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1. Introduction
In q-calculus, we are looking for q-analogues of mathematical functions that have the original function as limits

when q tends to unity [1]. The history of q-calculus (and q-hypergeometric functions) dates back to Kac et al. [2] 
and Jackson [3, 4], who first introduced the q in their introduction [5] in the tracks of Newton’s infinite series. In 
recent years, interest in the subject has exploded [6]. This is, of course, due to the fact that q-analysis has proven 
itself extremely fruitful in quantum theory, mechanics, number theory, and the theory of relativity [7], has wide-
ranging applications in areas like computer science and particle physics, and also acts as an important research tool for 
researchers working with analytic number theory or theoretical physics.

The differential transform scheme is a numerical method for solving systems of equations involving algebraic, 
differential, integral, and integro-differential differential equations. The concept of differential transformation was first 
proposed by Zhou [8]. The main applications of this method are to solve both linear and nonlinear initial value problems 
in electric circuit analysis and to give exact values of the nth derivative of an analytical function at a point in terms of 
known and unknown boundary conditions in a fast manner [9].

The main motive for solving integral equations is their use in mathematical models for many physical situations. 
Integral equations also occur as reformulations of other mathematical problems, such as partial differential equations 
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and ordinary differential equations [10]. In this study, the q-differential transform is introduced to solve Volterra q-integral 
equations. The concept of one-dimensional q-differential was first proposed and applied to solve linear and nonlinear 
initial value problems by Jafari et al. [11].

A general integral equation for an unknown function y(x) can be written [12] as

( ) ( ) ( ) ( , ) ( ) ,
b

a

f x a x y x K x t y t dt= + ∫                                                                 (1)

where f (x), a(x), and K(x, t) are given functions. The function K(x, t) is called the kernel.
There are different types of integral equations:
The equation (1) is said to be of the first kind if the unknown function only appears under the integral sign, if a(x) = 0, 

otherwise of the second kind.
The equation (1) is said to be a Fredholm equation if the integration limits a and b are constants and Volterra if a 

and b are functions of x.
The equation (1) is said to be homogeneous if f (x) = 0, otherwise it is nonhomogeneous. 
Moreover, the q-analogue of integral equations has been defined by Mansour [13] as

0

( ) ( , ) ( ) ( ),    [0, ],
x

p
qx k x t t d t f x x aφ φ= + ∈∫

where 0 <| p |< 1, and Fredhlom q-integral equation is defined as

1

0

( ) ( , ) ( ) ( ),     0 1p
qx k x t t d t f x xφ φ= + ≤ ≤∫

and

1

0

( ) ( ) ( , ) ( ) ,     0 1.p
qx f x k x t t d t xφ φ= + ≤ ≤∫

In this paper, the q-differential transform has been employed to solve some q-integral equations of the Volterra 
type.

2. Preliminaries and q-notations
Some basic concepts of q-calculus are given in [3, 4, 14]. The q-derivative of a real continuous function ζ(x) is 

defined as

1

( ) ( ) ( )( )( ) , 0, 0 1.
( ) ( 1)

( )(0) (0),

q
q

q

d x qx xD x x q
d x q x

D q

ζ ζ ζζ

ζ ζ−

−
= = ≠ < <

−

′=

where ζ ̕̕̕̕ (0) exists.
The q-integral of real valued continuous function ζ(x) and ψ(x) is defined in [15] as

( ) ( ) ( ) ( ) ( ) ( ) ( ).
a c

q q
b a

x x d x a x x d xζ ψ ζ ζ ψ=∫ ∫
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We find that

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ),
b c b

q q q
a a c

x x d x a x d x b x d xζ ψ ζ ψ ζ ψ= +∫ ∫ ∫                                                
(2)

where qa ≤ c ≤ qb, this result is an analogue of du Bois-Reymond’s theorem.
Definition 1. The series representation of the q-exponential function is defined as [16]

0
.

[ ] !

j
x
q

j q

xe
j

∞

=

= ∑

Further,

.q x x
q q

q

e e
x

δ
δ

=

If all the q-differentials of a function ζ(x) exist in some neighbourhood of a, then q-Taylor formula [17] is given as

0
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For further details in q-calculus go through [3, 7, 14, 18].

3. Analysis of q-differential transform method

For the function f (y) the differential transform of kth derivative is defined by Zhou [8] as

0

1 ( )( ) .
!

k

k
y y

d f yF k
k dy

=

 
=  

                                                                         
(3)

The differential inverse transform of F(k) is defined as

0
0

.( ) ( )( )k

k
f y F k y y

∞

=

= −∑                                                                        (4)

From equations (3) and (4), we get

0

0
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y y d f yf y
k dy

∞

=
=

−
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However, the basic definitions and results of the differential transform method are given in [8, 19-26].
Jafari et al. [11] has defined the q-analogue of differential transform.
Definition 2. The q-differential transform of the function f (z, t) is defined as

1( ) ( , ) ,
[ ] !

k
q

k
q q t a

d
F k f z t

k d t
=

 
=  

                                                                      
(5)

where all the q-differentials of f (z, t) exist in some neighbourhood of t = a, and F(k) is the transformed function.
Definition 3. The inverse q-differential transform of the function F(k) is defined as

0
( , ) ( )( ) .k

k
f z t F k t a

∞

=

= −∑
                                                                       

(6)

From the definitions (5) and (6), we get

0

1( , ) ( , ) ( ) .
[ ] !

k
q k

k
k q q t a

d
f z t f z t t a

k d t

∞

= =

 
= − 

  
∑

The fundamental operations of q-differential transform can readily be obtained and are very useful on our approach for 
solving q-integral equations listed below in Table 1 [11].

Table 1. Operations of q-differential transformations

      Original function        Transformed function

( ) ( ) ( )f u vη η η= ± ( ) ( ) ( )F k U k V k= ±

( ) ( )f uη α η= ( ) ( )F k U kα=
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Result: If w(x, y) = x 
mt 

n, then Wk (x) = x 
m 𝛿(k � n), where
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Proof. From (5), we have
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4. Main result
Theorem 1. Suppose that F(k) and G(k) are the q-differential transformations of the function f (y) and g(y), 

respectively, then we have with the help of (2).

a) If 
0
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Next, for m ≥ 1, we have
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Now, with the help of (5) and (6), we have
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(b) This can be proved on the same lines as above in Proof (a).

5. Applications and numerical results
In this section, we apply the method to solve some Volterra q-integral equations [13]. These results show that the 

method is simple and effective and leads to an exact solution.
Example 1. We consider the following Volterra q-integral equation

2

0

( ) 1 ( ) ( ) ( ), 0 1.
2

y

q
yv y y y t v t d t y= − − + − < <∫

Sol: By using operations from Table 1 and according to theorem as stated above, we have the following relation:

1 1

0 0

( 2) ( 1) ( 1)( ) ( ) ( 1) ( 1) ( ) , 1, (0) 1.
2

k k

l l

k V k l V k lV k k k l l l k V
k l k

δδ δ δ δ
− −

= =

− − − − −
= − − − + − − − ≥ =

−∑ ∑

Consequently, we find

(1) 1, (2) 0,

1(3) , (4) 0,
[3] !

1(5) ...
[5] !

q

q

V V

V V

V

= − =

−
= =

−
=

Therefore, from (6), the solution of the above integral equation is given by

3 51 1( ) 1
[3] ! [5] !

       1 sin ( ),

q q

q

v y y y y

h y

= − − − − ⋅⋅⋅

= −

which is the solution of the above q-integral equation. The exact solution for different values of q and y are given in 
Figure 1 and exact solution for fractional order 0 < q < 1 is given in Figure 2.
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Figure 1. Exact solution of Example 1, for                                                         Figure 2. Exact solution of Example 1, 
   different values of q and y                                                                                for fractional order 0 < q < 1

Example 2. Consider the linear Volterra q-integral equation

0

( ) ( ) ( ) ( ), 0 1, | | 1.
y

qv y y t y v t d t y q= + − < < <∫

Sol: From the Theorem 1 above and from Table 1, the relation is given by
1 1

0 0

( 1) ( 1)( ) ( 1) ( ) ( 1) , 1, (0) 0.
1

k k

l l

V k l V k lV k k l l l k V
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δ δ δ
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Consequently, we have

(1) 1, (2) 0,

1(3) , (4) 0,
[3] !

1(5) ... .
[5] !

q

q

V V

V V

V

= =

−
= =

−
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Therefore, from (6), the solution of the above integral equation is given by

3 51 1( ) 1 sin ( ),
[3] ! [5] ! q

q q

v y y y y= − − − ⋅⋅⋅ =

which is an exact solution. The exact solution for different values of q and y are given in Figure 3 and exact solution for 
fractional order 0 < q < 1 is given in Figure 4.
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Figure 3. Exact solution of Example 2, for                                                  Figure 4. Exact solution of Example 2, 
  different values of q and y                                                                         for fractional order 0 < q < 1

Example 3. Consider the nonlinear Volterra q-integral equation

2
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2 2
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which is an exact solution. The exact solution for different values of q and y are given in Figure 5 and exact solution for 
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fractional order 0 < q < 1 is given in Figure 6.

                      

                          Figure 5. Exact solution of Example 3, for                                                        Figure 6. Exact solution of Example 3, 
different values of q and y                                                                            for fractional order 0 < q < 1

Example 4. Consider the nonlinear Volterra q-integral equation

2
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which is an exact solution of the above integral equation. The exact solution for different values of q and y are given in 
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Figure 7 and exact solution for fractional order 0 < q < 1 is given in Figure 8.

                      

                            Figure 7. Exact solution of Example 4, for                                                      Figure 8. Exact solution of Example 4, 
different values of q and y                                                                           for fractional order 0 < q < 1

Table 2 gives the numerical estimation of exact solutions of the above mentioned examples.

Table 2. Numerical estimation of exact solution of Example 1, Example 2, Example 3, and Example 4 for different values of q and y

Example 1 q y v(y) Example 3 q y v(y)

0.1 1 -1.4830 0.1 1 0.0901

0.2 2 -20.2259 0.2 2 -3.0430

0.3 3 -84.2453 0.3 3 -10.0188

0.4 4 -210.5381 0.4 4 -20.8755

0.5 5 -387.8595 0.5 5 -34.9524

Example 2 q y v(y) Example 4 q y v(y)

0.1 1 -0.4830 0.1 1 0.8286

0.2 2 -18.2259 0.2 2 6.3199

0.3 3 -81.2453 0.3 3 26.0483

0.4 4 -206.5381 0.4 4 63.0752

0.5 5 -382.859 0.5 5 114.6265

6. Conclusion
It is well known that integral equations are used to model many physical problems given in the form of ordinary 

and partial differential equations. In this work, the q-differential transform method has been used to solve various 
Volterra q-integral equations. The solutions are given in exact form, and additionally, numerical results have been 
presented to show the efficiency of the given method. Moreover, numerical results have been presented graphically, 
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which is well accepted by the obtained results. Thus, it can be concluded that the q-differential transform method is an 
easy and efficient method to solve various problems arising in different fields of applied mathematics.
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