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Abstract: In this paper, the Hilfer fractional differential equation is studied. Firstly, we have used the Laplace transform 
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1. Introduction 
Fractional order differential equations have been gaining significant attention among scientists due to their 

numerous applications in various fields, including engineering, medicine, and other disciplines. To explore further 
insights into fractional differential systems and their practical uses, interested readers can consult the references [1-
4]. The Hilfer fractional derivative (HFD), a generalized form that combines Riemann-Liouville and Caputo fractional 
derivatives, was introduced by Hilfer [1]. This derivative plays a crucial role in fractional calculus and provides a 
broader perspective on fractional differential equations (FDEs). In a study conducted by Furati et al. [5], they delved 
into non-linear systems and investigated the existence of solutions and stability analysis for initial value problems 
(IVPs) of non-linear FDEs that employed the HFD. Overall, the research in fractional order differential equations and 
the development of the HFD have opened up new avenues for understanding and utilizing these mathematical tools in 
solving real-world problems across various scientific domains.

Numerous researchers have addressed the topic of exact and approximate controllability in systems involving the 
HFD, as evident from references [6-11]. In recent contributions, Lv et al. [12] presented a study on the approximate 
controllability of Hilfer FDEs with orders in the range of 1 < α < 2. They employed the Banach contraction principle as 
a key mathematical tool in establishing the results. Singh [13] investigated the issue of exact controllability in non-dense 
domains for systems governed by the Hilfer FDEs. To do so, he utilized the concept of the measure of noncompactness, 
which is a valuable tool in functional analysis. Raja et al. [14] conducted research on the approximate controllability of 
Caputo-type integro-differential systems with fractional orders in the range of 1 < α < 2. Furthermore, Kavitha et al. [15] 
explored the controllability aspects of Hilfer FDEs with infinite delay, and they utilized measures of noncompactness 
in their investigation. In recent studies, various researchers have explored the existence of solutions and approximate 
controllability in different types of fractional control systems. Kavitha et al. [16] applied Dhage’s fixed point theorem 
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to investigate the approximate controllability of non-densely defined Sobolev-type Hilfer fractional neutral Volterra-
Fredholm integro-differential systems. Ma et al. [17] formulated the mild solution and necessary conditions for 
approximate controllability of hemivariational inequalities in Sobolev-type Hilfer fractional neutral stochastic evolution 
systems. Sousa et al. [18] explored the reachability of both linear and non-linear systems using the concept of the 
ψ-Hilfer pseudo-fractional derivative in g-calculus, utilizing the Mittag-Leffler functions. Johnson et al. [19] studied the 
existence of solutions and optimal controllability of Hilfer fractional stochastic integro-differential systems with infinite 
delay. Kumar et al. [20] discussed the existence and uniqueness of generalized Caputo-type IVPs with delay using fixed 
point theory. Selvam et al. [21] employed the ψ-Caputo fractional derivative to derive the existence and uniqueness of 
control for linear and non-linear fractional dynamical systems with distributed delay in control. Vijayakumar et al. [22] 
examined two different types of essential conditions for determining the approximate controllability of Hilfer fractional 
semilinear control systems. Dineshkumar et al. [23] presented a formulation combining stochastic analysis theory, 
fractional calculus, multivalued maps, and Karlin’s fixed point technique to establish the approximate controllability 
of a non-linear Hilfer stochastic system. Kavitha et al. [24] demonstrated the approximate controllability of Hilfer 
fractional control systems with time delays using the sequential approach. Selvam et al. [25] derived controllability 
results for fractional dynamical systems with ψ-Caputo fractional derivatives by utilizing Grammian matrices, Mittag-
Leffler functions, and a fixed-point approach. These studies collectively contribute to the advancement of understanding 
and exploring various aspects of approximate controllability in fractional systems.

The previously mentioned research papers have inspired us to investigate the exact controllability of Hilfer FDEs 
with non-linear integro-differential functions of the following form,
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Dα β
+  denotes the HFD of order (0,1), [0,1].α β∈ ∈  The state ( )x X⋅ ∈  equipped with the sup-norm 

( ) ,t Vx sup x t∈=     where X and U are Banach spaced and V = [0, l]. The control function 1( ) ( , ), ,u L V U
β

⋅ ∈ >   which 

denotes Banach space of admissible controls. A: D(A) ⸦ X → X is a densely defined closed linear operator on X and 
B : L𝜖(V,U ) → L𝜖(V, X ) is a bounded linear operator. The non-linear term f :V × X × X → X is a given function, f and z 
are appropriate functions which satisfy some assumptions.

The primary objective of this research paper is to establish the exact controllability of a Hilfer fractional integro-
differential equation with an order in the range of 0 < α < 1. This equation involves a non-linear function with an 
integral term. In contrast, a similar integro-differential equation with Caputo fractional order 1 < α < 2 was considered 
in [14], where the author derived an approximate controllability result. 

In our work, we have adapted the approach presented in [26] to obtain the mild solution of the Hilfer fractional 
integro-differential equation (1). To achieve this, we have utilized semigroup theory and Laplace transform techniques. 
The Schauder fixed-point approach has been employed to establish the final controllability result. Notably, we have 
relaxed the growth condition imposed on the integral term in the non-linear function by employing a simpler Lipschitz 
condition. Instead of employing other various techniques like the measure of non-compactness, the sequential method, 
the Grammian approach, etc., our approach revolves around using fixed point methods. 

To illustrate the effectiveness of the established theory, we have included a practical example in the paper. The 
concepts and ideas presented in this research can be extended and applied to establish the exact controllability of a 
broader class of dynamical systems.

This article is structured as follows: we compile all pertinent definitions and prior findings in Section 2. Section 3 
discusses the controllability results. Section 4 provides an example of the developed theory.



Volume 5 Issue 1|2024| 127 Contemporary Mathematics

2. Preliminaries
Here, we present some pre-defined lemmas and definitions.
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Definition 5. The function :x V X→  is known to be an integral solution of equation (1) if
(a)	 :x V X→  is continuous,
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0
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Taking Laplace transformation of equation (2) and applying equation (4), we will get
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Therefore, from equation (5), (7) and (9), for t ( , )x C V X∈ (0, l ] we get
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This concludes the proof.
Using Lemma 2.2, the mild solution of (1) is defined as follows.
Definition 6. The function ( , )x C V X∈  is known to be the mild solution of the Cauchy problem (1) if it satisfies
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The symbol x(t) = xt (x0,u) denotes the state value of the system (1) associated to the control u at the time t. In specific, 
the final state with control u at time l is known to be the state x(l) = xl (x0, u) of the system (1).

Definition 7. The FDE (1) is known to be exact controllable in X on the interval V if for any terminal state ;lx X∈ ∃ 
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3. Controllability results
To identify the key findings, we consider the following hypotheses:
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has an induced inverse operator 1
0 1( , ) / ker ,   and 0W L V U W G G− ∈ ∃ ≥  such that 1

0 1, .B G W G−≤ ≤    
Theorem 3.1. If the hypotheses (H1-H3) holds, then the FDE (1) is exact controllable on V.
Proof. To analyze exact controllability of the FDE (1), we will define control function ux(t) as
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Hence, ( )( ) . Therefore,  maps to . x t Y Yλ λλΩ ≤ Ω 

Step 2: Next, we shall prove that Ω .Ù maps into a precompact sub set of Y Yλ λ

Firstly, we need to prove that ( ) {( )( ) : ( ) }t x t x Yλ= Ω ⋅ ∈  is relatively compact in ,  .X t V∀ ∈  At t = 0, the case is 
trivial. So, let (0, ]t l∈  be fixed and  (0, ), 0 tτ ξ∀ ∈ >  and ,x Yλ∈  we define
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Next, we have to show that 0 1 2 3 4 5 6, , , , ,   and I I I I I I I  ends to zero independent of 2 1 as .x Y t tλ ′ ′∈ →

0 , 2 , 1 0( ) ( )t t xα β α β′ ′≤ −   I .T T

From Remark 2.3(a), , ( )tα βT  is strongly continuous, therefore
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It is clear that 1 2 2 1and as  .  t t′ ′→I I  By Lagrange mean value theorem 63 2 1and a  s  t t′ ′→I I  and from Remark 
2.3(b), ( )tβS  is continuous for t > 0 in the uniform operator topology, we get 54 0 and →I I . Therefore, 

2 1( )( ) ( )( ) 0x t x t′ ′Ω − Ω →   implies that ( )YλΩ  is bounded and equicontinuous. By Ascoli-Arzela theorem, ( )YλΩ  is 
precompact in C [V, X], where Ω is continuous on C [V, X]. Therefore, Ω is completely continuous operator on C [V, X]. 
Since Ω has a fixed point in ( )YλΩ  according to Schauder’s fixed point theorem, it follows that the integral solution of our 
problem (1) is driven by the control u(t) from the initial state x0 to the final state xl in time l. Hence, the system (1) is 
exact controllable on [0, l]. 

4. Example
In order to implement our established result, we considered an example. Take the following Hilfer fractional 

integro-differential system:
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3 2, 13 ( , )4
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where,
3,
4
0

D
β

+  denotes HFD whose order is 
3   and [0,1].
4

α β= ∈

Consider 2[0, ]U X L π= =  and the linear operator A is defined as Ax = x" with the domain 2 2( ) { ( , ) [0, ] : [0, ], ( ,0) ( , ) 0}.D A x t L x L x t x tπ π π′′= ⋅ ∈ ∈ = = 
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2 2( ) { ( , ) [0, ] : [0, ], ( ,0) ( , ) 0}.D A x t L x L x t x tπ π π′′= ⋅ ∈ ∈ = =  Then, 
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Ax m x x D Aφ φ

∞

=

= − 〈 〉 ∈∑

where 2( ) ( )m y sin myφ
π

=  are the eigen functions corresponding to eigen vectors -m2 and 1{ }m mφ =  forms an orthonormal 

basis of X.
The operator A generates a C0-semigroup 0{ ( )}tT t ≥  in X which can be defined as

2
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m m
m

T t x e x φ φ
∞

−

=
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Comparing values with our defined system, x(t)(y) = x(t, y) and the bounded linear operator B: L2(V, U) → L2 (V, X) is 
defined as (Bu)(t)(y) = v(t, y) where v : [0,1] × [0, π] → ℝ. The non-linear function

( ) ( )1 ( , )
10 0

, ( ), ( , , ( )) ) ( , )
l x s yf t x t g t s x s ds sin x t y K e ds−= +∫ ∫

where 
1 ( , )

10
( )( )( ) x s yZx t y K e ds−= ∫ .

Therefore, the hypotheses (H1) and (H2) are satisfied. Also, we can define linear operator 

1

0
( ) ( ) ( )

l
Wu l s l s Bu s dsβ

β
−= − −∫ S

induced with inverse operator W 
-1. Hence, all the hypotheses are satisfied and using theorem we can conclude that 

equation (19) is exact controllable on the interval [0,1].

5. Conclusion
In this manuscript, we focus on investigating the exact controllability of Hilfer FDEs with non-linear integro-

differential functions, considering an order in the range of 0 < α < 1 within a Banach space. To obtain the mild solution 
of the system, we utilize semigroup theory and Laplace transformation techniques.

In the controllability analysis, we introduce specific hypotheses and formulate our main result using the Schauder 
fixed point theorem. The advantage of our approach lies in avoiding the need for complex growth conditions on the 
integral term in the non-linear function. Instead, we employ a fixed point approach.

Furthermore, we present an illustrative example to showcase the practical application of the established theory. 
The concepts and ideas developed in this paper can be extended to establish the exact controllability of a broader class 
of dynamical systems. Additionally, our results have the potential to be extended and applied to systems with impulsive 
and non-local conditions.
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