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Abstract: The Kawahara equation is a fifth-order dispersive equation that plays a significant role in explaining 
the creation of non-linear water waves in the long-wavelength region. In this research, the Kawahara equation is 
solved numerically using the novel Haar scale-3 wavelet method in conjunction with the collocation method. The 
quasilinearisation approach and the Caputo derivative are used to characterise the non-linearity and fractional behaviour 
of the equation, respectively. To verify that the findings obtained are legitimate, residual and error estimates are 
generated. A thorough comparison is made between the present solutions and the numerical findings that have already 
been published in the literature, which demonstrates the advantages and effectiveness of the suggested technique. The 
Haar wavelet method reveals a dynamic system of alternative solutions for a wide variety of physical parameters.
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1. Introduction
Over the past few years, various scientific and technological fields have become interested in fractional analysis.

Due to its extraordinary capacity to carry out integration and differentiation operations on equations of any arbitrary 
order, it has found use in a variety of biological and physical science fields, including electromagnetic theory, fluid 
mechanics, electrical networks, and other physical sciences. Respective studies found that it is beneficial to explain these 
phenomena using the concept of fractional-order derivatives when dealing with practical problems. It was discovered 
during the investigation that the concept of derivatives having non-integer order has not only been widely used. But it 
has also been crucial in many scientific domains. 

For solving differential equations (DEs) of non-integer order, various techniques have been employed. For 
simulating impulsive DEs of non-integer order, a generalised differential transform technique has been used [1]. Further, 
the authors suggested generalised versions of the three well-known fractional numerical methods, Euler, Runge-Kutta 
2-step, and Runge-Kutta 4-step, to find the fractional Caputo derivatives [2]. In addition, a new numerical approach has
been discussed for finding the solution of Caputo-Fabrizio derivative-containing fractional differential equations (FDEs)
[3]. In their research, the authors proposed two arrays that contain the coefficients of the fractional Adams-Bashforth
and Adams-Moulton as well as recursive relations to create the array elements method. By applying these arrays to
suitable examples, the higher-order fractional linear multi-step methods in general form with expanded stability regions
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for solving FDEs could be constructed [4]. The authors recently developed a novel version of the L1-predictor-corrector 
(L1-PC) approach to solve multiple delay-type FDEs utilising various methods [5].

Numerical techniques based on wavelets are used to solve the system of equations quickly and efficiently. Wavelets 
have been utilised to solve partial differential equations (PDEs) for the past twenty years. The collocation method is the 
foundation of the wavelet algorithms used to solve PDEs. The Haar wavelets are the simplest orthonormal wavelets with 
compact support among them since they only include piecewise constant functions.

Dispersive wave equations are essential in practical physics and mathematics. The Kawahara equation, which 
plays a significant role in explaining the creation of non-linear water waves in the long-wavelength region, is the most 
exciting since it has weaker dispersion but large non-linearity. The Kawahara have been the focus of in-depth study for 
many years. In order to depict solitary-wave propagation in media, Kawahara first proposed the Kawahara equations in 
1972. Both plasma magneto-acoustic waves and the theory of shallow water waves with surface tension contain them. 
The modified Kawahara equation is also widely applicable to plasma waves, capillary-gravity water waves, and other 
phenomena.

Numerous numerical and analytical techniques exist, such as the Mittag-Leffler law [6], the kernel method [7], 
the discontinuous Galerkin method [8], the Adomian decomposition method (ADM) [9, 10], the natural transform 
decomposition method [11], travelling wave solutions [12], the semi-analytical method [13], the B-spline method [14], 
the homotopy analysis method [15], and the cubic B-spline differential quadrature method [16] are used to discuss 
Kawahara and fractional Kawahara equations. But, it is not yet discussed by any wavelet method. In the previous study, 
Haar wavelet method (HWM) was found to be the simplest approach in solving non-linear higher-order FDEs. Apart 
from that, many other different equations have been solved by this method including fractional models [17], dispersive 
equations [18, 19], fractional advection dispersion equations [20], fractional integrodifferential equations [21, 22], 
integrodifferential equations [23], FDEs with singularity [24], fractional delay equation [25] and convection radiation 
equation [26]. The obtained solution to these equations is compatible as a comparison to other methods available in the 
literature. The application of the wavelet method for solving such non-linear time-fractional higher-order equations has 
motivated us to study the behaviour of this equation using HWM.

The motive of this article is to evaluate the numerical solution and success of applying the HWM to time fractional 
Kawahara, which are accordingly stated below as:
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Here, the value of μ, which lies between 0 to 1 describes the fractional derivative of t.
The following sections of the manuscript contain: Section 2 offers the basic definitions of fractional calculus. 

In Section 3, it was briefly covered how to find the integrals of the explicit forms of Haar scale-3 wavelets and their 
families. The quasilinearisation technique to solve a non-linear term in a differential equation is described in Section 
4. In Section 5, space and time approximations are done by the proposed technique. In Section 6, the performance and 
effectiveness of the current approach are assessed by solving two different models of FDEs. In the last section, the 
findings drawn from the data as well as suggestions for additional research have been discussed.

2. Basic definition of fractional calculus
In this section, we discussed the basic definitions of fractional differentiation and integration.
•	 Reimann-Liouville fractional differential operator of order α: for the positive real numbers, μ, t across the 
	 interval [m, n], the fractional differential operator established by the mathematician Riemann-Liouville is given	

	 by [27]:
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	 where μ denotes the order of derivative and t ∈ [m, n].
•	 Caputo fractional differential operator of order α: for positive real numbers, μ, t, the fractional differential 
	 operator developed by the Italian mathematician Caputo is [27]:
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	 where μ denotes the order of derivative and t ∈ [m, n].

3. Basic structure of Haar wavelets
For the scale-2 wavelet family, detailed equations for scale-2 wavelet function, a father wavelet, a mother wavelet 

are provided below.

3.1 Scale-2 Haar wavelet

A group of square waves written in the form of set of Haar functions is defined as:
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Here, the value of m represents level of wavelets in terms of 2j, κ is a translation parameter and has j as its maximum 
number of revolution, here, i represents the wavelet number which can be expressed as i – 1 = κ + m. If we take m = 1, 
κ = 0, then the value of i = 2 and by further varying the value of k and m, different values of i can be obtained.

3.2 Scale-3 Haar wavelet

For the scale-3 wavelet family, detailed equations for scale-3 wavelet function, a father wavelet, two symmetric 
and antisymmetric mother wavelets are provided below.
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which can be expressed as i – 1 = κ + m. If we take m = 1, κ = 0, then the value of i = 2 and by further varying the value 
of k and m, different values of i can be obtained.

The main difference between Haar scale-2 and scale-3 wavelets is that in the former, the entire wavelet family 
is constructed by a single mother wavelet, whereas in the latter, for the construction of the entire wavelet family, two 
mother wavelets with different shapes are responsible. Because of this, Haar scale-3 wavelets improved the solution’s 
convergence rate.

4. Quasilinearisation technique
Basically, quasilinearisation technique is generalised form of Newton-Raphson technique. It converges 

quadratically to an exact solution, if there is a convergence, then it must be a monotone convergence.
Let us consider the non-linear second-order differential equation:
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here, k is in terms of ω(z). Let us choose an approximation at the initial step of solution ω(z). Let us say ω0(z). k can be 
expanded around ω0(z) is written in the form:

0

0

1

0 0 ( ) 0

0 0  0

1 1  1

( )

( )

( ( ), ) ( ( ), ) ( ( ) ( )) ( ( ), )

( )  ( ( ), ) (  ( ) ( )) ( ( ), )

( )  ( ( ), ) (  ( ) ( )) ( ( ), ).
z

z

xk z z k z z z z k z z

z k z z z z k z z

z k z z z z k z z

ω

ω

ω

ω ω ω ω ω

ω ω ω ω ω

ω ω ω ω ω

−′′

= + −

= +

= −′′ +

The form of a recurrence relationship is
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ωs(z) is known and can be used for obtaining ωs+1(z). The above equation is always a non-linear DEs and the condition 
is ωs+1(z) = α, ωs(z) = β.

Now, consider the non-linear second order differential equation of the form
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Here, the first derivative ωʹ(ω) can be considered as another function.
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with boundary condition ωs+1(z) = α, ωs(z) = β.
Follow the same technique to establish the recurrence relation for higher-order non-linear DEs.
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The order of the DEs is j; the above equation is linear, and it can be solved recursively for ωs(z) if it has a known value 
and can be used to get the value of ωs+1(z).
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5. Approximation of fractional Kawahara equation by scale-3 Haar wavelet
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Integrating w.r.t z between 0 to z,
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Again, integrating w.r.t z,
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Again, integrating w.r.t z,
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Now, discretizing the variable as 2 1 2 1 and  ,,  where 
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r r r r rs z z z z zt zϕ−

The above system is reduced to a system of algebraic equations, which is then reduced to the system of arrays in 4D 
mentioned below.

3 3 3 3 3 3 3 3p p p p p p p pA R F× × × × ×=

By using transformations, the above array is reduced to a matrix of . and ( , )ila b F r s fλ µ= =  Here, 
3 ( 1)  and 3 ( 1) .p i l p r sλ µ= − + = − +  Value of bλ can be calculated for the distinct values of n which varies from 

1, 2, 3……… by solving the equations of system using MATLAB programmes.

6. Numerical observations 
6.1 Numerical experiment 1

( , ) ( , )
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z

µϕ ϕϕ ϕ ϕ
ϕ

+ + − =
=

With a forcing term,

2
4 2

2
sin 22 1( , ) sin

(3 )
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µ

−

= + −
Γ −

the exact solution: 2 i( , ) s n ;z t t zϕ =  the solution computed by the proposed method for , [0, 2 ] [0,1].z t π∈ ×
For μ = 1, 
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4 2

4 2
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1, 2 sin 2
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( ) ( )
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by using quasilinearisation technique for non-linear term 

4 2

4 2
1 1

1, 2 si

)

n 2
2

1, ( ) 2 si .

( ) sin 2 cos

( sin 2
2

con 2 s

t z zzz zzzzz

t r z r z z r zzz zzzzz

z t t z t t

z t t z

z z

ztzt

ϕ ϕϕ ϕ ϕ

ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ+ +

+ + − = + −

+ − + + − = + −

Table 1 shows the comparison of approximate and exact solutions with the value of absolute error for different 
values of z and t. Table 2 shows L2 and L∞ errors for different values of μ.

Table 1. Comparison of approximate and exact solutions for numerical experiment 1

z t Approximate solution Exact solution Value of absolute error

0.055555555555556 0.055555555555556 0.000057152654610 0.000057152654610 9.15e-18

0.166666666666667 0.166666666666667 0.000006350294957 0.000006350294957 1.06e-18

0.277777777777778 0.277777777777778 0.001428816365253 0.001428816365253 2.28e-16

0.388888888888889 0.388888888888889 0.002800480075895 0.002800480075896 4.48e-16

0.500000000000000 0.500000000000000 0.004629365023419 0.004629365023420 7.40e-16

0.611111111111111 0.611111111111111 0.006915471207824 0.006915471207825 1.10e-15

0.722222222222222 0.722222222222222 0.009658798629109 0.009658798629110 1.54e-15

0.833333333333333 0.833333333333333 0.012859347287275 0.012859347287277 9.76e-15

0.944444444444444 0.944444444444444 0.016517117182322 0.016517117182325 2.64e-15

Table 2. L2 and L∞ errors for numerical experiment 1

μ 0.25 0.50 0.75 1

L2 error 2.32749967e-03 1.4542317e-03 6.74070884e-04 2.49115757e-06

L∞ error 2.98853880e-03 1.8672269e-03 9.41931276e-04 2.97079307e-06

By discontinuous Galerkin method, for the different value of μ, norm representation attains third order level of 
accuracy [8]. But, the proposed method at similar values of μ, 3D graphical representation attains third as well as fourth 
level of accuracy.

Figure 1 shows the graphical representation of approximate, exact value and absolute error with contour view 
of the exact solution while Figure 2 depicts the graphical representation for μ = 0.25, μ = 0.50 and μ = 0.75 with the 
approximated solution at μ =1.
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Figure 1. The graphical representation of approximate, exact value and absolute error with contour view of exact solution

     

      

Figure 2. The graphical representation for μ = 0.25, μ = 0.50 and μ = 0.75 with approximated solution at μ =1
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6.2 Numerical experiment 2
	  

2 3
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the exact solution: 2( , ) cos(2 ),z t t zϕ π=  the calculation of accuracy of the proposed technique for , [0,1] [0,1].z t∈ ×
For μ = 1, 
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After solving the above equation, it becomes
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After applying quasilinearisation technique on non-linear terms,
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1 1 1 1
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Table 3 shows the comparison of approximate and exact solutions with the value of absolute error at μ = 1 for 
different values of z and t, while Table 4 shows L2 and L∞ errors for numerical experiment 2 at μ = 0.2, 0.4 and 0.6. 
Figure 3 is the graphical representation of approximated and exact value at μ = 1 and Figure 4 shows the graphical 
representation for μ = 0.20, 0.40 and 0.60 with the graph of collocation points.

Table 3. Comparison of approximate and exact solutions for numerical experiment 2

z t Approximate solution Exact solution Value of absolute error

0.055555555555556 0.055555555555556 0.004607110282356 0.004607110282465 1.09e-13

0.166666666666667 0.166666666666667 0.032021320226954 0.032021320227711 7.57e-13

0.277777777777778 0.277777777777778 0.084108319121690 0.084108319123679 2.61e-12

0.388888888888889 0.388888888888889 0.160868106966565 0.160868106970369 3.08e-12

0.500000000000000 0.500000000000000 0.262300683761578 0.262300683767781 6.20e-12

0.611111111111111 0.611111111111111 0.388406049506729 0.388406049515914 9.81e-11

0.722222222222222 0.722222222222222 0.539184204202020 0.539184204214769 1.27e-11

0.833333333333333 0.833333333333333 0.714635147847451 0.714635147864346 1.68e-11

0.944444444444444 0.944444444444444 0.914758880443024 0.914758880464644 2.16e-11
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Table 4. L2 and L∞ errors for numerical experiment 2

 μ  L2 error (HSW3)  L2 error [8]  L∞ errors (HSW3)  L∞ errors [8]

0.2 7.7e-003 1.013271e-002 9.9e-003 4.082594e-002

0.4 7.5e-003 1.013270e-002 9.7e-003 4.082593e-002

0.6 7.4e-003 1.013270e-002 9.3e-003 4.082592e-002

 
   * Note: HSW3 = Haar scale-3 wavelet

   

  

Figure 3. The graphical representation of approximated and exact value at μ = 1
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μ = 0.20 μ = 0.40

    
  

  μ = 0.60             Collocation points chosen from the domain [0,1] × [0,1]

Figure 4. The graphical representation for μ = 0.20, 0.40 and 0.60 with the graph of collocation points

7. Conclusions
In this article, the time-fractional Kawahara equation is solved using the Haar scale wavelet method; the stability 

and error analysis for the fractional case are carried out. The numerical experiments are provided to show the method’s 
accuracy and capacity. Higher-dimensional issues and other types of time-fractional equations can be easily solved 
using the same approach and analytical technique. With the support of graphics, the results are examined and discussed 
while taking various parameter values into account. Results show that the approximate solution converges to the exact 
solution as the value of the fractional-order derivative. Researchers may find our method attractive for solving higher-
order time fractional problems that are emerging in the science of technology because it can be made more precise by 
assuming high approximations.
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