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Abstract: This paper elaborates on the approach towards reliability analysis for the active redundant system with a dual 
nature of repair strategy according to the kind of failure. The reliability characteristics using regenerative techniques 
are analyzed stochastically for the system, which includes two parallel units acting in an active redundancy form. A 
transition model has been designed for the working mechanism discussed in the paper and evaluated with the help of 
a geometric distribution possessing distinct repair. Regenerative techniques and geometric distribution were used to 
derive the numerical equations for reliability parameters such as availability, mean time to system failure, and repair 
mechanisms following down period of the system. A graphical analysis of the repair/failure rate with respect to the profit 
function has also been presented.
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1. Introduction
Reliability engineering is a branch of engineering that applies scientific knowledge to a component, product,

or plant as a technique to make sure that it will operate as per the requirements for a defined period of time in a 
particular environment without malfunctioning. A product's lifetime is necessary to maintain, and in order to achieve 
this, the maximum focus is laid upon dependability, which is the ability of a system or component to function as per 
the requirement for an established period of time under well-defined conditions. To make the system’s performance 
better, researchers have proposed a variety of reliability-enhancing strategies, that includes redundancy, preventative 
maintenance, and prioritization. It requires a lot of work and preparation over many years to analyze the effectiveness 
of industrial models. There is a continuous advancement of new technologies for production and maintenance methods, 
due to which the working processes in the industrial sector change annually. Any industry’s success depends on two 
crucial factors: when new designs are incorporated, and good or cutting-edge maintenance techniques are offered to its 
clients as necessary variables.

A considerable effort has been put in for many years in order to make a visible change in the dependability 
assessment of industrial models. In 2016, Hua et al. [14,15] pioneered the unit degradation paths approach in 
reliability analysis. They raised an important research issue in his analysis of systems with connected unit degradation 
mechanisms. They developed a method for listing all successful occurrences, which are arranged sequences of failures 
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represented by system state transition routes, and obtained closed-form equations for determining the odds of successful 
events. Fang et al. [12] investigated the dependability of balanced engine series systems with ‘m’ sectors, each of 
which has a cold standby system with ‘n’ engines. Two models for the new balanced system were developed, and some 
performance indicators, such as formulas for system dependability, lifespan distributions, and means and variances of 
system lifetimes, are provided. Dong et al. [10,11-13] examined the wiener processes-based reliability with degradation 
systems. In order to describe the dynamic behaviors of a generic k-out-of-n:G warm standby system while taking into 
consideration the inspection features and maintenance impacts on the behaviors of the system, in 2020, Wu et al. [21] 
devised an analytical technique. The nonlinear program is optimized using the Markov process to reduce the estimated 
total cost. Chillar et al. [7,8,16] used the principles of deterioration and maintenance due to random shocks to examine 
the system’s dependability. To perform maintenance and repairs on the unit, a single server instantly visits the system. 
If the unit is damaged by shocks, maintenance is required. The semi-Markov process [18] and the regenerating point 
approach [2] are used to get a variety of reliability characteristics, such as mean time to system failure (MTSF), 
availability [19], and profit function [7]. J. Bhatti et al. [4-6] proposed a dependability model for the car repair industry. 
Moreover, the inspection approach was created as a tool to assess failure and choose a repair plan that is focused on 
efficiency in terms of both time and money. The adaptive surrogate-based network reliability study was given by 
Dehghani et al. [9] using the merging of Bayesian additive regression trees and Monte Carlo simulation. Kumar et al. 
[17] examined a single-unit system model by including Weibull distribution for failure, preventative maintenance, and
various other parameters. A two-stage degradation model is put forth, in which the system degradation levels in the
first and second stages are represented by correlated bivariate Wiener processes and univariate Wiener processes [20].
Adlakha et al. [1] explored a two-unit cold standby communication system in which both units are originally packed and
re-joined when needed. The system continues to function until a need arises or it fails after some time has passed after
the operational unit fails. In 2019, Bhardwaj et al. [3] developed a mathematical model of how long a diesel locomotive
can run with regard to a decreasing trend using neural networks. For the time series data of the parameter used as the
train data for the neural network, interpolation is performed.

The current paper focuses on analyzing the food packaging system, which consists of two similar kinds of units 
that are well structured in active redundancy mode. This transition model (Figure 1) can be fairly applied to the food 
packaging industry, where the two machines described through A0 are both in full operation in stage S0 and are used to 
pack various types of foods or vegetables. As we know, during the operative mode of any machines there is always a 
fair chance of failure. Hence, in the current discussed machines, the same possibility of distinct nature of failures, i.e., 
minor and major failure, is very well introduced. The distinct repairman mechanism with different costs and times of 
repair has been introduced to resolve the above failures. S1 to S4 in the transition model clearly signifies the situations 
when one machine is in repair mode after facing either a minor or major type of failure and the other unit is satisfying 
the need to package the food items by operating with extra working time. The dual nature of a repairman with a repair 
rate r1 is involved in inspecting the nature of failures. The benefit of including the dual nature of repairman 1 is that it 
reduces the cost of different inspections and minor repairs. In case the repairman finds that the machines needs repair for 
regular service or minor repairs like incoming power issues, main disconnect off, web brakes due to damaged transfer 
roll surface, poor web tracking, poor seals, or poor package cutoff. But in case the first repairman finds that the issue is 
bigger and needs a more efficient repairman and time he passes out the failed unit to the second repairman with repair 
rate r2. The major issues like end and fin seal problem, back stand problems, unwind problems, etc. As we know, there 
is always the possibility of a system shutdown due to a complete failure of all units. The possibilities of these situations 
have also been discussed in the current paper through stages S5 to S8. In these situation, the working hours of the 
repairman increased with the increased cost of getting the system into operative mode by repairing at least one failed 
machine.
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Table 1. Nomenclature

Symbol Description

A0 Units that fall under category A are operating.

Ar1 Upon failure, unit A will need inspection and minor repairs.

Ar2 Repair the unit A if it is not fixed at the initial inspection.

r2 Repair rate of major failure.

Ar1w
Unit A is now awaiting a turn to enter the r1 stage of inspection and 
repair.

p1 ,p2 Probability that unit’s A and B will fail.

r1/s1
Successful/unsuccessful probability rate for minor failure inspection 
and its repair.

r2/s2 Successful/Un-successful probability rate for major repair.

a/b Probability of inspecting and repairing the minor/major failure.

© Convolution of the two functions of non-negative variable.

Pij Steady state transition probability from state Si to Sj

qij/Qij
Probability and cumulative density function of the first transition 
from regenerating state ‟i” to ‟j”.

Figure 1. Transition Model

Operative States: Failed States:

S0 = (A0, A0), S1 = (Ar1, A0), S2 = (A0, Ar1), 
S3 = (Ar2, A0), S4 = (A0, Ar2)

S5 = (Ar1, Ar1w), S6 = (Ar2, Ar1), 
S7 = (Ar1, Ar2), S8 = (Ar2, Ar2w)
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2. Transition probabilities and Sojourn times

2.1. Transition Probabilities

As the system experiences discrete failures like less numbers of failures in small scale industries, the distribution of 
failures before a success is geometric. According to the following definition, the cumulative density function Qij of the 
initial passage time from regeneration state ‟i” to ‟j” is:
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Following are the solutions for the probability steady-state transition from Si to Sj:

lim   Qij ijt
P

→∞
=

where Qi represents the ‟cumulative density function” from state i to j. And,
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and,
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P31 + P35 + P36 = 1, P42 + P45 + P47 = 1, P52 + P56=1, P61 + P63 + P65 + P67 + P68 = 1
P72 + P74 + P75 + P76 + P78 = 1, P87 = 1

2.2. Mean Sojourn Times

Let Ti be the sojourn time in state Si (i = 0 to 8) and the symbol "μ" the mean sojourn time for state Si
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When a system is about to transition into state S, its means sojourn time (mij) in state S is calculated as follows:
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m01+m02+m05 = q1q2μ0 
m20+m21+m24+m25+m27 = s1q1μ2 
m42+m45+m47= q1s2μ4 
m61+m63+m65+m67+m68 = s1s2μ6 
m87=s2μ8

m10+m12+m13+m15+m16= s1q1μ1

m31+m35+m36 = s2q1μ3

m52+m56 = s1μ5

m72+m74+m75+m76+m78 = s1s2μ7

3. Mean time to system failure (MTSF)

MTSF is the average length of time a nonrepairable component or system lasts before failing which is measured
by the maintenance statistic. The reliability analysis Λi at time ‛t’ is therefore achieved by solving the equation shown 
below:

Λ0= Z0+ q01 Λ1+q02©Λ2

Λ1= Z1+ q10© Λ0+q12© Λ2+q13© Λ3

Λ2= Z2+ q20 © Λ0+q21 © Λ1+q24 © Λ4

Λ3= Z3+ q31 © Λ1

Λ4= Z4+ q42 © Λ2

By taking Geometric transformation and solving the above equations, we obtain

( )
1

1

( )( )i
N hh
D h

Λ =

( )
( )

1 1

1
1 1

lim 1i h

N h NMTSF
D h D

µ
→

= = − =

where

N1= μ0[(1−P13P31)(−P24P42)+(−P13P31)+(1−P12P21)]+μ1[(−P01P24P42)+(P01+P02P21)]+
μ2[(P02P13P31)−(P01P12−P02)]+μ3[P13(P01(1−P24P42)+(P02P21))]+μ4[P24((P01P12)+P02(1−P13P31))]

D1=−P24P42(1−P13P31)−(P13P31)+(1−P12P21)−P01P10(1−P24P42)−P01P12P20−P02(P01P21+P20(1−P13P31))

4. System availability

The availability of a particular system is defined as the likelihood that a repairable system or system component is
operating at a specific time and under a specific set of environmental conditions. If Δi is the system's availability period 
at time t, then the following probabilistic relations will be deduced:

Δ0= Z0 + q01© Δ1+q02© Δ2+q05© Δ5

Δ1= Z1+ q10© Δ0+q12© Δ2+ q13© Δ3+q15© Δ5+q16© Δ6

Δ2= Z2+ q20© Δ0+q21© Δ1+q24©Δ4+q25©Δ5+q27©Δ7

Δ3=Z3+q31© Δ1+q35© Δ5+q36© Δ6

Δ4 = Z4+ q42© Δ2+q45© Δ5+q47© Δ7

Δ5= q52© Δ2+q56© Δ6

Δ6= q61© Δ1+q63© Δ3+q65©Δ5+q67©Δ7 q68©Δ8 
Δ7= q72© Δ2+q74© Δ4+q75©Δ5+q78©Δ8

Δ8= q87© Δ7

(2-6)

(7)

(8)

(9)

(10-18)
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So, by taking geometric transformation and solving the above equations, we obtain

( ) ( )
( )

2
0

2

N h
U h

D h
=

and

( )i iZ h µ=

The steady state availability of system is:

( )0 0lim
t

U U t
→∞

=

By ‘L’ Hospital rule, we obtained

( )
( )

2
0

2

1
,

1
N

U
D

= −

where

D2(1)= (P21P52P78P87+P21P52)[(P13(P35+P36P65)+(P15+P16P65)+P63(P15P36+P16P35)]
+P10(−P01P56P68P87−P01P56P67)[(−P75−P45P74)+P42(P24P75−P25P74)−P72(P24P45+P25)]
−P20[P12(1−P56P65)+P52(P15+P16P65)]

N2(1) = μ0(P21P52P78P87+P21P52)[(P13(P35+P36P65)+(P15+P16P65)+P63(P15P36 +P16P35)]
+μ1(−P01P56P68P87−P01P56P67)[(−P75−P45P74)+P42(P24P75−P25P74) −P72(P24P45+P25)]+
μ2[P12(1−P56P65)+P52(P15+P16P65)]+μ3(P01P13P56P68P87+P01P13P56P67)[(P75+P45P74)
+P42(P25P74−P24P75)+P72(P25+P24P45)]+μ4(P13P24P52+P13P52P27P74)[P01(P35+P36P65)−P05(P31+P36P61)]

5. Repairman (r1) and inspection period of System

In order to boost system dependability and ensure customer satisfaction, it is crucial to have the finest repair
procedures for all of its goods. However, as we are all aware, there are several potential causes for any mechanically 
sound system to fail. To reduce time waste and provide accurate information to the client regarding the time and cost of 
repair, it is increasingly vital to have the failed unit evaluated in order to determine the cause of the failure and proceed 
with the appropriate repair procedure.

Therefore, the repair process has been divided into two stages: a) inspection of failure or repair of a small failure 
or regular service by the repairman (r1), and b) repair of a serious failure indicated by repairman (r2). If Ωi denotes the 
repairman (r1) period of the system at time ‛t,’ then the resulting relations will be designed as follows:

Ω0= q01© Ω1+q02© Ω2+q05© Ω5

Ω1= Z1+q10© Ω0+q12© Ω2+q13© Ω3+q15© Ω5+q16© Ω6

Ω2= Z2+ q20© Ω0+q21© Ω1+q24© Ω4+q25© Ω5+q27© Ω7

Ω3= q31© Ω1+q35© Ω5+q36© Ω6

Ω4= q42© Ω2+q45© Ω5+q47© Ω7

Ω5= Z5+ q52© Ω2+q56© Ω6

Ω6= Z6+ q61© Ω1+q63© Ω3+q65© Ω5+q67© Ω7+q68© Ω8

Ω7= Z7+ q72© Ω2+q74© Ω4+q75© Ω5+q78© Ω8

Ω8=q87© Ω7

(19)

(20)

(21)

(22-30)



Contemporary Mathematics 430 | Pankaj et al.

By geometric transformation and solving the above equations, we obtain

( ) ( )
( )

3
0

2

,
N h

V h
D h

= −

and ( )0 0lim
t

V V t
→∞

=
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( )
( )

3
0

2

1
2

N
V

D
=

N3(1)=μ1(−P01P56P68P87−P01P56P67)[(−P75−P45P74)+P42(P24P75−P25P74)−P72(P24P45+P25)]+μ2[P12(1−P56P65)+P52(P15+P16P65

)]+μ5[P13(P35+p36p65)+P15(1−P36P63)+P16(P65+P35P63)]+μ6[P24(P45+P47P75)+(P25+P27P75)−P74(P25P47−P27P45)]+μ7[P01(P12P25+P15

)+(P02P25+P05)+ P21(P02P15+P05P12)]

6. Repairman (r2) Period of the System
If Τi denotes the repairman (r2) period of the system at time ‛t,’ then the resulting relations will be designed as

follows:

Τ0 = q01© Τ1+q02© Τ2+q03© Τ3

Τ1 = q10© Τ0+q12© Τ2+q13© Τ3+q15© Τ5+q16© Τ6

Τ2=q20© Τ0+q21© Τ1+q24© Τ4+q25© Τ5+q27© Τ7

Τ3=Z3+q31© Τ1+q35© Τ5+q36© Τ6

Τ4= Z4+ q42© Τ2+q45© Τ5+q47© Τ7

Τ5= q52© Τ2+q56© Τ6

Τ6 = Z6+q61© Τ1+q63© Τ3+q65© Τ5+q67© Τ7+q68© Τ8 
Τ7 =Z7+ q72© Τ2+q74© Τ4+q75© Τ5+q78© Τ8

Τ8 =Z8+q87© Τ7

By taking geometric transformation and solving the above equations, we obtain

( ) ( )
( )

4
0

2

,
N h

W h
D h

=

and ( )0 0lim .
t

W W t
→∞

=

After applying ‘L’ Hospital rule:

( )
( )

4
0

2

1
,

1
N

W
D

=

N4(1)=μ3(P01P13P56P68P87+P01P13P56P67)[((P75+P45P74)+P42(P25P74−P24P75)+P72(P25+P24P45)]+
μ4(P13P24P52+P13P52P27P74)[P01(P35+P36P65)−P05(P31+P36P61)]+

μ6[P24(P45+P47P75)+(P25+P27P75)−P74(P25P47−P27P45)]+
μ7[P01(P12P25+P15)+(P02P25+P05)+P21(P02P15+P05P12)]+

μ8[(P27P78)(P02P56+P05P52)[(1−P36P63)−P31(P13+P16P63)−P61(P13P36+P16)]

(31)

(32)

(42)

(43)

(33-41)
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7. Result and Discussions

The system profit function (P) at steady-state has been evaluated using:

P= E1U0− E2V0− E3W0 ,

where

E1: System per unit up time revenue.

E2 and E3: System per unit down time expenditure.

Results and behavior for system profit have been analyzed by fixing a few specific parameters E1,E2,E3,p2,and ‛a’ as 
follows:

E1=10000,E2=1000,E3=500,p2=0.6, and a=0.6

Table 2, 3 and Figure 2, 3 show how reliability metrics, such as the profit function, change when the failure rate p1 

and repair rate r1 rise from 0.1 to 0.8.
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Figure 2. Profit P vs Failure rate p1

Table 2. Reliability parameter values corresponding to repair rate r1 and r2

Repair Rate MTSF U0 V0 W0 Profit(P)

18.41938401 0.117340919 0.644495213 0.238163869 409.8320413

8.958971095 0.094017952 0.686816446 0.219165602 143.7802693

5.835730697 0.080325562 0.717604534 0.202069904 -15.38386852

r1=0.1 4.248222733 0.070758139 0.74148818 0.187753681 -127.7836322

r2=0.65 3.267932718 0.063586183 0.760861151 0.175552666 -212.7756543

2.587934919 0.057994816 0.777190721 0.164814462 -279.6497923

2.076045545 0.053528966 0.791465501 0.155005533 -333.6786057

1.664798994 0.049911449 0.804413965 0.145674586 -378.1367672

20.20870039 0.121164354 0.601372459 0.277463187 471.539486 

9.484710004 0.106333434 0.622430474 0.271236091 305.2858211

6.069925375 0.097340177 0.639301532 0.26335829 202.4210966 
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r1 = 0.2 4.37270967 0.090681496 0.65361963 0.255698874 125.3458928 

r2 = 0.55 3.340850453 0.08543415 0.666169357 0.248396493 63.97390063 

2.633009056 0.081199772 0.677487378 0.24131285 13.85391738 

2.104341688 0.077770129 0.68799675 0.234233121 -27.41201894

1.681795916 0.075032696 0.698071303 0.226896001 -61.19234564

22.05899759 0.126834391 0.582490692 0.290674917 540.5157623

10.06511974 0.115517541 0.594653499 0.28982896 415.6074297

6.346028343 0.1089683 0.604197605 0.286834095 342.0683492

r1 = 0.3 4.528970677 0.104130033 0.612377 0.283492967 287.1768459

r2= 0.5 3.437566727 0.100302408 0.619651252 0.28004634 243.349656

2.695505901 0.097224866 0.626308185 0.276466949 207.7069962

2.144849426 0.094785834 0.63257295 0.272641216 178.9647815

1.706600487 0.092948684 0.638649504 0.268401812 156.6364351
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Figure 3. Profit P vs Repair rate r1

Table 3. Reliability parameters values corresponding to Failure Rate p1.

Failure Rate MTSF U0 V0 W0 Profit(P)

8.853743852 0.089692833 0.681417923 0.228889244 101.0658 

8.853743852 0.111286928 0.626544876 0.262168195 355.2403 

9.6097673 0.124910338 0.600783284 0.274306378 511.1669 

p1=0.2 10.37151298 0.136206318 0.584070242 0.279723439 638.1312 

11.15405131 0.146771164 0.571335951 0.281892885 755.4293 

11.96796821 0.157302456 0.560725567 0.281971977 871.313 

12.82193851 0.16824144 0.551408516 0.280350044 990.8309 

13.72391927 0.179994459 0.542961365 0.277044176 1118.461 

3.248144538 0.06203077 0.753800646 0.184168584 -225.577

3.361709817 0.08787833 0.67237733 0.23974434 86.5338

3.483292221 0.105473389 0.629407046 0.265119565 292.7671

p1 = 0.5 3.61275125 0.120020244 0.601400155 0.278579602 459.5125

3.750057056 0.133235004 0.580749313 0.286015683 608.5929

3.895277906 0.145893407 0.564232931 0.289873662 749.7643
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4.048569257 0.158455289 0.550233391 0.29131132 888.6638 

4.210165593 0.049217042 0.797229847 0.153553112 1029.564 

1.662620664 0.076491169 0.705246801 0.21826203 -381.836

1.683946304 0.096384479 0.650448939 0.253166582 -49.4661

1.71094077 0.112690551 0.612802761 0.274506689 186.8126 

p1 = 0.8 1.743215084 0.126761071 0.584608466 0.288630463 376.8494

1.780641954 0.139145073 0.562278913 0.298576014 538.687

1.823295042 0.150056495 0.54392595 0.306017555 679.8838

1.871418664 0.159534178 0.528473778 0.311992043 803.6302

1.925417283 0.049217042 0.797229847 0.153553112 910.872

8. Conclusions

The focus of the current paper is on analyzing the active redundancy system for the food packaging machine  and 
explaining the for different possibilities of repair for distinct failures. The working structure of the discussed problem is 
well designed through the transition model. The calculated numerical results for MTSF, availability period of the system, 
maintenance period in Sections 5 and 6 help to calculate the profit function of the system. The increasing and decreasing 
behavior of the profit function w.r.t increasing repair rate and a decreasing failure rate support the reliability parameters 
results. The numerical and graphical analysis of the reliability parameters proved that the concepts introduced in the 
paper proved beneficial, concluding with satisfying the focus of the research. Hence, the study report will demonstrate 
that its goals of advancing industries through the development of new procedures employing recommended repair 
methods for various failures.
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