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Abstract: This article investigates a fractional-order mathematical model of Banana Xanthomonas Wilt disease while 
considering control measures using Caputo derivatives. The proposed model is numerically solved using the L1-based 
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varieties in the model dynamics while checking various fractional order values.

Keywords: mathematical model, Caputo fractional derivative, L1 predictor-corrector scheme, error analysis, stability, 
graphical simulations

MSC: 26A33, 34C60, 65D05, 65L07

1. Introduction 
Banana Xanthomonas Wilt (BXW), a destructive bacterial disease caused by a bacterium called Xanthomonas 

campestris pv. musacearum (Xcm), has been identified as the major disease that threatens banana farming in East 
Africa [1]. The vectors, like bats, birds, and flying insects (e.g., bees), spread the Xcm bacteria from an infected banana 
plant to a susceptible banana plant. The long-distance spread of Xcm is mainly caused by birds and bats [2]. The 
common symptoms of BXW are yellowing and withering of leaves, untimely ripening and rotting of the fruit, shriveling 
and blackening of male gusset bloom, yellow drip presented on the cross-cut of the banana plant pseudo-trunk, and 
lastly, plant death [3, 4]. The authors in [5] observed community mobilization as a key to controlling BXW disease 
management. In [6], the authors analyzed the possibilities of removing the infected plant and leaving the uninfected 
plant to grow. The authors in [7] also investigated that time-to-time removing the infected plants from the mat is the best 
control compared to removing the complete mat, which is costly, time-consuming, and requires more labor. In [8], the 
authors explored BXW control techniques in Rwanda.

Several mathematical models have been derived by researchers to understand the transmission dynamics of BXW 
disease and provide possible control techniques. In [9], the authors derived a model to understand the transmission 
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structure of the BXW epidemic by vectors with control measures. In [10], the authors proposed a non-linear model 
to analyze the role of contaminated measures in the reiteration of BXW. In [11], the researchers proposed a model 
considering roguing and debudding controls for the BXW transmission. Nakakawa et al. [12] considered the vertical and 
vector mode transmissions in the BXW dynamical model. Kweyunga et al. [13] developed a model of BXW considering 
both horizontal and vertical modes of transmission. In [14], the authors derived a non-linear model to analyze the role of 
neglected control measures in the BXW transmission.

Nowadays, fractional calculus [15-17] is being applied to solve various real-world problems in terms of 
mathematical modeling. Different types of fractional derivatives [18, 19] have been successfully used to model 
various problems. More specifically, several deadly epidemics have been modeled by using mathematical models in a 
fractional-order sense. It is a well-known fact that fractional-order operators are non-local in nature and may be more 
effective for modeling history-dependent systems. Moreover, a fractional order can be fixed as any positive real number 
that better fits the real data. So, by using such an operator, an accurate adjustment can be made in a model to fit with 
real data for better predicting the outbreaks of an epidemic. Recently, several applications of fractional derivatives 
have been recorded in epidemiology. In [20-25], the authors have studied the dynamics of the COVID-19 disease by 
using fractional-order models. In [26], the authors proposed the mathematical modeling of typhoid fever in terms of 
fractional-order operators. In [27], a fractional-order model of the Chlamydia disease is proposed. In [28], the dynamics 
of the Chagas-HIV epidemic model using various fractional operators are explored. In [29], the authors derived a novel 
non-linear model for the dynamics of tooth cavities in the human population. In [30], the authors performed an analysis 
of the stability and bifurcation of a delay-type fractional-order model of HIV-1. In [31], the authors solved a fractional-
order HIV-1 infection of CD4+ T-cells considering the impact of antiviral drug treatment. In [32], the authors defined 
a fractal-fractional model of the AH1N1/09 virus. In [33], the authors studied the dynamics of a fractional-order host-
parasitoid population model describing insect species. In [34], the authors used a wavelet-based numerical method for 
a fractional-order model of measles using Genocchi polynomials. In [35], some theoretical analyses of the Caputo-
Fabrizio fractional-order model for hearing loss due to the mumps virus with optimal controls were proposed.

Several numerical methods have been proposed by researchers to solve fractional-order problems. In [36], the 
authors derived a new generalized form of the predictor-corrector (PC) scheme to investigate fractional initial value 
problems (IVPs). Kumar et al. [37] introduced a new method to simulate fractional-order systems with various 
examples. In [38], the PC method was derived to simulate delayed fractional differential equations. A modified form 
of the PC scheme in terms of the generalized Caputo derivative to solve delay-type systems has been introduced in 
[39]. Odibat et al. [40] have derived the generalized differential transform method for solving fractional impulsive 
differential equations. The authors in [41] introduced a novel finite-difference predictor-corrector (L1-PC) scheme to 
solve fractional-order systems in the sense of the Caputo derivative. In [42], the authors proposed a new form of L1-
PC scheme to solve multiple delay-type fractional-order systems. In [43], a novel numerical scheme to solve fractional 
differential equations in terms of Caputo-Fabrizio derivatives was proposed. In [44], the authors derived a difference 
scheme for the time fractional diffusion equations. In [45], a second-order scheme for the fast evaluation of the Caputo-
type fractional diffusion equations has been derived. In [46], the authors defined a fractional clique collocation method 
for numerically solving the fractional Brusselator chemical model. In [47], the researchers derived efficient matrix 
techniques for solving the fractional Lotka-Volterra population model.

To date, the aforementioned studies of mathematical modeling of the BXW disease [9-14] have yet to be analyzed 
using fractional derivatives. In this paper, we generalize the non-linear control-based model of BXW [14] by using 
Caputo fractional derivatives. The motivation behind this generalization is that fractional derivatives are non-local and 
may be more effective to include memory effects in the model.

The rest of this paper is designed as follows: In Section 2, some preliminaries are recalled. The model description 
in the Caputo sense is given in Section 3. The numerical analysis containing the solution algorithm, error estimation, 
and stability are given in Section 4. The graphical simulations are performed in Section 5. Concluding remarks are given 
in Section 6.

2. Preliminaries
The preliminaries are as follows:
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Definition 1. A function (real) f(s), s > 0 belongs to the space
(a) , Cη η ∈ if there exists a real number q > η, such that 1 1( ) ( ), [0, ).qf s s f s f C= ∈ ∞  Therefore, C Cη α⊂  if .α η≤

(b) ( ), {0} if .m mC m f Cη η∈ ∪ ∈

Definition 2. [16] The Riemann-Liouville (R-L) fractional integral of ( )( ) 1f t Cη η∈ ≥ −  is defined as follows:

1

0

0

1( ) ( ) ( ) ,
( )

( ) ( ).

t
J f t t s f s ds

J f t f t

ω ω

ω
−= −

Γ

=

∫

Definition 3. [16] The R-L fractional derivative of mf C−∈  is given by

( ) 1

0

1 ( ) ( ) ,
( )

( ) tRL m m
t

dD f t t f d
dt m

ω ωξ ξ ξ
ω

− −= −
Γ − ∫

where m = [ω] + 1 and [ω] are the integer-part of ω.
Definition 4. [16] The Caputo fractional derivative of 1
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Remark 1. The most common difference between the R-L and Caputo fractional derivatives is that the R-L 
derivative problems contain fractional initial conditions, whereas Caputo’s definition uses classical conditions. Also, the 
derivative of a constant function is zero by the Caputo derivative but not by the R-L definition.

3. Model description
Here, we define the Caputo-type fractional-order generalization of a BXW disease model, including some control 

measures, which was given in [14]. We know that fractional derivatives are non-local differential operators that allow 
memory effects in the system, which is a very important feature for studying disease outbreaks more accurately. The 
model contains two population sizes: the banana population (Np) and the insect vector population (Nv). The population 
of banana plants involves three different classes: susceptible plants (Sp), asymptomatic infectious plants (Ap), and 
symptomatic infected plants (Ip). The population of vectors involves two classes: susceptible vectors (Sv) and vectors 
contaminated with Xcm bacteria (Iv). An environment contaminated with Xcm bacteria is defined by Eb. The model is 
given as follows:
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with the initial conditions
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(0) 0, (0) 0, (0) 0, (0) 0, (0) 0, (0) 0,p p p b v vS A I E S I> ≥ ≥ ≥ > ≥                                             (3)

where C
 Dω is the Caputo fractional derivative operator of order ω. For setting the same dimensions t−ω at both sides of 

the fractional-order model, we applied the power ω on the parameters, those are in time unit t−1.
The compartmental diagram of the model is given in Figure 1.

Figure 1. Compartmental diagram of the model

The variations in the population size Np = Sp + Ap + Ip, and Nv = Sv + Iv are defined as follows:
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The model parameters with numerical values are defined in Table 1.

Table 1. Parameters with numerical values [14]

Parameter Identification Values

bp

bv
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θ
r
d
βa

βs

a
γ1
γ2
γ3

µv

η
q
φ
K
µb

Rate of recruitment of susceptible suckers
Birth rate of susceptible vectors
Rate of harvesting of old plants
Vertical transmission rate from an infected plant
Removal rate of infected plant
Death rate caused by BXW
Rate of infection caused by contaminated farming measures from asymptomatic infected plants
Rate of infection caused by contaminated farming measures from symptomatic infected plants
Contact rate between vectors and banana plants
Probability of Xcm bacteria transmission from an infected vector to a susceptible plant when in contact
Probability of Xcm bacteria transmission from contaminated soil to a susceptible plant
Probability of Xcm bacteria transmission from an infected plant to a susceptible vector
Death rate of the vectors
Rate of recovery of infected vectors
Transmission rate of asymptomatic infectious class to symptomatic infectious plants class
Spreading rate of Xcm bacteria from symptomatic infectious plant to the soil
Half saturation constant of Xcm bacteria in the environment
Rate of natural clearance of bacteria in the environment

0.01667
0.02
0.0056
0.0286
0.5
0.0167
0.3
0.1429
0.2
0.2
0.4
0.2
0.02
0.0286
0.3
0.89
1,000
0.01
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(ψ+ μb)Eb
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The positivity and boundedness of the model solution can be explored by considering the invariant region of the 
model, derived as follows:

From the system (4), we have

,C
p p p pD N b Nω ω ωα≤ −                                                                            (5)
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Therefore, the invariant region for Np is given by
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Again, from the system (4), we have
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Therefore, the invariant region for Nv is given by
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Furthermore,

1
3 { ( ) , 0}.bE t t+Λ = ∈ ∀ ≥                                                                      (11)

Considering the aforementioned non-negative initial conditions, the proposed model (2) is positive invariant and 
solutions remain positive and bounded in the region

6
1 2 3{ : , 0}.t+Λ = Λ ×Λ ×Λ Λ∈ ∀ ≥                                                              (12)

The disease-free equilibrium 0 of the model (2) is defined by
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For further numerical simulations, we rewrite the model (2) into a compact form by representing it in terms of an 
IVP given as follows: Let us consider
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By using (14), we have
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3.1. Solution existence

Here, we check the existence and uniqueness of the solution with the application of some well-known mathematical 
results. In this regard, let us consider the above given IVP 

0( ) ( , ( )), 0 1, (0) .C D t t tωζ ζ ω ζ ζ= Φ < ≤ =                                                          (17)

Consider the Volterra integral equation of the given IVP in equation (17)
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Choosing 1( ) ( ),n n nt tζ ζ ζ −= −  we write
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By fixing Φ as a Lipschitzian respect to ζ, we get
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Theorem 1. The given IVP in equation (17) has a unique solution under the contraction for Φ. 
Proof. From equation (18), we have
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Now,
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If n → ∞, the right-hand side of equation (19) converges to zero. 
Then,
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which gives the existence of the solution ζ(t). 
Now, for the uniqueness, consider two different solutions ζ(t) and ζ1(t). Then,
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when n → ∞, L∞ → 0, which gives ζ(t) and ζ1(t). 
Hence, there exists a unique solution for the proposed IVP (17). Therefore, we conclude that the proposed 

fractional-order model (2) has a unique solution. 

3.2. Solution stability

Theorem 2. [48] Consider a completely generalized metric space ( , ).R  Assume :A →   is a strictly 
contractive operator. If there exists an integer v ≥ 0 with R(Av+1d, Avd) < ∞ for some ,d ∈  then
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( ) ( , ( )) ( ),C D t t t tωζ ζ−Φ ≤  				                 (22)
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and δ is a positive constant.
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( )
* **

* ** | ( ) ( ) |( , ) inf [0, ] : ( ),  .
( )( )p

t td D D t t I
L t ω

γ
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δ

 − = ∈ ∞ ≤ ∀ ∈ 
+                                          

(25)

Define an operator : ,→    such that

1

0

1( )( ) : (0) ( ) ( , ( ))ds.
( )

t
t t s s sωζ ζ ζ

ω
−= + − Φ

Γ ∫
                                                      (26)

It is easy to say 0 0( , )d ζ ζ < ∞  and 0 0{ : ( , ) } ,  .d Xζ ζ ζ ζ∈ < ∞ = ∀ ∈ 
The operator  is a strictly contractive operator, which can be seen by the following expression:

1
* ** * **
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0

* *
1
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∫

∫





                    (27)

Since ρ is non-decreasing, we have
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Therefore,

* ** * **( , ) ( , ),p

p

L
d d

L
ζ ζ ζ ζ

δ
≤

+
 

which gives that the operator  is a strictly contractive operator. Now, since we have

( ) ( , ( )) ( ),C D t t t tωζ ζ ρ−Φ ≤                                                                    (29)
then

1

0
( ) ( ), ( )) ( ) ( ) ( )d ,

( )
t

t t t t t ωζ ζ ζ ρ ξ ρ ξ ξ
ω

−− ≤ −
Γ ∫


                                                 (30)

which implies that

( ) ( )
( ) ( ), ( )) ( )( )

( 1)( )( ) ( )( )

                               ( ).
( 1)

p p
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L L
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ω

ω ω
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                                              (31)

Therefore,

( , ) .
( 1)

Md ζ ζ
ω

≤
Γ +

 

By using Theorem 2, there is a solution ζ ∗ of IVP (17), such that

( , ) .
( 1)

pL Md
δ

ζ ζ
δ ω

∗ + 
≤   Γ + 


So that,

( )( )
| ( ) ( ) | , ( ) for all [0, ].

( 1)
pp M L TL

t t t t T
ω

ω δδ
ζ ζ ρ

δ ω
∗

++ 
− ≤ ∈  Γ + 




Hence, the solution of the proposed model is stable.
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4. Numerical analysis on the model

In this section, we perform the necessary numerical simulations (solution derivation, error estimation, and stability) 
to derive the solution of the proposed fractional-order model (2) by using the L1-PC scheme [41].

Consider the above given IVP for 0 < ω < 1,

0( ) ( , ( )), [0, ], (0) . C D t t t t Tωζ ζ ζ ζ= Φ ∈ =                                                         (32)

where CDω represents the Caputo derivatives and :[0, ] , .T D DΦ × → ⊂   Split the time span [0, T] into N subintervals. 

Take a uniform grid with step size of Th
N

=  with , 0,1, .kt kh k N= = 

4.1. Derivation of the solution

According to the L1-PC method, the Caputo fractional derivative is numerically defined by

1

1
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ω

ζ
ω

ζ ζ
ω

+

+

−

=

−
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=
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′  = −  Γ −

′= −
Γ −

−
≈ −
Γ −

=

∫

∑∫
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1

1( ( ) ( )),k kt tζ ζ+ −∑                                            (33)

where

1 1( 1) .
(2 )k
hb k k

ω
ω ω

ω

−
− − = + − Γ −

We approximate CDω ζ(t) by the formula (33), and put it into (32) to get

1

1 1
0

( ) ( ( ) ( )) ( , ),
n

n
C

n k k k n nt t
k

D t b t t tωζ ζ ζ ζ
−

− − +=
=

  = − = Φ  ∑                                                 
(34)

where ζk defines the approximate value of the solution of (32) at t = tk and

1 1
1 ( ) ( ) .

(2 )n k
hb n k n k

ω
ω ω

ω

−
− −

− −  = − − − − Γ −

(34) can be rewritten as:

1 1 0 2 2 1 0 1( ) ( ) ( ) ( , ).n n n n n nb b b tζ ζ ζ ζ ζ ζ ζ− − −− + − + + − = Φ                                             (35)

After rewriting the terms (35), we get the following from
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Substituting
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in (35), we get
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Define

1 1: ( 1) .ka k kω ω− −= + −                                                                          (38)

Remark that ka s′  has the following characteristics:
• 0, 0,1, 1.ka k n> = −

• 0 1 . and1 0 a s k ka a a a k= > > > → →∞

• 
1 2

1 1 1 1
0 1
( ) (1 ) ( ) 1.

n n

k k n k k n
k k

a a a a a a a
− −

+ + −
= =
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In view of equations (38) and (37), take the following form:
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1 0 1
1
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n

n n n k n k k n n
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a a a h tωζ ζ ζ ω ζ
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(39)

We can see that equation (39) is of the form ( ),n ng Nζ ζ= +  if we identify

1

1 0 1
1
( )

n

n n k n k k
k

g a a aζ ζ− − − −
=

= + −∑

and

( ) (2 ) ( , ).n n nN h tωζ ω ζ= Γ − Φ

Hence, using the scheme of Daffatardar-Gejji-Jafari method gives an approximate value of ζn given by
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The three-term approximation of ,0 ,0 ,2.n n n nζ ζ ζ ζ≈ + +  Therefore, this approximated solution of the DGJ scheme gives 
the following predictor-corrector algorithm called the L1-PC method.
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                                                             (40)

where p
nζ  and p

nz  are the predictors and c
nζ  is the corrector.

Using the above given methodology, the approximation equations of the proposed model (2) in terms of L1-PC 
method are derived as follows:
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and
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4.2 Error analysis

The brief analysis on the error estimation of L1-PC scheme has been given in the studies [41, 49, 50] and now 
investigated below. The error estimate is given by
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t t n k k k
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D t b Chω ωζ ζ ζ
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−
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here C is a positive constant depends on ω and ζ.
Derive rn by
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In view of (44),
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To derive the error estimation, we will use the lemmas given below.
Lemma 1. [51] For 0 < ω < 1 and ka s′  (as given in equation (38)), we have

1
1

1 , 1,2, , .
1kk a k Nω

ω
− −

− ≤ =
−



Lemma 2. [41] Consider ( )ktζ  as exact solution of the proposed IVP and p
kζ  be the approximate solution 

calculated from the algorithm (40). Then, for 0 < ω < 1, we have

1
1| ( ) | , 1,2, ,p

k k kt Ca k Nζ ζ −
−− ≤ = 

where 'ka s are given in equation (38).
Lemma 3. [41] Consider ( )ktζ  as exact solution of the proposed IVP and p

kζ  be the approximate value evaluated 
from equation (40). Then, for 0 < ω < 1, we have

| ( ) | , 1,2, ,p
k kt C T h k Nω ω

ωζ ζ −− ≤ = 

where / (1 ).C Cω ω= −
Theorem 4. Consider ζ (t) as exact solution of the proposed IVP (32), ( , ( ))t tζΦ  satisfies the Lipschitz property 

respect to the variable ζ with a constant L, and 1( , ( )), ( ) [0, ].t t t C Tζ ζΦ ∈  Also, c
kζ  defines the approximate solutions at 

t = tk calculated by using L1-PC method. Then, for 0 < ω < 1, we have
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2
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                                                             (47)

where 1 / (1 )C d ω= −  and d is a constant.
Proof. Let . and( ) ( )c p p

k k k k k ke t e tζ ζ ζ ζ= − = −  Using equations (32), (40), and (45), we get
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Using Lemma 3 in equation (48), we get
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where C1 is a constant defined above.

4.3. Stability analysis

Consider [41] that 1 and ( , ,2 )c c
n nv n Nζ =   are two solutions calculated by the numerical scheme (40). For 

0 0 0| |,vδ ζ= −  there exists two positive quantities k and h' such that

0| | , for (0, ), 1 ,c c
n nv k h h n Nζ δ ′− ≤ ∈ ≤ ≤

Here, h is the step size given in equation (32).
Theorem 5. Suppose ( , )t ζΦ  follows the Lipschitz property with respect to the variable ζ with a constant L and    

 ( 1,2, , )c
n n Nζ =   are the solutions established from the scheme (40), then the scheme (40) is stable.

Proof. We have to prove that

0 0| | | | .c c
n nv C vζ ζ− ≤ −

Denote by 2 2
0 : (1 ( (2 )) ( (2 )) ).L L hωη ω ω= + Γ − + Γ −  Note that

| | | | (2 ) (| | | ( ) ( ) |).c c p p p p p p
n n n n n n n nv v L h v N N vωζ ζ ω ζ ζ− ≤ − + Γ − − + −                                      (49)

Further, observe that
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Using discrete form of Gronwall’s inequality and equation (38), we obtain
0 0| | | |,p p

n nv c vζ ζ− ≤ −                                                                         (50)

where c is a constant and
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Using (50) and (51) in (49), we get
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where C is a constant.

5. Graphical simulations
In this section, we perform the graphical simulations to understand the behavior of the proposed model in a time 

range t  [0,20]. The initial conditions are used as follows: Sp (0) = 4,000, Ap (0) = 500, Ip (0) = 200, Eb (0) = 500, Sv (0) = 
3,500, and Iv (0) = 500. The parameter values are taken from Table 1 along with the control measures; the participatory 
community education programs (ξ = 0.7), vertical transmission control (δ = 0.6), and the clearance of Xcm bacteria in 
the soil (ψ = 0.5).

In Figure 2, the variations in the susceptible plants Sp and susceptible vectors Sv are plotted at fractional-order 
values ω = 0.9 and ω = 0.8, along with the integer-order case ω = 1. Here, we notice that as the fractional order 
decreases, the susceptible plant and vector population also decreases.

In Figure 3, the changes in the population of asymptomatic infected plants Ap and infected plants Ip are plotted at 
the same orders: ω = 1,0.9 and ω = 0.8. Here, we notice the variations at given fractional orders after the time range [0, 5]. 
Between the time range [5, 20] months, when the fractional order decreases, the infection slightly increases.

In Figure 4, the variations in the Xcm bacteria in the soil Eb and infected vectors Iv are plotted at the given 
fractional-order values. From Figure 4(b), we notice that, reaching the end point of the time t = 20, all fractional-order 
outputs nearly converge.

In Figure 5, we plotted the infectious class Ip versus Sp (5(a)), the infectious class Ip versus Sv (5(b)), and the 
infectious class Ip versus Iv (5(c)).
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Figure 2. Variations in the susceptible population Sp and Sv at fractional order values ω

                                         

Figure 3. Variations in the Ap and Ip population at fractional order values ω

                                         

Figure 4. Variations in the Eb and Iv population at fractional order values ω
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Figure 5. Variations in the infected plant population Ip versus Sp, Sv, and Iv classes at fractional order values ω

From the given graphical simulations, we notice that the fractional-order values result in variations in the behavior 
of the model dynamics. Such effects cannot be captured by using integer-order derivatives, which justifies the advantage 
of fractional derivatives. The graphs are plotted using MATLAB-2021a.

6. Conclusion
A fractional-order mathematical model of the BXW disease using Caputo derivatives has been considered in this 

study. The proposed model has been numerically solved using an L1-based predictor-corrector scheme. The analysis of 
the stability and error approximation of the proposed method has been established to justify the efficiency of the scheme. 
The graphical simulations justified the fact that fractional-order values result in variations in the model dynamics and 
that variations cannot be captured in the case of the integer-order model. In the future, some other fractional-order 
operators can be incorporated to analyze the proposed model’s dynamics. Moreover, some other fractional-order models 
can be proposed to forecast the outbreaks of BXW.
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