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1. Introduction

Ordinary differentiation and integration of arbitrary order, which may be non-integer, are generalized in fractional
calculus. Many studies have focused on differential equations of fractional order [1-3]. Many definitions of fractional
integrals and derivatives may be found in the literature, ranging from the most well-known Riemann-Liouville (R-L)
and Caputo-type fractional derivatives to others like the Hadamard fractional derivative, the Katugampola fractional
derivative, the Hilfer fractional derivative, and so on.

Recent advances in engineering, mathematics, physics, bioengineering, and other applied sciences have led to the
application of fractional differential equations in a number of these fields, see for example [4-7].

Hilfer [8] first proposed the Hilfer fractional derivative in 2000. It was a generalization of the R-L and Caputo
fractional derivatives. Such derivative interpolates between the R-L and Caputo derivative in some sense. Recently, it
has become increasingly important to study differential equations’ Hilfer fractional derivative. In recent years, the Hilfer
derivative of differential equations has seen significant progress. A new representation formula and several advantages
of the Hilfer derivative have been presented by Kamocki [9].

A new fractional derivative with respect to another function, the so-called y-Hilfer fractional derivative, has been
introduced and discussed by Sousa and Oliveira [10]. Such derivatives, have been used in many contributions, see [11-13]
and the papers cited therein.
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The differential equations of fractional delay are equations that contain fractional order derivatives and time-delays.
The phrase time-delay can be used to explain the history of a previous condition. Time-delay has applications in biology,
control theory, engineering, population dynamics, physics, and other fields [14-22]. As a result, information regarding
fractional differential delay equations have disseminated through research and investigations. Stability throughout time
in contrast to exponential/asymptotic stability, finite-time stability requires a finite number of time periods. In 1961,
Dorato [23] introduced the concept of finite-time stability.

In 2008, Khusainov et al. [24] introduced a novel solution representation for the equation

W'(r)+ Aw(r—s) =0, s>0, rel0,T],
wr)=y(r), W) =y'(r), rel-s0] (1)

where we R",s denotes the time-delay, y is a vector function that can be differentiated twice continuously, 7> 0 is a
constant integer, and 4 is a nonsingular m>m matrix. The sine delayed matrix polynomial of a 2k +1 degree (sins A4r)
and the cosine delayed matrix polynomial of a 2k degree (coss Ar) are the foundations of their approach. For more
information about cosine and sine delayed matrix polynomials, we advise the reader to read [24]. Liang et al. [25]
adopted the method of cosine and sine delayed matrix to study the stability of the system (1).

Liang et al. [26] have given the concepts of cosine and sine fractional delayed matrices to resolve the equation to a
fractional linear system in pure delay

{"']D)f (D7, )() —APw(r—s),AeR"" r>0,>0

v, W o), Lesrso

where ‘D’ indicates the order’s fractional derivative of Caputo < 0o <1 and y C'([-s,0],R"). They also discussed
its finite-time stability results on L =[0,7], 7> 0.

Using the R-L fractional derivative instead of Caputo derivative, Mahmudov [27] discovered an explicit
formulation for a solution to the aforementioned problems.

In our previous work [28], we represented the solution of the following non-homogeneous system of a Hilfer type

(]D)f’;p+y)(r):By(r—s)+h(r), re[O,T],s>O

y(r):¢(r), ¢(r)e]R",—s<r§0
lim ("7 +y)(r) = b, beR"

where A(r)e C([0,T],R"), ]D)" %y is the Hilfer fractional derivative of type f ¢ [0,1] and order 0 < @ <1, ]11 "y denotes
(1-p)-order of R-L fractional integral with y =a+f—-af,T =kr,keN,s is a fixed moment and ¢ € C ((—z’, 0,R")
is an arbitrary R-L differentiable function. In addition, we discussed the finite-time stability results under appropriate
conditions.

Motivated by the previous research, we attempt to solve the following linear non-homogeneous fractional
differential delay equations of the Hilfer type

T+

]D)“'B(HD"Hy)( ) —Bzy(x—r)+h(x) BeR"X”,xe[O,T],r>O

y(x)=6¢(x), #(x)eR",—r<x<0
1im(]11;1y)( )=b, b eR"
lim I, /(]D)"Hy)( )=Bb,, b, eR" Q)

x>t

where A(x) e C([0,T],R"), ]D)ff y denotes the Hilfer fractional derivative with type # € [0,1] and of order 0 <a <1,I” |
denotes y-order of R-L fractional integral, D""*¢ is the y + a-order of R-L fractional derivative to the initial function
#(x),b,,b, e R" are constants vectors, B is nonsingular matrix, and 7' = jz,j € N and 7 is a fixed moment. That much is
clearto observe 0 <y=a+f—af<l,y>aandy>p.

The rest portions of the document are systemized as the following: Section 2 outlines specific fractional derivatives

Contemporary Mathematics 734 | Ahmed Salem, et al.



and presents the concepts of cosine and sine fractional delayed matrices, which are utilized to solve the fractional
differential system. It also introduces basic lemmas utilized in later theories. Section 3 depicts the solutions of linear
non-homogeneous fractional differential delay equations of the Hilfer type. Section 4 investigates finite-time stability
findings. Section 5 provides a numerical example to demonstrate the key results. Finally, the manuscript is concluded
with a conclusion section.

2. Basic definitions

This section is devoted to introducing some basic concepts and definitions needed to apply our idea.
Definition 2.1 [29]. For a function w:[b,0) = R, the left-sided fractional integral of order ¢ > 0 is introduced by

(G00) = s [ =0 wto,

where the Euler gamma-function is represented by I'(o).
Definition 2.2 [29]. Let me N and m — 1 < o <m, for a function w:[b,0) — R. The R-L fractional derivative of
order o is introduced by

(B 0= (B 0) = e ] )

Lemma 2.1 [30]. Leta>0,0<f<1,A>0and 0 <y <1. Then,

D17 g(r) = g(r),
U "g(r),y > B
]D)Q I[}Q 7) = a*7 s B
Lo 8) {m);i "e(r)7 < B,

(r=ay™
———1 7g(a),
L(y) "ﬂgl(a)
]I}’:/f _ (l" — a)
H&]D)@g(r): ¢ g(r) F(,B)y_l
U e -2

o I'(y)
m(”—a) “,
(1)
D (r—=a)™ ={r(A-y)
0, A=y.

I D" g(r)=g(r)-
I g(a).y > p,
I'Pg(a),y < B,
I (r— a)" =

(r—ay " A%y,

Definition 2.3 [31]. Let me N withm — 1 <a <m and f € [0,1]. The Hilfer fractional derivative with type f and
of order « is given as

D% f(x) = 120D 10070 f(x), x> a.

The following characteristic is simple to demonstrate.
Lemma2.2.Let0<a<1,§ ¢ [0,1],A>0andy=a+ S — af. Then,
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1D () =L ()= ()~ CE D pa,
I'(y)

F(ﬂ’) A-a-1
A v R
0, A=y.

Definition 2.4 [32]. The system described by (2) that meets the initial requirement is finite-time stability in terms
of {0, L, o, n} if and only if ||¢|l< o for all » € L implies || w(r)|[<n for all » ¢ L, where L denotes time interval
L c R, o, 5 are real positive numbers and ¢(r)(—z <r<0) is the initial function of observation.

Definition 2.5 [33]. The special function E,, is called Mittag-Leffler function of two parameters which relays on
two parameters a,b € C. It is defined by the next series with strictly positive real part of a:

0

_ v
B, ()= kZ; T(ak+b)

Definition 2.6 [34]. The two parameters fractional delayed matrix Mittag-Leffler E;": :R —> R™ is defined by

0, —0o<r<—h,
n-1
il _h<r<o0,
i T 1
E;"” = [(r-i-h)"' ny o N
Fep - Tlo-+mn)
i€ L) iy (j-Dh<r< jh
['(jo+n)

where jeN,, and 7/ and @ are the unit and null the matrices, respectively.
Next, we present the concept of cosine and sine fractional delayed matrices.
Definition 2.7 [27]. Two parameters fractional delayed matrix cosine cos, ,, (4r”):R — R™" is defined by

0, —o<r<—h,
](r;(—h))”l’ —h<r<0,
cos,, ,(Ar7) =1, (’”r;l?)”_1 _p o e
LG F@o+m
G _r(éz_jla)hj o (j-Dh<r< jh.

Definition 2.8 [27]. Two parameters fractional delayed matrix sine sin, ,, (4r”):R — R™" is represented as

o, —o<r<—h,
o+n-1
G+h™™ _h<r<0,
I'c+n)
sin, , (Ar7) = (r+h)”"" y o N
I'(c+n) ‘F(30' -(i;z?)m”_l
o1y 2 =G =DT , (j-Dh<r<jh
I'(Q2j+D)o+n)

The next Lemmas can be formulated similar to Lemma 2.10 and Lemma 2.11 in [26].
Lemma 2.3. Let jeN ,re[(j—Dh, jhl,a €(0,1) and § € [0,1], with a + 5> 1. Then,
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<(ren) B, (4] (rn))

< By (A (e h)).
<A+ 1) B, (A (1))
<[l h B, (14I ).

a
"cosh’w Ar

. (24
"smh’w Ar

2a,a+y (

Lemma 2.4 [26]. Let je N, r €[(j—Dh, jhl,a €(0,1), 5 €[0,1] witha+f>1and g:(-h,0] > R" is continuous
function. Then,

.[(ih sin, , A(r—h-s)" g(s)ds“ <|4|E,,.., ("A"2 x* )I . (r —s)a+7_] "g(s)" ds.

3. Representation of the solutions

The current section is presented to derive the representation of solutions of (2) using cos_, , Bx” and sin_,  Bx",
First, some properties of two parameters fractional delayed matrices cosine and sine are stated and proved which are
necessary to establish the solution of (2).

Lemma 3.1. For the delayed matrix cos, , , Bx“ and the delayed matrix sin, , , Bx“, one has

"% cos, , , (Bx*)=cos,, (Bx"),

" sin,, , (Bx") =sin,  (Bx").

7,0, .0,y

Proof. Without losing generality, suppose (k —1)7 < x < k7, k € N . Using Definition 2.1 gives

1 x
I"“cos,,,  (Bx*)=———| (x—t)"“"cos, , (Bt*)dt
-7 & l"(]/ _ a) J:‘r T

—; 0 _ el M AN | (x"'T)OH_ Z(X)MH

_F(y—a){ff(x ) (1 ) jdr+f0 (x—1) (1 ) B F(3a))dt
a-1 3a-1 (2k+1)a—1

A (x_t),-n_l(,(xw) g ® ¢ g (= (k=Do) ]4

+--+(-1D)'B
(k=17 I'(c) I'Ga) I'2k+Da)

Reformulating the previous integrals and using Lemma 2.1 leads to

]If;“ cos,__(Bx")

7,0,

_ 1 * _ p\y-a-l (x + z-)0[71 * _a\ra-l| _p2? (x)3!1*1 .
o w { L(x ) (l—r(a) jdt + jo (x—1) [ B 6o JdtJr
o (1= (k=D)* J 0

+j(‘ (x—ty ™| (-1)B

k=7 I'((2k +Da)
_r- [1—“ +o)” J+ e (—Bz ()" J+ e T [(—1)k e (- k=D J
- (@) 0 I'Gea) (k- » 'k +He)
:]()H'T)y _B ()™ bt (<) B (x—(k=Dr)™"
I'(y) I'Ca+y) I'2ka+y)
=cos, , (Bx“).

7,a,y

By following same steps the second statement will be proved.

Lemma 3.2. For the delayed matrix cos_, (Bx”) and the delayed matrix sin, ,  (Bx“), one has

7.a.y
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I7°*D" . cos, , ,(Bx“)=Bsin,, (B(x—1)%), A3)
I*D" , sin, ,  (Bx*)=Bcos, , (Bx"). 4)

T,.a,y
Proof. By investigating the proof to each interval, we obtain

For any —oo <x < —7. Obviously (3) and (4) hold.
For any —7 <x < 0. In view of the last statement in Lemma 2.1, we find

y-1
17D [ cos, ., (Bx) | =17 <D . {1 %} =I""[6]=0
Y

and by using last two statements in Lemma 2.1, we get

a+y-1
VoW [eos, ., (Bx) =171, {B%}

I'a+y)
_pre| (x+7)*" } _3 (x+7)"" .
- I'(a) L(y)

Thus (3) and (4) hold forx ¢ (—,0].
For any (k — 1)t <x < kz. With applying the rules of Lemma 2.1 and Lemma 3.1, we have

17D’ . cos,,  (Bx")
. )4 I (x+z')771 _B2 xZaHV*l ++(_l)k sz (x_(k_l)z_)Zkaﬂ/fl
e L(y) FQa+y) T(2ka +y)
=% ® —32 xzdfl et (—l)k BZk M
I (2a) T(2ka)

=17 [ -Bsin,, ,(B(x-7)") | =-Bsin,, (B(x—7)")

and

D7 sin, , (Bx)

a+y-1 3a+y-1 _ _ Qk+Da+y-1
— HiZa]D)i N B (.X + T) _ B3 X et (_l)k BZkH (.X (k I)T) :|
vt T'la+y) I'Ga+y) I'Qk+DHa+y)
a-1 3a-1 —(h_ (2k+Da-1
— H}/*ff B (X + T) _ B3 X Feeet (_l)k B2k+l (x (k I)T)
- I'a) I'Ga) I'k+Ha)

= Hf:f’ Bcos,,, (Bx* )] =B cos, ., (Bx").

These end the proof.

Theorem 3.1. Let cos, , , : R — R™ be the two parameters fractional delayed matrix cosine defined in Definition
2.7. Then,

a,p a,p a _ a
D" (D" cos, ,,  (Bt"))(x) = -B’ cos, , (B(x—1)%). %)

Proof. Without losing generality, suppose (k—1)7 <x <kz,k € N,. Using Lemma 2.2, we have
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D=2 (D" cos, , , (B))(x)
pet | pes| UED T g O gm0 e GO
UL ;) TQa+y)  T(4a+y) T (2ka+7)

= Da’{} (@ — B2 t‘“V*l 4 (t - 7)30”771 —t (—I)k BZk (t - (k - 1)7)(21(’1)‘“771 j(x)
’ La+y) — TGa+y) T((2k-Da+7)
_ g g GO gy G D
I'(y) T'Q2a+y) T((2k—2)a +7)
Iy TQa+y) T((2k—-2)a+7)

=-B’cos,_, (B(x—1)").

The evidence is now complete.

Theorem 3.2. Let sin_, (Bx"):R — R"™ be the two parameters fractional delayed matrix sine defined in
Definition 2.8. Then,

D*F (DY sin,, , (Bt")(x) = -B*sin, , (B(x—1)"). ©)

Proof. This theorem can be proven as previous one.
The solution of homogeneous equation corresponding to (2) can be deduced by the following theorem.
Theorem 3.3. The solution’s representation y € C((—7,7],R") of (2) when A(x) = 0 is formulated by

y(x)=b cos_, (Bx“)+b,sin_, (Bx")

{B(x—7—9)"} (D" " $)(s)ds.

T.a,y

0 .
+ J‘ S
-7

7.a,y

Proof. In view of Theorems 3.1 and 3.2, the homogeneous solution of (2) when /(x) = 0 should be in the form

(x)=c¢cos,, (Bx")+c,sin_, (Bx“)

+ j" sin,,{B(x—7—9)"}g(s)ds, 7

.a.y

where ¢,,c, € R" are unknown constants vectors and g(-) is an unidentified function that must be determined.
When —7 < x <0 and from the second condition in (2), we have

b = lim (I'7)(x)

= lim [ ! r (x=1)7 |:Cl cos, , (Bt")+c,sin_, (Bt*)+ Ii sin, , {B(t—7-5)" }g(s)ds} dtj.

o =y

The limit x > —7"* implies to t = —z*, by Definition 2.8, we get that sin
by using Lemma 2.5 in [35], we have

b] = lim [;J‘x (x_t)—y |:cl] (t+ Z')y_] N CZB (f + z.)ot+7—l :|dtJ
x—>-7" r(] - 7/) -7 1_,(}/) r(a N 7/)

¢,B(x+71)* Bll—y.a+ 7])

{B(t—7-5)"} =0 for —7<s <0. Hence,

,a.y

- (et (e

=q.

Now, according to the third condition in (2) with using Lemma 2.2, we find that
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Bb, = lim, }1“(11))“ 1)(x)

xo—1* F(l— ) T(») T(a+7)
o dtj
= lim [P By |= Be,.

= (A=)
Since B is non singular matrix hence it has an inverse. So ¢, = b,. It indicates that equation (7) has the form

¥(x)=b,cos_, (Bx“)+b,sin_, (Bx")
+ J:O sin,, {B(x—7—5)"}g(s)ds.

T,.a,y

When —7 < x < 0. Two subintervals will be created from this interval.
Interval I when —7 <s < x. In this case, we have —t < x — 7 — s <x, which implies that

(x—s)‘”y’l
sin, , {B(x—7-5)}=8B Tain

-7<s<X.
Interval IT when x < s < 0. In this case, we have x — 7 <x — 7 — s < —7, which implies that

{B(x-7—-5)"}=0, x<s5<0.

ray

Then, according to our problem (2) when 4(x) = 0 with two cases above, rewriting the previous integral leads to

g(s)ds

P#(x)=b1

(x+7)"" b B (x+2')“+’ - J- (x—s)*7"
L(y) 7 Tla+y) o T@+y)
(x+7)"~ . B(x+ )7

L(y) ° I(a+y)

=bl +17 g(x).

By operating the fractional derivative D"’ both sides of the aforementioned equation with using Lemma 2.1 and
Lemma 2.5 in [35], we can get

(D" )(x) = g ().

This completes the proof.
Theorem 3.4. The representation of particular solution y e C((~z,T],R") of (2) verifying condition y,(x) = 0 if x
€ [-7,0] is formulated by

y,(x)= j Ox sin, ,, {B(x—7 =)} (D7 h(s))ds. (8)
Proof. The solution, according to the technique of variation of constants, should be in the form
», () = [ sin, , {B(x—7—s) Ja(s)ds ©

where a(s), 0 < s < x is an unknown vector function and y,(0) = 0 for k&t <x < (k+ 1)z and k € N;. According to (2), we
obtain
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(]D)ff]l))‘ffyp )(x) = —BZI;T sin_ {B(x -2 —s)a} a(s)ds+h(x). (10)
Operating two Hilfer derivative operators on (9) with noting that y,(x) = 0 if x € [~7,0]. Then,

@Dy, )0) = DDy [sin,

_meBrr-amy [Fa
_D(r ]I0+ Do*_[o sin

{B(x—71—5)"}a(s)ds
{B(x—7—5)}a(s)ds.

.a.y

In the first step of proof of Lemma 7 in [27], he proved that

D7, jo" sin, , {B(x—7—s)"}a(s)ds = j(:a(s)m){ sin___{B(x—7—s5)"}ds,

n.a.y

which can be used with the results in Lemma 3.2 to get

(D*/D*y )(x) = DE/T jo D/, sin__{B(x—7—s)"}a(s)ds

=D’ ﬁ j; (x—1) ! [ jo D/ sin_, {B(t—7~s)" }a(s)ds} dt
—pes ﬁ Jya@)| [ =07y sin, (B —r )"yt s .

Since 0 <s <x, the integral from s to x could be rewritten as

jox (x—ty "D, sin,, {B(t—7—s5)"}dt - jo (x—ty "D sin, ,  {B(t—7—s)"}dt.

r.a,y
While proving Lemma 3.2, we found that

D7, sin, , {B(t—7—5)" = Bcos, , ,{B(t—7—s)".

When ¢ € (0, s), we find that -7 —s <t—7— s <—7rand so

cos_ {B(t—-7-5)" =0,

which implies that the second integral is identically zero. Therefore, we have
(D*/D*y, )(x) =D’ jo a(s)I7-D7. sin

= ID)“”’JX Bcos
0" Jo r.a.y
X
— T7r-emyv
—]10+ ID)O,J‘ Bcos

ey {B(x—7—15)"}ds
{B(x—71—5)“}a(s)ds
{B(x—7—5)"}a(s)ds

=1 % F(ll_ > .[0* (x=1)7 Uot cos, , AB(t—7—s5)" }a(s)ds] dt}
=1 % ml_y) jo a(s)[ j (x—1)7 cos,, {B(t—7 —s)“}dt}ds}.

Dividing the intervals of double integral leads to
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DD’y )(x) =1 i{ j “a(s)IY (1 Mj ds
dx |70 s

L'(y)
+L “(S)HH,( FQa+y) st
-y _\k ZkM
+- +I a(s)]l ( )'B ke t?) jds}

Applying Lemma 2.1 to compute the fractional integrals

“rp _ped]p e (==
@Dy, ) %) =T, E{L a(s)ds— B jo a(s)m

k ok [Xke —kr—s5)*
+-+(=D)"B fo a(s)%ds}.

Using Leibnitz rule for differentiation under the integral, we get

a,pme.B _mr-a _n2 T (')(:_1-_'~S‘)2L171 _1\k p2k-2 x-ke (x_kT_S)zkail
(D*/D*y Y(x) =1/ a(x)- B {1]0 a(s)—r(za) ds+-+(-1)'B jo a(S)—F(2ka) ds}}

=0 ot(x)—Bz.[(:C “sin aAB(x=2r—-5)" }a(s)ds}

:]Ig:“a(x)—Bsz; (x—:)%“*‘[jor in. (B(t-2r—5)" }a(s)ds:ldt

=1'"a(x)- B ﬁ jo’”a(s)[ j (x—1)“sin, , {B(t—27 —s)"}dt}ds
=I""a(x) - sz "% sin, ,  {B(x—27—5)"}a(s)ds

=T'""a(x)- B jo {B(x 27 —5)"}a(s)ds.

ra;/

Equating the last line with (10) leads to

a(x) =D7"“h(x).

The proof is completed.

Combining the results of the previous two theorems, we can establish the general solution of the problem (2) as
will be stated in the following theorem.

Theorem 3.5. The solution’s representation y € C((—7,T],R") of (2) is formulated as

»(x)=b,cos,_,  (Bx“)+b,sin,, (Bx*)
+ j° sin, , {B(x—7 — )} *“$)(s)ds
+ j: sin, ., {B(x—7—5)* }(D/""h(s))ds. (11)

n,a,y

n.a.y

4. Finite-time stability results

In the current part, sufficient conditions are presented to guarantee finite-time stability by using the two parameters
of fractional delayed matrices, cosine, sine, and Mittag-Leffler. Before proving the next theorems, we display the
following hypotheses.

(R,) The functions (D/"“A)(x) € C([0,T],R") and (D"’ ¢)(x) € C((-7,0],R").

(R,) There is a positive function y/(x) € C([0,T],R, ) thatsays | D/™A(x) |<y(x) with y = ||t//|| = s[u()[;]{(//(x)}.
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(R;) There is a positive function ¢(x) € C((-7,0],R*) that says "(]D)f :f¢)(x)|| < @(x) with ¢ = ||(p|| = sup {p(x)}.
xe(-7,0]

(R,) There is a positive function 7(x) € L/([0,7],R*) withp>1, ¢ > 1 and l+l =1 such that "]D)gfah (x)” <n(x)

p 9
and

1

J(x) = ( j;(n(t))"dt); <o

with J = sup J(x).

0<x<T

(Rs) There is a positive constant 4 that says

i (I Jozpfa) <=

Theorem 4.1. Suppose that hypotheses (R;) — (R;) hold. If a < (1-8)/(2- f),]| #(x)||< & and

E

2a,a+y(

[P )<< vy|e-[ple By, (B )
"B" (a+ 7)||b2||z'0’*7’l +T Q4 Ty

for all x € [0,7]. Then, the problem (2) is finite-time stability in relation to {0,[0, 7], 7, o, €}.
Proof. In view of the expression (11), which is the solution of (2) with using the results obtained in Lemmas 2.3
and 2.4 and norm properties, we have

)< 1ol Ba, (1B 5 ) + 1B oo, (1B 5
e ol ) O e
= o B, (181 )+ (| <)

+7)—x"
X {”b2 ||T"+7—1 + %”(o(x)" + p

a+
X}/

2

Obviously, the function x > (x+7)*"” —x*"” is decreasing on [0,7] for all z> 0 and 0 < a + y < 1, which implies that
(x+7)*" —x*7" <
Hence,
|B| B,y .o, (1 B x™)
a+y

[l + S+
0{+)/ 0{+j/

X

| <[b]r By, A BIF x)+
vi<e, x€[0,T].

The proof is completed. 1
Theorem 4.2. Suppose that the hypotheses (R)), (R,), and (R;) hold. If & < (1—,3)/(2—ﬁ),0l+7 >1-—
[6(x)] < & and P

>

1
q

A egr
+

o7 By, (1B 3> )+ 18] T
(l—p(l—a—y))p

2 —
B )

2a,a+y ( <&
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for all x € [0,7]. Then, the problem (2) is finite-time stability in relation to {0,[0,7], 7, J, &}.
Proof. Using norm properties, we have

<l s, (||B||2 ) +[|B By, ..., |8 5 )
{"b ||Ta+7 1+J‘ a+7 (]D)ym (s ”ds+J xX— s . H(HDQah)(S)HdS}
<[ B, (|81 2“) BB, (|8 <)

1
]D)’*“ dsjq

2a,a+y (

x{ubznrww(f pe a1
IR (4 CeS )}

<l Ba, (181 ) +1BI B, ( B )

1-p(1-a-7) ’ 1-p(1-a—7)
Ao e a| B +J(x)(—x J .
l1-p(l-a-y) I-p(l-a-7y)
Since p>1and a+y <1, thenp(a+y— 1)+ 1<1 and so as above, we get

v <1z Ean, (18 )+ |81 Ba, (18T <)

1 1
I-p(l-a-y) N 1-p(l-a-y) P
x| 77 + 4] —= Cag| X “les
1-p(l-a-y) l1-p(d-a-y)

The proof is over now.

5. A numerical example

In this part, we provide an illustration to demonstrate the validity of our theoretical findings. In this case, we use

|yl=> y, | and
i=1
”B” = rFJaxz:;|bU|

where y =(y,,5,,---,,) € R" is a vector and B € R™ with elements b, € R, which are a rectilinear norm or £,-norm
and matrix norm respectively.
Example 5.1. Consider the problem

Contemporary Mathematics 744 | Ahmed Salem, et al.



11
DS (D)) = B y(x-3)+h(x),  xe[0,9],

y(x) :¢(x)=(%(x+3)2,%(x+3)2) , —3<x<0,

-

lim (I'7 y)(x) = b,
x—>-3" 7
11

lim 17 (D45 y)(x) = Bb,

where a =0.25, #=0.125,9=0.3438,7=3,T=9,k=3,p=2, g =2, y(x) = (1(x), y»(x))T, and
0.1 0 3 _ oy
B , h(x):L(xz 2x J
0 0.03 100\ X" —x’

Obviously, |B|=0.1,a=0.25<(1-8)/(2-)=0.4667, and a + y = 0.5938 > 1/g = 1/2. By carrying out

Mathematica software, we can find that

sup |, , ("B"2 xZa) = Bos 0343 ((0'1)2 x9"? ) ~0.413374,
0<x<9

sup B, ., (1B ) = Bys s ((0.1)" %9 ) ~ 0.697507.
0<x<9
The function

#(x) =[é(x+3)2,é<x+3>2j

is continuous on (—3,0] and

Il = sup ~(x+3)" =,

—3<x<0

which concludes that 6 = 3. According to Lemma 2.1, we obtain

o (43 er3) Y
L #l9= 3( Té4-7)° r(4—7)j '

Since y(x)=¢(x) for all -3 <x <0, then

0
. 1- . 1—
b=l 12300 = i 100

! o, Ll 0
Bb, = lim T'7 (D% y)(x) = lim T (D*F¢)(x) = [ 0)

)

which implies that ||b1 ||= 0 and ||b2 ||: 0 Also, we can calculate the following
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21 (]
D7 p)(x) == F’m>-§%§f§7&}

2(x+3) -

H®’¢xm—3re_”,

1 3-y+a
which leads to (]D)’ “#)(x) € C((~3,0],R*) and the hypothesis (R,) is satisfied. Also, we can find y(x) = [6x—
@y 2 T4y 100 T4 =y +a)
L2 + ’ D/ h(x) as
Fd+y+a) F(3—;/+a) I l+a) 0

6x7 202y +Dx"

y-a _ F(4 y+a) T(+y+a)
ID)O h( ) 2X2 rta _F(}/-i-l)xa ’

F(3—}/+a) r+ea)

which implies that

6x> 7 2T @2y +Dx

L2 T+

D7~ h(x)| =

" ()" 1oo|r(4 y+a) T(+y+a) | 100lG-y+a) T(+a) |
B 6x> 7 +2F(2y+1)x””+ 277 F(}/—i—l)x
100\ T(4-y+a) T(+y+a) F(3—;/+a) rd+ea)

This leads to D7 "“h(x) € C ((=3,0],R*) and the hypothesis (R,) is satisfied.
Application to Theorem 4.1. According to assumption (R,), we can take

3-y+a y+a 2-y+a a
wix )_ 6x +2F(2}/+1)x N 2x +F(}/+1)x
100l T(4-y+a) T(+y+a) TIGB-y+a) TI(+a)

which concludes that (x) € C([0,9],R") and

w = sup w(x)~ 7.47538.

0<x<9

According to assumption (R;), we can take

2 (x+3)*7
o0 =20
3T3-y)
which concludes that
2-y
= su xX)=— ~2.75583.
4 -3<£0 ¢ 3TG-y)

In view of our calculations and the results of Theorem 4.1, we must take ¢ 3.85869, which concludes that the
system given by (2) is finite-time stable with respect to {0, [0, 9], 3, 3.86}.
Application to Theorem 4.2. In view of hypothesis (R,), we can take

() = 6x> 7 2F(2;/ +1)x" . x> F(;/ +1)x*
T 100 r4- }/+a) rd+y+a) 1"(3—}/+a) I'l+a)
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which concludes that 7(x) € L*([0,9],R") and

J(x)= (J.:(n(t))zdt);

1

x 3-rta y+a 2-y+a a \2 2
! [I[ 6t L2MQp T+ jdtJ |

T100| o\ T@—y+a) Td+y+a) TG-y+a) T[(+a)

This leads to J ~ 8.79481. In view of hypothesis (R;), we find that

A=([" ;e ¢)(s)||2ds);
< ﬁ(ﬁ (s+ 3)“%)E

3

2032

(5-27)T3-y)

~2.29852.

In view of our calculations and the results of Theorem 4.2, we have to take € > 2.15116, which concludes that the
system given by (2) is finite-time stable with respect to {0, [0, 9], 3, 2.16}.

Table 1. Finite-time stability results of problem in Example 5.1

Theorem a y T T 6 iZ€3] € Finite-time stability
4.1 0.25 0.3438 9 3 3 3.85869 3.86 Yes
4.2 0.25 0.3438 9 3 3 2.15116 2.16 (optimal) Yes

6. Conclusion

In Section 3, the representation of solutions for the fractional delay Cauchy problem of Hilfer type was derived
using two parameters of fractional delayed matrices, cosine, and sine. Finite-time stability results are established under
appropriate conditions in Section 4. According to these results and applying the values in Example 5.1, we can take € =
3.86 in Theorem 4.1 and in Theorem 4.2. Comparing the values of ¢ in Table 1, we find an optimal threshold ¢ =2.16,
such that || y(x)|| does not exceed it on [0, 9].
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