al. [12] obtained a nice outcome on
statistical Cesàro summability mean with an illustrative example and further proved some associated Korovkin-type
theorems. Afterwards, Karakaya and Chishti [13] popularised the elementary idea of statistical convergence via weighted
summability mean, and later in the year 2018, Mursaleen et al. [14] clearly modified this concept and established some
fundamental limit theorems. Recently, Baliarsingh et al. [15] introduced and deliberated the notion of advance version
of uncertain sequences via statistical deferred A-convergence and proved some inclusion theorems. Again, in that year
Saini et al. [16] also studied the results on equi-statistical convergence via the product deferred Cesàro and deferred
Euler summability means with associated Korovkin-type theorems. Also, Saini et al. [17] again studied deferred Riesz
statistical convergence of a complex uncertain sequences with its applications and also in that year, Sharma et al. [18]
demonstrated the implementations of statistical deferred Cesàro convergence of fuzzy number valued sequences of order
(ξ , ω). For another generalized result in this direction, the responsive learners may refer the recent work of Parida et al.
[19].

Let {(I, σ , µ) : I ⊆ Rn} be a measurable space, and let G : Rn → R be a measurable monotone increasing function,
and also let (hk) be the measurable step functions sequence having measure (I, µ) over
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Ii = [ai
1, bi

1]× [ai
2, bi

2]×· · ·× [ai
n, bi

n] ∈ Rn, (i = 1, 2, ..., n)

where Ii is a partition such that I = ∪n
i=1Ii.

Now, we propose the Riemann-Stieltjes integral over a measurable space (I, σ , µ) as

∫
I
hk(u)dG(u) =

k∑
i=1

ci|G(Ii)|,

where µ(Gi) = |G(Ii)| is the measure (I, µ) of the transformed rectangle (region) G(Ii).
Next, the measure (I, µ) of the closed region (rectangle) Ii is assumed as the product terms in the following form:

µ(Ii) = (bi
1 −ai

1)× (bi
2 −ai

2)× ...× (bi
n −ai

n),

and accordingly we calculate the transformed measure G(Ii) as mentioned below.
In one dimensional case, consider the interval (closed and bounded) I = [a, b] which has the measure µ(I) = |I| =

b−a, and the transformed measure as

µ(G(I)) = |G(I)|= G(b)−G(a).

Similarly, for two dimensional case the measure of the closed region (rectangle) in R2 is given by

µ(Ii) = |Ii|= (bi
1 −ai

1)(b
i
2 −ai

2)

= bi
1bi

2 −ai
1bi

2 −bi
1ai

2 +ai
1ai

2,

and in the same lines, we designate the measure of the transformed rectangle (region) G(Ii) as

µ(G(Ii)) = |G(Ii)|= G(bi
1, bi

2)−G(ai
1, bi

2)−G(bi
1, ai

2)+G(ai
1, ai

2).

Successively, for nth dimensional case the measure of the closed region in Rn is given by

µ(Ii) = |Ii|= (bi
1 −ai

1)(b
i
2 −ai

2) · ... · (bi
n −ai

n),

and the corresponding measure of the nth transformed region G(Ii) is

µ(G(Ii)) = |G(Ii)|= ∆ jG(Ii) ( j = 1, 2, ..., n),
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where

∆ jG(Ii) = G(x1, ..., x j−2, x j−1, bi
j, x j+1, ..., xn)−G(x1, ..., x j−2, x j−1, ai

j, x j+1, ..., xn). (1)

Let fk : Rn →R be the measurable sequence functions over (I, σ , µ). We now define the Riemann-Stieltjes sum of
the measurable functions ( fk) over (I, σ , µ) allied with a tagged partition Ṗ ∈ Rn of the form

δ ( fk; Ṗ) :=
k∑

i=1

fi(γ i
j )∆ jG(Ii), ( j = 1, 2, ..., n),

where ∆ jG(Ii) is mentioned as above in (1).
Let G be a measurable increasing function, and let the sequence of measurable functions ( fk) be defined over the

interval I ∈ Rn. The given measurable functions ( fk) is integrable in Riemann-Stieltjes sense corresponding to G, if for
each ϵ > 0, ∃ a sequence of measurable step functions (h′k) and (h′′k ) for which

∫
I
h′′k (u)dG(u)−

∫
I
h′k(u)dG(u)< ϵ (h′k < gk < h′′k )

and

∫
I

fk(u)dG(u) = sup
∫

I
hk(u)dG(u),

where hk < gk and (hk) is a sequence of measurable step functions.
Note For G(I) = I (identity transformation), the integral in Riemann sense on (I, σ , µ) is a particular case of the

integral Riemann-Stieltjes sense on (I, σ , µ) with

∫
fk(t)dG(t) =

∫
fk(t)dt. (2)

Consequently, in the same line of equation (2), we obtain

∫
fk(t)dG(t) =

n∑
i=1

ci|Ii|

=

∫
fk(t)dt.

Similarly, it can be extended for nth dimensional case.
We now propose the definition of statistical Riemann-Stieltjes (statRS) integrability for measurable functions

sequence and prove the below-mentioned elementary.
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Definition 1 Let G be a measurable increasing function, and let the sequence ( fk) of measurable functions be defined
over the interval I ⊆ Rn. The given sequence ( fk) of measurable functions is statistically Riemann-Stieltjes (statRS)

integrable to a measurable function f with respect to G, if for each ϵ > 0, ∃measurable step functions sequences (h′k) and
(h′′k ) for which

∫
I
h′′k (u)dG(u)−

∫
I
h′k(u)dG(u)< ϵ (h′k < fk < h′′k )

and the set

Yε =

{
ζ : ζ ∈ N and

∣∣∣∣∫
I

fk(u)dG(u)− f
∣∣∣∣≧ ε

}

ensures the natural (asymptotic) density zero (see [1] and [2]). Hence, for all ε > 0,

d(Yε) = lim
k→∞

|Yε |
k

= 0,

and let we write it as

statRS lim
k→∞

∫
I

fk(u)dG(u) = f .

We now present the following theorem, based on our Definition 1.
Theorem 1 Let G be a bounded and increasing measurable function on I ⊆ Rn, and let the sequence of measurable

functions ( fk) be integrable on I ⊆ Rn. Then

statRS

∫
I

fkdG = lim
maxi |Ii|→0

n∑
i=1

fk(ξi)|G(Ii)|,

where Ii is a partition with I = ∪n
i=1Ii and ξ ∈ Ii.

Proof. Given G is a bounded and increasing measurable function on I ⊆ Rn, that is,

−∞ < ℓ= G(x1, ..., x j−1, ai
j, x j+1, ..., xn) = inf

I
G

≦ sup
I
G = G(x1, ..., x j−1, bi

j, x j+1, ..., xn) = ℓ <+∞.

Suppose that I is finite, and since sequence of measurable ( fk) functions is integrable on I ⊆ Rn to a function
(measurable) f , so for all ϵ > 0 there possibly exists a natural number N(ϵ) with k ≧ N(ϵ) for which

∥ fk(t)− f (t)∥< ϵ (∀ t ∈ I ⊆ Rn).
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Next, let

∪k
i=1Ii = I ⊆ Rn

be a finite partition (arbitrary) of I with |G(Ii)|≦ δ (δ > 0), and let

mi = inf
t∈Ii

fk(t) and Mi = sup
t∈Ii

fk(t),

where Mi −mi < ϵ.
Furthermore, the sequence of measurable step functions are

h′k(t) =
k∑

i=1

mi1{t ∈ Ii} and h′′k (t) =
k∑

i=1

Mi1{t ∈ Ii}

with h′k < gk < h′′k .
Thus,

∫
I
h′k(u)dG(u) =

n∑
i=1

mi|G(Ii)|≦
n∑

i=1

Mi|G(Ii)|=
∫

I
h′′k (u)dG(u),

which clearly implies

∫
I
h′′k (u)dG(u)−

∫
I
h′k(u)dG(u)≦

n∑
i=1

(Mi −mi)|G(Ii)|

≦ ϵ
n∑

i=1

|G(Ii)|= ϵ|G(I)|,

where G(Ii)’s are disjoint.
Thus, for each ϵ > 0, (h′k) and (h′′k ) are sequences of measurable step functions with ( fk) is integrable on I ∈Rn, we

get

statRS

∫
I

fkdG = lim
maxi |Ii|→0

n∑
i=1

fk(ξi)|G(Ii)|.

Again, let I ⊆Rn is infinite. Since G is a measurable increasing and continuous (piecewise) function. Thus, for every
ϵ > 0 there possibly exists a finite interval Ĩ with Ĩ ⊆ I ⊆ Rn for which
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max

(
sup

I
G− sup

Ĩ
G; inf

Ĩ
G− inf

I
G

)
< ϵ.

Also, since ( fk) is bounded, we have

sup
I\Ĩ

| fk|≦H,

and this implies

∫
I\Ĩ

HdG(u)−
∫

I\Ĩ
−HdG(u)≦ 2Hϵ,

assuming finite number of points of I and Ĩ.
Successively, we choose the sequences of measurable step functions h̃′k = (−H, h′k, H) and h̃′′k = (−H, h′k, H) such

that h̃′k < ( fk)< h̃′′k , that is, ( fk) is bounded over I, and as such

∫
I
h̃′′k (u)dG(u)−

∫
I
h̃′k(u)dG(u) =

∫
Ĩ
h′′k (u)dG(u)−

∫
Ĩ
h′k(u)dG(u)

+

∫
I\Ĩ

HdG(u)−
∫

I\Ĩ
−HdG(u)

≦ ϵ|G(Ĩ)|+2Hϵ.

Hence,

statRS

∫
I

fkdG = lim
maxi |Ii|→0

n∑
i=1

fk(ξi)|G(Ii)|.

We next use Theorem 1 to adopt the following two special cases in the form of corollaries.
Corollary 1 Suppose that G : Rn → R be a measurable increasing function on I ⊆ Rn, with

∂ n

∂1, ..., ∂n
G = g,

exists and is continuous, and let ( fk) be the sequence of statistical Riemann-Stieltjes measureble functions. Then
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statRS lim
k→∞

∫
I

fk(t)dG(t) = statRS

∫
I

fkgdt.

Proof. In view of statistical Riemann-Stieltjes sums

statRS

n∑
i=1

fk(ξi)[G(Ii)] = statRS

n∑
i=1

fk(ξi)
∂ n

∂1, ..., ∂n
G(ηi)|Ii|

= statRS

n∑
i=1

fk(ξi)g(ηi)|Ii|

with ηi ∈ Ii.
Thus, the statistical Riemann-Stieltjes sums for the integral

statRS

∫
I

fkgdt

with g being continuous, yields the sum function to converge to the integral

statRS

∫
I

fkgdt.

Corollary 2 Let G be a piece-wise continuous measurable function on I with ∆ jG(γ) = gγ , and if ( fk) is measurable,
then

statRS lim
k→∞

∫
I

fk(t)dG(t) = statRS
∑
γ∈F

fk(γ)gγ .

Proof. Let Ik be a finer partition. For each interval Ik ∈ Rn, say γ ∈ G. Suppose that J be the set of indices for such
Ik’s which involve exactly one point.

Consequently,

∆ jG(I j) = gγ

for some fk ∈ G, j ∈ J . On the other hand if, j /∈ J , then

∆ jG(I j) = 0.
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So, if the partition is finer, the statistical Riemann-Stieltjes sum is

statRS

m∑
i=1

fk(ξi)∆ jG(I j) = statRS
∑
γ∈F

fk(ξγ)gγ .

Hence,

statRS lim
k→∞

∫
I

fk(t)dG(t) = statRS
∑
γ∈F

fk(γ)gγ .

The statistical versions of convergence in probability space is evidently more general than the statistical convergence.
In the year 2011, Şençimen [20] considered random variable sequences and studied statistical probability convergence
of such sequences and also proved some elementary theorems with numerical illustrative examples. Later on in the
year 2015, Das et al. [21] considered the statistical probability convergence of order α and established certain valuable
results. Recently, Srivastava et al. [22] proved some approximation theorems via certain aspects of statistical probability
convergence. Subsequently, Jena et al. [23] considered the deferred Cesàro summability means and proved certain rtesults
based on statistical convergence of random variables sequence. Also, Jena et al. [3] further used product means of
probability convergence (statistical) and proved some approximation theorems.

In view of some advance studies in this direction, we here discuss the Riemann-Stieltjes sum over the probability
sequence space in Rn and prove some elementary results for sequence of distribution functions. Moreover, we introduce
the deferred Cesàro summability method for the Riemann-Stieltjes sum. Finally, we establish various inclusion theorems
based on our proposed methods in association with the Riemann-Stieltjes sum for the sequence of usual functions as well
as distribution functions in Rn.

2. Riemann-Stieltjes sum over a probability space
The Riemann integral is the most easily defined integral, and it enables the integration of all continuous functions

as well as a few reasonably discontinuous functions. Here, we introduce the Riemann-Stieltjes integral of a sequence of
continuous function over a measurable probability space. We then present some useful definitions by considering certain
statistical aspects of this integral and accordingly establish some elementary results.

Let (Xn)n∈N be the random variables sequence over the probability space (Ω, F, P) with distribution functions
Fn : Rn → R specified by

Fn(x) = P{ω ∈ Ω : Xn(ω)≦ x} (∀ x ∈ Rn).

Definition 2 Let (Xn)n∈N be the random variables sequence having distribution functions (Fn(x)). Then the
expectation E(Xn) is

E(Xn) =

∫
(x1, x2, ..., xn)dFn(x1, x2, ..., xn).

Next, we present the statistical versions of Definition 2.
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Definition 3 Let E(Xn) be the expectation of (Xn). Then, for each ε > 0, we define the statistical expectation E(Xn)

as

Yε = {ζ : ζ ∈ N and |E(Xn)−h|≧ ε}

having the natural (asymptotic) density zero (see [1] and [2]). Hence,

d(Yε) = lim
k→∞

|Yε |
k

= 0,

and let we write it as

statSE lim
k→∞

E(Xn) = h.

Now we are capable to adopt the expectation E(Xn) in the form of Riemann-Stieltjes integral, that is,

E(Xn; ρ) =
k∑

i=1

ρ i
j∆ jG(Ii), ( j = 1, 2, ..., n) (3)

where

x1, ..., x j−1, ai
j, x j+1, ..., xn < ρ i

j ≦ x1, ..., x j−1, bi
j, x j+1, ..., xn.

Next, we present below the statistical versions of (3).
Definition 4 Let Fn(x) be a sequence of distribution function, and let E(Xn) be the expectation of (Xn). Then, for

each ε > 0, we define the statistical Riemann-Stieltjes integral of E(Xn) as

Yε = {ζ : ζ ∈ N and |E(Xn; ρ)−h|≧ ε}

ensuring the natural (asymptotic) density zero (see [1] and [2]). Hence,

d(Yε) = lim
k→∞

|Yε |
k

= 0,

and let we write it as

statERS lim
k→∞

E(Xn; ρ) = h.
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Now, we easily capable to derive the the following propositions from the earlier established Corollaries 1 and 2, and
Definition 4.

Proposition 1 If (Gi) is differentiable with

∂ n

∂1, ..., ∂n
G = g,

then

statERSE(Xn) = statERS

∫
x fn(x)dx (x ∈ Rn).

Proposition 2 If (Gn) is a sequence of step functions with jump at (ρi), then

statERSE(Xn; ρ)

= statERS

k∑
i=1

ρ i
j[G(ρ1, ..., ρ j−1, bi

j, ρ j+1, ..., ρn)−G(ρ1, ..., ρ j−1, ai
j, ρ j+1, ..., ρn)].

Let f ∈ Rn and

∫
f (x1, ..., xn)dFn(x1, ..., xn)< ∞

be such that

{ω : f (Xn(ω))≦ u}, u ∈ Rn.

We let designate the distribution function Fn of Y as

Fn(y) = P{ω : Yn(ω)≦ y} (y ∈ Rn).

Then the expectation of (Yn) is

E(Yn) =

∫
(y1, ..., yn)dFn(y1, ..., yn)

(exists and finite).
Next, we define below the statistical versions of E(Yn).
Definition 5 Let E(Yn) be the expectation of (Yn). Then, for each ε > 0, we define the statistical expectation of E(Yn)

as
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Yε = {ζ : ζ ∈ N and |E(Yn)−h|≧ ε}

having natural (asymptotic) density zero (see [1] and [2]). Hence,

d(Yε) = lim
k→∞

|Yε |
k

= 0,

and let we write it as

statSE′ lim
k→∞

E(Yn) = h.

Now we reform the expectation E(Yn) in the form of Riemann-Stieltjes integral,

E(Yn; ρ) =
k∑

i=1

ρ i
j∆ jG(Ii) (4)

where

y1, ..., y j−1, ai
j, y j+1, ..., yn < ρ i

j ≦ y1, ..., y j−1, bi
j, y j+1, ..., yn.

Next, we present the statistical versions of (4).
Definition 6 Let (Fn(y)) be a sequence of distribution function, and let E(Yn) be the expectation of (Yn). Then, for

each ε > 0, we define the statistical Riemann-Stieltjes integral of E(Yn) as

Yε = {ζ : ζ ∈ N and |E(Yn; ρ)−h|≧ ε}

ensuring the natural (asymptotic) density zero (see [1] and [2]). Hence,

d(Yε) = lim
k→∞

|Yε |
k

= 0,

and let we write it as

statE′RS lim
k→∞

E(Yn; ρ) = h.

In view of Definition 6, we establish a theorem as mentioned below.
Theorem 2 Let Xn be a sequence of random variables associated with distribution functions Fn(x) (x ∈ Rn), and let

f ∈ Rn. Then the of random variables sequence (Yn) = f (Xn) has the statistical expectation
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statSE′E(Yn) = statSE′

∫
f (x1, ..., xn)dFn(x1, ..., xn).

Proof. Following the Riemann-Stieltjes integral,

statE′RS

k∑
i=1

ρ i
j∆ jG(Ii) = statE′RS

n∑
i=1

ρiP(Yn ∈ (yi−1, yi])

= statE′RS

n∑
i=1

ρiP( f (Xn) ∈ (yi−1, yi])

= statE′RS

n∑
i=1

ρiP(Xn ∈ f−1(yi−1, yi]),

where ρi ∈ (yi−1, yi)]. Also, recall that

ρi ∈ (yi−1, yi)]⇐⇒ ηi = f−1(ρi) ∈ f−1{(yi−1, yi)]}

⇐⇒ f (ηi) ∈ (yi−1, yi)].

Consequently, we have

statSE′

n∑
i=1

f (ηi)P(Xn ∈ f−1(yi−1, yi]) (5)

with ηi ∈ f−1{(yi−1, yi)}.
Next, if (yi−1, yi] patterns a partition, then so also in Rn the intervals Ii = f−1{(yi−1, yi]} pattern a partition.
Thus, (5) can be written as

statSE′

n∑
i=1

f (ηi)P(Xn ∈ Ii), (6)

where ηi ∈ (xi−1, xi), and that the Riemann-Stieltjes sum.

3. Deferred Cesàro Riemann-Stieltjes sum
It is well known that nearly all of the transformation techniques used in the summability theory havemany undesirable

characteristics. In particular, the Cesàro summability technique of any given positive order having usual bounds and
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oscillations usually does not always preserve continuous convergence or convergence in uniform sense. However, the
modified Cesàro transformation technique (or deferred Cesàro summability technique) has very useful properties as
regards to uniform convergence of sequence of functions. In this section, we consider the deferred Cesàro mean to discuss
the statistical aspects of Riemann-Stieltjes (DCRSstat) integrability as well as Riemann-Stieltjes (statDCRS) summability
over a measurable probaility space.

Let (ϕk) and (φk) ∈ Z0+ with ϕk < φk and limk→∞ φk = +∞. We define the deferred Cesàro summability (DCS)
mean [24] of the Riemann-Stieltjes sum δ ( fk; Ṗ) of ( fk) allied with tagged partition Ṗ of the form

Ek =
1

(φk −ϕk)

φk∑
λ=ϕk+1

δ ( fλ ; Ṗ). (7)

We now present two definitions by using the DCS mean.
Definition 7 Let G be a measurable increasing function, and let ( fk) be the measurable functions defined over the

interval I ⊆ Rn. The given sequence ( fk) of functions (measurable) is deferred Cesàro statistically Riemann-Stieltjes
(DCRSstat) integrable to a function (measurable) f with respect to G, if for all ϵ > 0, ∃ measurable step functions h′k and
h′′k with h′k < fk < h′′k such that

∫
I
h′′k (u)dF(u)−

∫
I
h′k(u)dF(u)< ϵ,

and the set

{ζ : ϕk < ζ ≦ φk and |δ ( fζ ; Ṗ)− f |≧ ϵ}

ensures natural (asymptotic) density zero. That is,

lim
k→∞

|{ζ : ϕk < ζ ≦ φk and |δ ( fζ ; Ṗ)− f |≧ ϵ}|
(φk −ϕk)

= 0.

We write

DCRSstat lim
k→∞

δ ( fk; Ṗ) = f .

Definition 8 Let G be a measurable increasing function, and let the sequence of measurable functions ( fk) be a
defined over the interval I ⊆Rn. The given sequence ( fk) ofmeasurable functions is statistically deferred Cesàro Riemann-
Stieltjes (statDCRS) summable to a measurable f with respect to G, if for all ϵ > 0, ∃ measurable step functions h′k and h′′k
with h′k < fk < h′′k such that

∫
I
h′′k (u)dF(u)−

∫
I
h′k(u)dF(u)< ϵ,

and the set
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{ζ : ϕk < ζ ≦ φk and |Eζ − f |≧ ϵ}

ensures natural (asymptotic) density zero. That is,

lim
k→∞

|{ζ : ϕk < ζ ≦ φk and |Eζ − f |≧ ϵ}|
(φk −ϕk)

= 0.

We write

statDCRS lim
k→∞

Ek = f .

Now we wish to connect the above definitions by proving a theorem as follows.
Theorem 3 The deferred Cesàro statistically Riemann-Stieltjes (DCRSstat) integrability implies the statistically

deferred Cesàro Riemann-Stieltjes (statDCRS) summability of a sequence ( fk)k∈N of measurable functions in Rn, and
also the limiting function is unique. However, the converse statement is not necessarily true.

Proof. Suppose ( fk)k∈N is (DCRSstat) integrable to f in Rn, then under our Definition 7, we have

lim
k→∞

|{ζ : ϕk < ζ ≦ φk and |δ ( fζ ; Ṗ)− f |≧ ϵ}|
(φk −ϕk)

= 0.

Now under the assumption of the below-mentioned two sets,

Rϵ = {ζ : ϕk < ζ ≦ φk and |δ ( fζ ; Ṗ)− f |≧ ϵ}

and

Rc
ϵ = {ζ : ϕk < ζ ≦ φk and |δ ( fζ ; Ṗ)− f |≧ ϵ},

we have

Contemporary Mathematics 2796 | M. Mursaleen, et al.



|Ek − f |=

∣∣∣∣∣∣ 1
(φk −ϕk)

φk∑
λ=ϕk+1

δ ( fλ ; Ṗ)− f

∣∣∣∣∣∣

≦

∣∣∣∣∣∣ 1
(φk −ϕk)

φk∑
λ=ϕk+1

[
δ ( fλ ; Ṗ)− f

]∣∣∣∣∣∣+
∣∣∣∣∣∣ 1
(φk −ϕk)

φk∑
λ=ϕk+1

f − f

∣∣∣∣∣∣
≦ 1

(φk −ϕk)

φk∑
λ=ϕk+1
(ζ∈Rϵ)

∣∣δ ( fλ ; Ṗ)− f
∣∣+ 1

(φk −ϕk)

φk∑
λ=ϕk+1
(ζ∈Rc

ϵ)

∣∣δ ( fϱ; Ṗ)− f
∣∣

+ | f |

∣∣∣∣∣∣ 1
(φk −ϕk)

φk∑
λ=ϕk+1

−1

∣∣∣∣∣∣
≦ 1

(φk −ϕk)
|Rϵ|+

1
(φk −ϕk)

|Rc
ϵ|= 0.

This implies that

|Ek − f |< ϵ.

Hence, ( fk) is (statDCRS) summable to f in Rn.
Next, for the converse statement, not to valid we present the example as below:
Example 1 Let ϕk = 2k, φk = 4k, and let fk : I ⊆ Rn → R be a measurable functions sequence such taht

fk(x) =


−1 (x ∈Q∩ I; k = even)

1 (x ∈ R−Q∩ I; k = odd).

(8)

The given measurable functions ( fk) trivially reveals that, this is neither Riemann-Stieltjes integrable nor (DCRSstat)

integrable. But, based on our mean as mentioned in (7), it is quite easy to observe that, the measurable functions ( fk)

has deferred Cesàro Riemann-Stieltjes sum
1
2
allied with the tagged partition Ṗ . Hence, the measurable functions ( fk) is

(statDCRS) summable to
1
2
over I while it is not (DCRSstat) integrable.

Similarly, we easily make the two definitions for a sequence of distribution functions via the deferred Cesàro mean.
Definition 9 Let (Fn(x)) be a sequence of distribution function, and let E(Xn) be the expectation of (Xn). Then, for

each ε > 0, E(Xn) is deferred Cesàro statistically Riemann-Stieltjes (DCERSstat) integrable to f , if

{ζ : ϕk < ζ ≦ φk and |δ (E(Xζ ; ζ ); Ṗ)− f |≧ ϵ}
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ensures natural (asymptotic) density zero. That is,

lim
k→∞

|{ζ : ϕk < ζ ≦ φk and |δ (E(Xζ ; ζ ); Ṗ)− f |≧ ϵ}|
(φk −ϕk)

= 0.

We write

DCERSstat lim
k→∞

δ (E(Xk; k); Ṗ) = f .

Definition 10 Let (Fn(x)) be a sequence of distribution function, and let E(Xn) be the expectation of (Xn). Then, for
each ε > 0, E(Xn) is statistically deferred Cesàro Riemann-Stieltjes (statDCERS) summable to f , if

{ζ : ϕk < ζ ≦ φk and |En(E(Xζ ; ζ )− f |≧ ϵ}

ensures natural (asymptotic) density zero. That is,

lim
k→∞

|{ζ : ϕk < ζ ≦ φk and |Eζ (E(Xζ ; ζ )− f |≧ ϵ}|
(φk −ϕk)

= 0.

We write

statDCERS lim
k→∞

Ek(E(Xk; k) = f .

Now, we wish to connect the above two notions via the following theorem.
Theorem 4 If (Fn(x)) be the distribution functions, and let E(Xn) be the expectation of (Xn), then E(Xn) is

deferred Cesàro statistically Riemann-Stieltjes (DCERSstat) integrable to f inRn implies, it is statistically deferred Cesàro
Riemann-Stieltjes (statDCERS) summable to the same function f in Rn, but the converse statement is not generally true.

Proof. As the proof of Theorem 4 can be done in the similar lines of our above proved Theorem 3, so, we plump for
omitting the details.

4. Concluding remarks
Through this study, we have preluded the conception of statistical Riemann-Stieltjes sum on the sequence space

via the deferred Cesàro summability mean and established some fundamental limit theorems. Next, considering the
probability space, we also established some basic new results based on the Riemann-Stieltjes integral for the sequence of
distribution functions. Finally, over both the spaces we established some inclusion theorems via our proposed deferred
Cesàro summability means associated with statistical Riemann-Stieltjes integral for the sequence of functions as well as
the sequence of distribution functions.

Many researchers have considered different summability means on the sequence spaces to prove several approxima-
tion results. A list of some articles has been mentioned in the references. Further, combining the existing ideas and
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direction of the sequence spaces associated with our proposed mean, many new Korvokin-type approximation theorems
can be proved under different settings of algebraic and trigonometric functions.

Influenced by a recently published articles by Jena et al. [25], we extract the cognizance of the interested learner’s
concerning the possibilities of establishing some Korvokin-type approximation theorems over the sequence space as well
as the probability space. Also, in view of a latest result of Baliarsingh [15] and Hazarika et al. [26] the consciousness of
the curious readers is drawn out for future researches pertaining to fuzzy approximation theorems.
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