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1. Introduction

Mathematical modeling of systems in the scientific and technical sectors frequently leads to ordinary or partial
differential equations (DEs), integral or integro-differential equations (IDEs), or stochastic equations in the real world.
The integro-differential type equations will be used in fluid dynamics, chemical kinetics, and mechanics. For details,
see [1-6]. Several evolution processes are defined by the fact that a change of state occurs at a predetermined time
and is subject to short-term perturbations. In comparison to the lifespan of the process, the duration of this short-term
disruption is insignificant. Instantaneous acts of disturbance are, of course, in the form of impulses. DEs with impulsive
effects appear to be a natural explanation of real-world evolution occurrences. In the realms of science and technology,
impulsive effects can be seen. One of the mathematical formulations of economic and biological events is randomness.

Impulses can occur at either predictable or random locations. The qualities of deterministic impulses have been
studied by many researchers; for details, see [7-9], and the references therein. If impulses exist at random, on the other
hand, the solution will act like a stochastic process. Different from deterministic impulsive DEs and stochastic DEs, it
is a type of deterministic impulsive DE. The impulsive system has long been regarded as one of the more significant
models in mathematical ecology, with numerous perfect existence and stability results for modified models.

In addition, the impulse perturbation coefficients must be selected based on the real condition, which may oscillate
in certain ranges or alter irregularly. If we consider the disturbance of environmental factors at specific time moments,
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which cannot be ignored, there will be immediate and large changes in population density in the form of perturbations.
As a result, we may naturally include impulsive effects in differential equations [10-12]. Many authors have studied
the various kinds of random impulsive IDEs with time-varying delays [13-16]. However, there are not many papers
considering the stability results of impulsive random IDEs with time-varying delays. Recently, Kumar et al. [17]
developed the existence and uniqueness of mild solutions for nonlocal IDEs with time-varying delays. [18] studied the
existence, uniqueness, and stability of random impulsive DEs.

Vinodkumar et al. [19] have investigated the existence, uniqueness, stability, and Ulam stability of nonlinear delay
integro-differential equations (NDIDEs) with Random Impulse of the type

2(t) = j Ht,s,2(B(s))ds, t 27,1 % £,
2¢)=a,( )20 g =12,

z, =0

Kasinathan et al. [20] have investigated the existence, uniqueness, and stability of the NDIDEs system with
Random Impulse of the type

2(0)= AWz + [ H(t,s,2(Bs))ds,t 27,1 % ¢,
2¢,) =a,(2,)2(¢)) g =12,

zZ, =0.

Iy

Motivated by the above works, we consider nonlinear random impulsive integro-differential equations (NRIIDEs)
with time-varying delays of the type

2(0)= AWz + H(1,2(0, (), 2(0, ). 8(0.5.2(0,,(M)ds). 127,12 £,

2¢)=a,(E )¢ 4 =12
2, =0, (M

where A is a family of linear operators, which generates an evolution operator $(z,5),0<s<¢ <7, the function
H:R xCxR" >R",g:AxC —>R"and o, :[t,,T| > [t,,7 |.t=1,2,...n+1, are continuous functions with o, (¢) <t,1 =
L,2,...,n+1. The set of piecewise continuous functions is C =C([-p,0],R"), which maps [-p,0] in to R" with
some given p>0,g, =%, and {, =&, ,+7, for g =12,.. . Here, {, e R is an arbitrary real number. Obviously,
ty,=¢,<¢, <, <...<%ijr;§q =w,a,: D, > R"™ is a matrix-valued function for all ¢=1,2,..,2(¢,) =}%r§nz(t).
According to their paths with the norm ||, = sup |z(s)| for all ¢ fulfilling 7 <¢ <7 ||| any given norm in X, here the
t—p<s<t
set {(t,5):0<s <t <o} denoted by A. Denotg by {G,,t>0} the simple counting process generated by ¢, that is,
{G, 2n}={¢, <t}, and denote H, the o-algebra generated by {G,,? > 0}. Then, (Q,P,{H,}) is a probability space.
Our approach is generalizing the results mentioned in [1, 20], and achieving better results with fewer hypotheses by
using the Leray-Schauder alternative fixed-point theorem, Pachpatte’s inequality, and the Banach contraction principle.
The structure of this article is as follows: In Section 2, we mention some basic concepts and preliminary. In
Section 3, we investigate the existence of NRIIDEs with time-varying delays. Moreover, the existence and uniqueness
of solutions for NRIIDEs with time-varying delays are examined by loosening growth assumptions. In Section 4, we
investigate the stability of NRIIDEs with time-varying delays by looking at their continuous dependency on initial
conditions. In Section 5, we examine the Ulam Hyers (UH) and Ulam Hyers-Rassias (UHR) for NRIIDEs with time-
varying delays. Finally, Section 6 gives the conclusion with acknowledgements of the study.
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2. Preliminaries

Consider an n-dimensional Euclidean space R" and a non-empty set €. The random variable z, is defined from Q

def
to D, =(0,d,) forg=1.2,.., where 0 <d, <. Moreover, suppose that 7, follow Erlang distribution, where ¢ = 1,2,...,
and let 7, and 7, be independent of each other as ¢# j for 1,5 = 1,2... . For simplification, we denote R, =[7,0). Let

£,=£,(Q,H,R") denote the Banach space of each H,-measurable square integrable random variables in R". Suppose

that 7 > ¢, is any fixed time and G denotes the Banach space G([z, — p, 7 ]£,), which is the family of all H,-measurable,
C-valued random variables with the norm

I, = 3w ol )

ty<t<T

The family of all H,- measurable, G-valued random variable v is denoted by £i’, (Q,G).

Definition 2.1. Amap H:[7,7 |[xCxR" -5 R" and g:AxC — R" are given functions.

Moreover, o, :[t,,7 | = [t,,7 ],t=1,2,...,n+1 are continuous functions with o,(t)<t,1=1,2,...,n+1. We assume
the following:

(1) t > H(,z,...,z,,,) is measurable for each z,...,z, €C.

(2) Each z,,...,z,,, > H(t,z,,...,z,,,) is continuous for almost all ¢ [z, 7T].

(3) For all nonnegative integer m > 0, there exists &,, € £! ([z’,T ],R*) such that

P
<a,l(t),ae.

sup. B[H(t,2(01 (00,20, 0. 205,500, (5))d)

Blzll” <m

We assume the following hypotheses hold for the linear operator family {A(t):0<t<T}:

(H1) A(¢) is a closed linear operator and the domain D(A) of {A(t):0<¢< 7T} is dense and independent of 7 in
the Banach space Y.

(H2) For every t€[0,7], the resolvent R(5,. A(t)) = (nl — A(t))”" of A(¢) exists for each 5 with Renp <0 and
[Ran, A@)| < Car+1)".

(H3) For any ¢,s,7 €[0,7], there exists 0 < <1 and />0 so that

4@ - A@A )| < tli-2 .

The assumptions (H1) and (H2) imply that there exists a family of evolution operator $i(z, s).

The family of two-parameter linear evolution systems $4(¢,5):0<s<¢ <7 fulfills the following criteria:

(1) $U(¢,s) € (Y) the space of bounded linear transformations define on Y, whenever 0 <s<z<7 and for each

y €Y, the mapping (¢,s5) — $4(¢,s)y is continuous.

(2) U@, s)U(s,7)=(s,7) for 0<s<t<T

3) Utn=1

Definition 2.2. For a given 7 e (t,,+o), a stochastic process {z(¢f) € G,t, —p <t <T} is said to be a solution to
equation (1) in (Q,P,{H,}), if

(1) z(r) e R" is H,-adapted for ¢ > ¢,

(2) z(t, +5) =v(s) € £ (Q,H) when s €[—p,0]

20)= S [[Ta.(z)(t.1,)0(0)

q=0 =1

+ Zq:ﬁ a,(r, )J;I sU(t, s)H(S, z(0,(5)),-..,z(c, (8)), .[/: g(s,r,z(o,,, (r)))dr) ds

=l =1

+J; U(t,s)H (s, z(0,(5)),-..,z(0, (8)), J: g(s,r,z(o,,, (r)))dr) ds} 1[§q’§4+1 (D).t e [tO , ’T] ,

404 | Sahar M. A. Maqbol, ef al.



q
where Ha_] (t)=a,,)a, (t,).a/r)and I () is the index function.
=1
The following Pachpatte’s inequalities play a crucial role in our analysis.

Lemma 2.1. [21] (p.33), Let z,3, and y be non-negative continuous functions defined on R, for which
the inequality

2() <z, + jo 9(s)z(s)ds + jo 9| w(r)z(r)dr)ds,t e R,

holds, where z, is non-negative constant. Then,

2(f) <z, [1+ jo 9(s)exp( [ 9+ w(r)dr)ds],ceR .

The following theorem, which is a variant of the topological transversality theorem, is known as the Leray-Schauder
alternative.

Theorem 2.1. [22] Assume that the completely continuous operator is H maps from S into S and suppose that
0eS.Let S be a convex subset of a Banach space E, and let

UH)={ze S:z=nHz for some 0 <77 <1}.

Then, either U/ (H) is unbounded or H has a fixed point.

3. Existence results

Here, we list the following assumptions for our convenience:
(A1) There exists a continuous function g, :[#,,7 ] > (0,4) such that

E"H(I,zl,...,zm)

|p <o (t)W]E("zl"f +,,,+||z p),zl eR"1=12,...n+1,

s

n+l

where W :R* — (0,+0) is a continuous increasing function satisfying W (1(¢)z) < n(¢)W (z2).
(A2) There exists a continuous function g, :[#,,7 ] — (0,+) such that

P
EH [ gt.s.2ds| <o, B[ . 1.520,z€R".

(A3) A(2) generates a family of evolution operators Ll(¢,5) € Y, and there is K > 0 such that
|5J(t,s)| <KforO0<s<¢<7T.

(A4) o, :[IO,T] — [tO,T],l =1,2,...,n+1 are continuous functions with o, (t)<t,1=1,2,..,n+1.

q
(AS5) E{maxH”aKq)"} is uniformly bounded if there is a constant C > 0 such that
1,q = N

k
E{maxl_["aj(fj)”} <Cforeachzr €D, j=12,..
1,9 = !
Theorem 3.1. Under the assumptions (A1)-(AS), the system (1) has a solution z(¢) defined on [#,,7'] provided that
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the following estimate is fulfilled
ds

Vo) 2

LT M. (s)ds < j:o

where M, (s)=2""K"max{l,C}(T —t,)o,(t)(n+0,(t)),c, =2"" K’C’E|p|” and K’C? >

27t
Proof. Let T be an arbitrary number ¢, <7 <o fulfilling (2). We transform the system (1) into a fixed-point
problem. We consider the operator ¢ maps G into G defined as

U(t_to)s te[t()_p’to]

i[]i[a,(r,)u(t,to)uw)

q=0 =1

+quli[a] (z,) jj Ut YH(5,2(0,(5)),... 2(0, (5)), j g(s,r,2(0,,,(r)))dr )ds

= g=1

$z(t) =

+ L 84(t,5YH(5,2(0,(5)),... 2(0, (), j g(s,r,2(0,,(N)dr)ds|I; o Ohtelt, T1.

To apply the transversality theorem, we must first establish a priori estimates for the solutions of the integral equation
and 5 € (0,1)

no(t-t),  telt,—p.t,]
ﬂi{f{a,u,)u(r,ro)u(m

q t=1

+Zq:f[a, (, )j; u(r,s)H(s,z(al (5))srrr 2(0, (5)), j g(s,r,2(0,, (r)))dr)ds

=1 =1

+ L U(t,YH(s,2(c,(s),.... (o, (s)),J: g(s,7,2(0,, (N))dr)ds ]I, e O, telty, T,

z(t) =

Then, by (A1)-(AS), we have

[t i) oo

F <o [i Hﬁaxm

q=0 =1
q q
+2|[1a,G)
=1

J=t

{J.;,/l Hu(l‘, sYH (S, 2(0,(5)), -, 2(0,(5)), It: g(s,r.z(0,, (r)))dr)

:

P
ds} I[cq,cw)(t)]

+J';q Hil(t,s)H(s, 2(0,(5)),-..,z(c,(s)), L: g(s,r,z(o,,, (r)))dr)

<27t :

|| o) L (’)}

5

q=0

a(z,)

=]

1 e

‘H(s, z(0,(5)),...,z(0o, (s)),JIuY g(s,r,z(o,,,(r)dr

H (s, z(0,(5)),....z(o,(s)), J;: g(s,r,z(o,, (r)))dr

:

ds}l[g,aw.)(t)] 7]

{Z [Ta,)

=1 || J=t

+ sl

< Tl et ot
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+2¢ {n}gx {Llilll% <TJ>IIH It [ [ 15201 200, . 621200,

P
dsj .

. . . Sl . 1
We note that from the above inequality, the last term of the right side increases in ¢ and choose C? > o We
would get 2

et <2 max Tl o) sl ool +2max [Tl 1|
o e to)( X Hn(s,z(a1 (Vs 20, (I [ 805:7,2(01,., (1))l

)4
dsj.

Then,

Bl <2 CPKE[|lp| ]+2° " max{1,C"}
V4
j|ds

(T =1,)], W [Elz(e,(5)] +..+ B0, )| +0,()Bz(o, ()] dr Jds

<(T-1)] E‘:HH(S, 20,20, (). [ 85,7, 2(0,., ()

<277 CPKPE[o)” 1+ 277 K max{1,C"}

<27 CPK B[] 1+ 277 K7 max{l,C*}(T —1, )I a($)(n+ 0, (W [E(|]” ) | ds. 3)

From the above inequality, the last term of the right side increases in ¢, we would obtain
sup E||z|) <277 K" C"E(Jull’]

ty<v<t
t
+27 K7 max{1,C*Y(T —t,) LO 0,(s)(n+0,(s)W [E (1217 )] ds.
<2 K" CPElo|]
t
+27 K max{l,C"HT 1,)| 0,(s)(n+0,(5)) sup W[ B(|z|1) |d
0 fy<v<t
Let us define the function £(¢) as follows:
£(t) = sup B[ ||| |2 €[4, T].
ty<v<t

Then, for any ¢ €[¢,,7 ], it follows that
£(0) <27 K*CPBlJoll"]+ 27 K” max {L.C"}(T ~ 1) 0,(5)( + 0, ()W (£(0)) ds. @

From the above inequality (4), the right side is denoted by p(¢), we get
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£ < p0),1€lty, T, p(ty) =2"" K" C’Elpl” =c,.
p'(1)=2""K? max{l,C*}(T - t,)o,(s)(n+ o, (s))W(£(t))
<2"'KP max{l,C*}(T —1,)0,(s)(n+ 0, ()W (p(2))

PO e, Tl

W (p()

This implies

Ip(t) ds

) W (s) .[t M. (t)d5<j te[t ,T] 5)

where the last inequality is given by (2). From (5) and by mean value theorem, there is a constant #, such that p(¢) < %,
and here £(f) < 5,. Since £(7)= sup E[||z|l”] holds for every t€[t,,7], we have 7, 2 sup E[||z[|’] where 7, depends

ty<v<t ty<v<T

only on 7 and the functions p, and w

m > sup Bz =B

ty<v<T

Moreover, we will present the prove ¢ is continuous and completely continuous.
(I) To prove ¢ is continuous.
Let {z,} be a convergent sequence of elements in G. Then, for every ¢ €[¢,,7 ], we have

#2,0)= i{ﬁa, (£)8(0.,)000)

+iﬁa] () j; u(t,s)H(s,z,. (6,(5),-.52,(,(5), j g(s,rz,(0,., (r)))dr)ds

=l =1

L UM (5,205 20, 0D 857,200, O s O

¢zi(t)—¢z(t):i|:i{na(r )j e, s){ (s,zi(al(s),...,zn(Gn(s)),J.t:g(s,r,zi(am(r)))dr)

q=0| =1

UESH (520,50 (0, 6. [ e(ourz 0, 0 s + [ {340,077 (0,5,

I,: g(s,r,z,(0,,, (r)))dr) -, s)H (s, z,(0,(8),....,z,(c,(5)), I,: g(s,r,z,(0,., (r)))dr)} ds] [[Cq»@n ()
and

E|¢z, - max {1, C"}(T —t,) j EH[H(S, 2.(0().2(0,(5)). ], 8512, (0'n+1(r)))dr)

P

- H(s,z,. (0,(8):2,(0, (). ] 8512, (Um(r)))drﬂ

—>0asi— oo,

Therefore, ¢ is clearly continuous.
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(II) To prove ¢ is completely continuous operator. Let us denote
G, ={zeG/|z|} <m},m=0.

(II) To prove ¢ maps G, into an equicontinuous family. Let x€ G,, and ¢,z, €[¢,,7]. If ¢, <¢, <t, <7, then by
assumptions (A1)-(AS5) and inequality (2), we have

#2(0) - 42(0) = Y {ﬁa, ()8(0.,)000)

+if[aj () j; il(t,s)H(s,z(al (8),,2(0, (5)), j g(s,r,2(0,., (r)))dr)ds

=l g=t

—i {ﬁ a,(t,)U(,t,)v(0)

g=0| =1

+Zq“ﬁa] () jj u(t,s)H(s,z(o1 (), 2(0, (5)), j g(s,r.z(o,,, (r)))dr)ds

)=l =

Thus,

p2(t) - g=(t,) =§{ﬁa,(r,)u(z,zo>u(0>

q=0[ =1

+ Zq:f[a] (z,) j; U(t,5)H (s, 2(0,(8),...,2(0, (5)), j g(s,r,z(c,,, (r)))dr)ds

=l y=1

ST 4, [ u(t,s)H(s,z(O'] (20,50, | 8057 2(0,., (r)))dr)ds}[ NS

q=0 =1 j=1

Then,
E|gz(t,) - pz(r,)|” < 2" 'EB|f,|" + 2" B||L|" (6)

where

I = i{ﬁ a,(z.)U(t —1,)v(0)

q=0 | =1
9. 4

+ZH a,(r, )_[jI H(t,s)YH (s, z(0,(8),....2(0,(5)), .[: g(s,r,z(o,,, (r)))dr) ds

=1 )=t
and
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L= i{iﬁa](r]) j u(t,s)H(s,z(al ()20, (5)), j g(s,r,2(o,., (r)))dr)ds}][ AN

q=0| =1 y=1

E||" <2 C*’K"E[v(0)|" E (1[44,4,#1) )1, ¢, (tz)) +277 K max{1,C7} (4, —1,)

B [1{s:2(0,9)n20, 0. [ 2057200, 0| B (e D i 0)

<27 K CPE|o0)| E (I[@,gw) ) =1y ¢, (tz)) +277 K7 max{1,C"}(t, —1,)

<[ (s)W(nEnznf +], B! )dsE(l[g,,@H)(n) V)

<27 K CTB o) B(Lie, 2,0 (0 = Lig, ¢, (1)) + 27" K max{1,C*}(t, —1,)

X.[tol MW (B )dsE(Liz, ) 1) = I, ¢, (1)

—>0ast, >t, (7

where M, =sup{o, ()(n+0,(1))}

E|L|" <K"C"(t, -1, )(EJ.: H(s,z(o—I (8),...,2)(0, (S))’.[f: g(s,r,z(o,,, )(r)dr)) ds
<K"C’(t, —t, )j Mo, (s)W(nEllzIIf + f 0, ()E|[} )ds
—>0ast, >¢. ®

The right side of equations (7) and (8) is independent of z € G,,. It shows that the right side of (5) tends to zero as
t, — t,. Thus, ¢ maps G, into an equicontinuous family of functions.
(IV) To prove ¢G,, is uniformly bounded. From (2), ||z||& <m and by (A1)-(A5) it yields that

|#=(0)]" <27 max {H"a, @)’ |a, (z'l)||”}||i,l(t,t0)||p lo©@” +277||st,5)|” |:rr}3x {I,H”a, (rl)||H

{2] HH(s,z(a1 (oo 2(0, (I [ 8522(0,0 () sy (z)} :

Thus,

Elgz|, <2 K"C'E[o(0)[” +2"" K’ max{1,C"}

P
ds j

This gives that the set {¢z(¢),||w|% <m} is uniformly bounded, so ¢G, is uniformly bounded. It is to show that
#G,, is an equicontinuous collection. Now, by Arzela-Ascoli theorem, we may show ¢ maps G, into a precompact set in
R".

x (T — tO)[J:, EHH(S, z(o,(),....z(0o, (s)),J‘t: g(s,r,z(o,,, (r)))dr)

<27 K’CPE|o(0)| +277 K¥ max{1,C* W(T —1,)’

||, -
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(V) To prove ¢G,, is compact. Let ¢, <t <7 be fixed and ¢ a real number fulfilling ¢ € (0,¢—¢,). For zeG,,, we
define

B0 =i{f{a, (5)8(1,1,)0(0)

+ Zq:ﬁa] (r])ji u(z,s)[H(s,z(a1 (8),-n (0, (5)), j g(s,r,2(o,, (r)))dr)}ds

= j=t

+ L"g u(t,s)[H(s,z(o] (8),...,2(0,(5)), L: g(s,r,z(o,,, (r)))dr)} ds}lm@l)(r), te(t,,t—¢).
The set
W,(0)={4,2():2€G,}

is precompact in R" for all & € (0,7, —¢). Using (A1)-(A5), (2), and E| ||z <m, we obtain

E|(¢2)- (@2 <K’ max{l,c* (T —4,)[" MW (m)ds.

Thus, there are precompact sets arbitrarily close to the set {¢z(r):z € G, }. Hence, the set {¢z(1):z€G,,} is
precompact in R". Therefore, ¢ is a completely continuous operator.

Furthermore, the set U(¢) ={z € G: z =gz for some 0 <7 <1} is bounded.

Subsequently, by Theorem 2.1, the operator ¢ has a fixed point in G. Therefore, the system (1) has a solution,
which completes the proof.

Theorem 3.2. Assume that there exist the functions g,,0, :[¢,,7 ] = (0,+0) are continuous such that

B|H(t,z,...2,.,)

|P ggl(t)E(”ZI"f +o+ f),zl eR",1=12,....n+1,

Zn+]

]E"g(t,s,z)ds"p <o,OE|z|?,t,s20,zeR"

Under the assumptions (A3)-(A5), the system (1) has a solution z(¢) defined on [¢,,7 ].
Proof. Let us define operator ¢ as in Theorem 3.1. Then, from equation (3), we get,

Bl <27 C’K B[] ]

P
}ds

+2" max {1,C" (T ~1, )_[t: E [HH (s, z(0,(5)),...,2(0,(5)), J: g(s,r,z(o,,, (r)))dr)

<27 CPKPE| ||| ]+ 27 K* max{1,C"}

<(T 1), &) Bl +..+Blzo, o) + [ 0:r)Blz(o,, 00 dr s
<27 CPKTE[ |||l ]+ 277 K7 max{1,C"}

<(T-1)[ 0 (s)[E”z(s)"p +ot Bl + [ o, OB dr}ds

<27 CPRPE[|pf ]+ 27 K7 max{LCPH(T -1,)] o (s)(nE||Z||f +[ o, (drB||! )ds.

We note that from the above inequality, the last term of the right side increases in ¢, we would obtain
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sup Ez[) <27 K" CYE[Jolf 1+ 2" K” max{1,C* W(T —1,)[ /() (nB|! + [ o, (B! dr )ds.
ty<v<t f fo

<2 KPCPE[|lu)”]

t s
+2" K7 max{L,CH(T ~1)| o,(s)(n sup [E||z|)? ]+ [ 0, (r)dr sup [ B[]} ])ds.
0 fysvst 0 ty<vs<t
Let us define the function £(7) as follows:

£(0) = sup B[zl 1.2 €[4, T].

fy<v<t

Then, for any ¢ €[t,,7], it follows that

£(1) <27 KPCPE[||p|” 1+ 27" K* max{l,C” (T - tO)I[’ 0,(s) (n£(s) + J.: 0, (r)£(r)dr)ds.
£(1) <27 K" CPE[|ol” 1+ 2" K* max {1,C* }(T —to)( [ o (s)t)ds + [ 09| e (r)£(r)drds).

£(t) <27 KPCPE[|o|” ]+ 2" K” max{1,C" (T —t,) (.L: ng, ($)£(s)ds + L: 0 (s)jt: 0, (r)£(r)drds). ©)

where ¢, =2""'K”C”E[|jv|”]. Let N() = sup{M.} and N,(¢) =sup{N(¢):t€[t,,7 ]}, then from equation (9), we have

80 <c,+ | ,’ N(s)E(s)ds + j N[ NE)drds. (10)

Applying Lemma 2.1. to inequality (10), we get

£ <, [1 +[ 9(s)exp ( [ NG+ N(r)dr) ds}
<y [1+ N, exp(2N.(T —1,))(T —1,) | =2

Remaining proof is similar as Theorem 3.1.
To prove the existence and uniqueness results by Banach contraction principle, we need the following hypotheses.
(A6) The function H :[#,, 7 ]xCxR" - R" is continuous and there exist L,, >0 such that

P )
| >
s

E"H(t,zl,...,Z,,H)—H(t,wl,...,wm)"p < LHE("z1 —w1||: +..+
z,w,eR"1=12,..,n+l.

Zn+1 - Wn+l

(A7) Let g:[t,,T]x[¢t,,7]xC — R". There exist constants L, > 0 such that
AT)=2""K" max{l,C"}(T —1,)* L, (n+L,) <1.

Theorem 3.3. If the hypotheses (A3)-(A7) holds, then the system (1) with initial value »(0) has a unique solution
on [t,,7] provided

AT)=2""K” max{L,C"}(T ~1,)* L, (n+L,) <1. (11)
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Proof. As shown in Theorem 3.1, the nonlinear operator ¢ maps from G into G

B¢z —gwl] <27 K? max{l,C"}(T —1,) j {EHH(S,Z(O‘, (8)snns 2(0, (5)), j g(s,r,z(c,,, (r)))dr)

4
}ds

<27 max K7 {1,C* (T - t )‘[: |:E||Z(Gl (s))— W(Gl (S))"p T

-H (s, z(o,(8),...,2(0,(5)), J: g(s,r,z(o,,, (r)))dr) ds

+[ Blg(s.r.2(0,, ) - glsurw(or, (D) dr |ds
<277 K7 max {LC" YT )L, [ [nBllz—wlf +LB|z i} Jds
<27 K? max{l,C"}(T —1,)L,, j (n+ LBz - wl” ds.
Then, taking supremum over ¢, we obtain
lpz — g, <277 K" max{1,C"}(T =1, ) Ly, (n+ L)z — wl ds

<Az -wie -

From (11), ¢ is a contraction on G. By the Banach contraction principle, there is a unique fixed point for ¢ in space
G and this fixed point is a solution of (1).

4. Stability

Theorem 4.1. Let z(¢) and z(¢) be solutions of the system (1) with initial values v(0) and v(0) € G, respectively. If
the hypotheses of Theorem 3.3 is fulfilled, then the solution of the system (1) is stable in the pth mean.
Proof: Using the hypotheses, z(f) and z(¢) are the two solutions of the system (1) for ¢ €[t,,7]. Then,

20)-7(0) = 3 [[ T a (7.)44(6,1)[0(0) - (0)]

q=0 =l

+ iHa] (r])J.i 5J(t,s)[7"{(s,z(0'1 (8)),...,z(0, (s)),jt: g(s,r,z(o,.,(r)dr
—H(s,z(0,(5)),...,z(o,(s)), J.t; g(s,r,z(o,, (r)))dr} ds
- L 4, s)[H(s, 2(0,(5)2(0, (). [, (5.7 2(0,, (P)dr

~H(s5,2(0,(5)),... Z(0, (5)), j g(s,r,3(0n+1(r)))drds]1[ e (D).

Using the assumptions (A3)-(A7), we obtain
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0

Bll-—zI; < 21»-1sz{ﬁ||a, @I B0 -0y f[gq.gh,)(f)} ' 2”'1K”E{§{ZHII%<TJ>II

q=0L ¢ q=0[ =1 y=t

S CECIO WA ON R N

“H($,7(0,(5)), F(0, (5)). [ 205,770, (r))dr| ds

+ L HH(S, 2(6,(5))s.., 2(0, (5)), j g(s,r,2(0,.,(r)dr

~H(s,2(0,(s)), ... Z(c, (), j g(s,rZ(c,,, (r)dr ds}l[;q,gw)(t)]”

<2 s s s o501 25 s 1. T
<5 [H05:2(619)..2(0, ). | 61200,

~H(5,2(5,(5))s-»Z(T, (), j g(s,7,2(0,,,(r))dr dsl[ng(t)j

<27 KPCPE|o(0)-0(0)| +2" K” max{l,C* }(t~1,)
x j IE.HH(s,z(a1 () 2(0, (5)), j g(s,r,z(c,,,(r))dr

P
ds

“H($,2(0,(5)), Z(0, (D) [, 25,7, 2(0,., (r))dr
and

sup Bz—z[! <27 K" C"E|v(0)-0(0)]

tefty,T]

+27 maxK”{l,C”}(T—tO)LH(n+Lg)I: sup Bz —z|? ds

0 selty,7T]
Using Grownwall’s inequality,

sup Bzl <2"'K PC"Eo(0) - v(0)]

tefty, T

xexp| 27" max K” {1,C" (T ~1,) L, (n+L,) |

Here, given € > 0, choose & =% such that E”U(())_U(())"p < 0. Then, sup E|z-z|’ <e.
telty,T]
This complete the proof.

S. UHR type stability

This section looks at the UH stability for NRIIDE with time-varying delay. Let £ >0,0>0and ®:[¢,,7] > R, be
a piecewise continuous function. We consider the following estimates
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Blz'(t)- A(t)z(t)+ H(t, z(o,(1)),...,z(0, (1)), Ll g(t,s,z(o,,, (s)))ds) ’ <& t#EL, 121,

E|z(¢,)-a,(c)=(&)| <& g=1.2,... (12)
Elz'(t)-A@)z(t) + ’H(t,z((f1 ®)),....z(o, (t)),jtt g(t,s,z(o,,, (S)))ds) ’ <@@),t#¢,, 124,
Elz(¢,)-a,(c)=C)| < prg=1.2,... (13)

4
E <ed)(t),t¢§q,12to.

Z'(@)-A@)z(H) + H(z, z(o,(1)),...,z(0, (1)), JZ‘ g(t,s,z(o,,, (s)))ds)

E|z(¢,)-a,(z)2(&)| <ap g =1.2..... (14)

Definition 5.1. The problem (1) is called UH stable in the pth mean if there is a constant K > 0 such that for every ¢
> ( and for every solution z € G of the estimate (12), there is a solution © € G of (1) satisfying

E|z()-D@t)|" <Ke,telt,, T

Definition 5.2. The problem (1) is called generalized UH stable in the pth mean if there is a constant A € G, A(0) =
0 such that for every ¢ > 0 and for every solution z € G of the estimate (12), there is a solution ® € G of (1) satisfying

E|z(t)-2@)|" < Ae), t elt,, T1.

Definition 5.3. The problem (1) is called UHR stable in the pth mean with respect to (@, p) if there is a constant
y > 0 such that for every ¢ > 0 and for every solution z € G of the estimate (14), there is a solution ® € G of (1)
satisfying

E"Z(t) —@(t)”p <ye(@+p),telt,,T]

Definition 5.4. The problem (1) is called generalized UHR stable in the pth mean with respect to (@, p) if there is
a constant y > 0 such that for every solution z € G of the estimate (13), there is a solution ® € G of (1) satisfying

E|z()-2@)|" <y(@+p), tlt,, T

Remark 5.1. It is clear that

1. Inequality (12) = Inequality (13).

2. Inequality (14) = Inequality (15).

3. Inequality (14) for ®(¢) = p =0 = Inequality (12).

Remark 5.2. A function z € G is a solution of the estimate (10) if and only if there is a function P € G and the
sequence P,, ¢ = 1,2,... (which depend on x) such that

(D) B|P@)|" <ed(t).t€[t,,T] and B[P, ()| <&p, g =12,...

(I 2'(t) = A z(®) + H(¢,z(o,(©)),..., (0, (7)), I; g(t,s,2(0,.,($))ds + P(t),t # ¢ ,t 2 1.

) z(¢,) =a,(z,)z(¢, )+ F,q =1,2,...

Similar arguments can be made about inequality (12) and (13).

Remark 5.3. If z € G is a solution of the estimate (14), then z is a solution of the following integral estimate
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E|z(0) —i{ﬁa] (,)8(1,1,)v(0)

+ZHa (, )j e, s)[ (s 2(0,(5).2(0, (). (5.7 2(0, H(r)))dr}
+j 8, s)[H(S 2(0,(5))s-s2(0, (5)), j g(s,r,2(0,., (r)))dr}a’s} . I)(t)

< 2”’1K"5{e”p+max{l,ep}(7'—to).[: q)(t)ds}, telt,, T1.

From above remark, we get

{ zZ'(t) = A@)z(t) + H(¢t, z(o, (1)), .., (T, (1)), _[ g(t,s,2(0,,,())ds + P(t),t # &, t 2 1.
z2(¢,)=a,(r,)z({,)+P,q=12,. (15)
Then,
z(t, +s) =v(s) when t €[ p,0]
z(t) = Z{Ha (z,)4(2, ¢, )U(O)+Ha (z,)i(t,1,) g,

+2Ha(r ).[ [H(s 2(0'1 (s)) (O'l (s)),J‘t:g(s,r,z(crn+l (r)))dr)ds

+Lt il(t,s)’H(s,z(O'l)(s)) ..... Z(O'n (s),jt:g(s,r,z(a,m(r)))dr)ds

+ili[a(rj)il(t,s J P(S)ds+j (t,s P(s)ds} l)(t),t € [tO,T].
Therefore,

B z(1) —i{ﬁa] (2,)4(t.1,)0(0)

+2Ha (7, )j e, s)[ (s 2(0,(5)),s 2(, (s))j g(s,r,z(o, H(r)))dr}
+[ ue s)[ (s 20, (8D 2(0, (). [ 85720, H(r)))dr}ds} o

P

Z[Ha (z)8d(t.1,)P, +2Ha (r, )j AUt 9)P(s)ds + j Ue)PE)s]L, o @)

g=0 =1 =1 j=1

gzp1K"E{mfx{ﬁ||a,<r,>|l”}}E||en”+2”IK”E{me{ﬁna,(mn H @) ElPolf ds

< 2”’1K”5{e” p+maxi{l,e”} (T —1,) j CD(t)ds} L telty, T.
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For the solutions of the inequalities (12) and (13), we have similar remarks. In this section, we present the primary
results, UHR results.

Theorem 5.1. Assumption (A3)-(A7) hold. Let ® € ([¢,,7],R,) is continuous increasing, and there is a constant 7
> 0 such that

jo’cp(s)ds <nd(t), for t €[t,, T1.

Then, the problem (1) is UHR stable in the pth mean.
Proof. Let z € G be a solution of the estimate (14). By Theorem 3.3, there is a unique solution w of the system
NRIIDE with time-varying delays

w'(¢) = A(H)(t) + H(t,m(O'1 ®)),...,o(o, (t)),_.-: g(t,s,m(0n+l(s)))ds), t2t,t#¢,,

w(g,)=a,(t (S, ), q=12,...,
w, =v.

Then, we have to(¢, +s) = v(s) when s €[—p,0],

fo(1) = i[ﬁa,(r, )(1,1,)0(0)

q=

+iﬁaj @) u(z,s)H(s, (6, 10(0, (5)). | 80571000, (r)))dr)ds

+ L u(t,s)H(s,m(a1 (5))s--s10(0, (5)), j g(s,r,m(aml(r)))dr)ds}I[ e[t T,

By differential inequality (14), we have

E

10 —i[ﬁa] (z,)84(t,£,)0(0)

+iﬁaj (rj)ji ﬂ(t,s)[H(s,z(al ()0 2(0,(5)), j g(s,r,2(0,, (r)))dr:|ds

P

+L u(t,s)[H(s,z(o1 (8))srnr 2(0, (5)), j g(s,r,z(o,,, (r)))dr}ds} IANG!

P

=K

2

li[ a_/ (T] )u(t9 to )Pz + Zq: li[ aj (Tj )JA;,:, u(t’ S)P(S)ds + .[;I ﬂ(t, S)P(S)dsj| dS:II[Cq Cqi1) (t)

1=1 1=l j=1

p-l prp . » P -1 p 4 p r t
<27 K E{m{flx {H”al (z, )|| }}E”PI" +27°K E{m?x {1:1["@ (7, )|| H SJ-’U D(s)ds
<27 K’e{e” p+max{l,e’ }(T 1, m@(1)ds} .t €[1,,T].

Hence, for all ¢ [¢t,,7 ], we get
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E|z(t) - ()" = E

z(t) —i{ﬁ a (z,)14(t,1,)0(0)

+i ﬁ a(z)) j ; U, s) [H(s, (0, ());.... 10(, (5)), j g(s,r, (o, (r)))dr} ds

3

+ L u(z,s)[H(s,m(a1 O AN W CTC (r)))dr}ds}l[ e ®

20~ [[Ta, (7, 1(.1)0(0)

q=0 =1

+Zq: li[ a,(r, )le (¢, s) [’H (s, (o, (s)),...,w(o,(s)), L; g(s,r,w(o,, (r))) dr} ds

=1 g=1

|z -l <2""'E

+f, u(r,s)[H(s,mwl (5D t0(0, (O 5,710, ()| ds}l[;q,@”)(f)ll”

o E‘ STa) N il(t,s)(H(s,z(O'l (Vs 20, (I [ €057, 2(0,., ()

=1l j=1

-H (S, (o, (5)),....t0(c, (5)), .[t; g(s,r,w(o,,, (r)))a’r) ds

#4409 (P52, 200, O 5720, (D)

2

—H (s,10(0,(5)),...,t0(c, (5)), I; g(s,r,w(o,,, (r)))dr) ds][gq o) )

< 4”’1K"8{€pp +max{l,e” (T _t")nq)(t)}

#2771 K7 max {l,e" (T =1,)L, || (n+ LBz —rolf ds.

sup Bz -l <4”"K"&{e’ p+max{l,e” }(T —1,)n®(1)}

tefty,T]

+277' K? max{l,e” }(T —tO)LH'[t (n+L,) sup Elz- ro|” ds.
lo telty,T]

<47'K7g{e” p+max{l,e”}(T —1,)nd(t)}

T
+2°7 K max{l,e” }(T —1,)L, j (n+L,)ds sup Bz —rol} .
lo telty,T]
1

- > 0 independent of 7®(¢) such that
1-27" K7 max{l,e” }(T —1,)L,, j (n+L,)ds

There exists a real number 3 =

sup Bz —wl/ < P47 Kz (e p+maxil.e”}(T —1, p®(0)}, €[, T,

telty,T]

Then, the problem (1) is UHR stable in the pth mean. Thus, the proof.
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6. Conclusion

In this paper, we have obtained the existence and various types of stability results for the NRIIDEs with time-
varying delays using the Leray-Schauder alternative fixed-point theorem, Pachpatte’s inequality, and the Banach
contraction principle. A delightful existence of our results would be to discuss finite-time stability and UH-Mittag-
Leffler stability for a class of NRIIDEs with time-varying delays. This will be the focus of future research.
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