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Abstract: In the present article, we establish sufficient conditions for the existence of a unique bounded solution using 
a prominent fixed-point theorem for the non-linear initial value problem involving the recently introduced Hilfer nabla 
fractional difference operator.
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where 0 1,0 ß 1, ß ßι<ℵ< ≤ ≤ =ℵ+ −ℵ  and : .n n
xj × →    We also analyze the Ulam-Hyers stability of the 

considered problem and make some interesting observations on the dependence of its solutions on initial conditions 
and parameters. Finally, we conclude this article by constructing suitable examples to illustrate the applicability of 
established results.
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1. Introduction
The theory of nabla fractional calculus is a relatively new branch of mathematics that deals with arbitrary order

differences and sums in the backward sense, with works drawing a lot of attention in the past decade [1-10]. The notions 
of nabla fractional difference and sum were put forward by Gray and Zhang [11] and Miller and Ross [12]. Following 
their works, several mathematicians’ contributions have made the theory of nabla fractional calculus a worthy area of 
research in emerging science. For related theories of fractional difference equations and real-world applications that 
demonstrate the importance of discrete fractional calculus, we refer to [13-24].

Stability analysis of functionals has a vital role in various branches of mathematics. This analysis can be traced 
back to the question raised by Ulam [25], looking for conditions in order for a linear mapping close to an approximately 
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linear mapping to exist. Hyers first approached this question, and later his approach was strengthened by Rassias [26], 
which we have today as Hyers-Ulam-Rassias stability theory.

In 2000, Hilfer [27] gave the generalized Riemann-Liouville fractional derivative, which contains a parameter that 
lets us interpolate between the Riemann-Liouville and the Caputo fractional derivatives as particular cases. Since then, 
the Hilfer fractional derivative has drawn the attention of many scientists. Motivated by Hilfer’s definition, the authors 
in [28, 29] introduced the nabla Hilfer fractional derivative and obtained some of its important preliminary properties 
for initial value problems of order 0 1 and 1 2.<ℵ≤ <ℵ≤

In the present article, we take the following initial value problem involving the Hilfer nabla fractional difference 
operator [28]:
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where 0 1,0 ß 1, ß ßι<ℵ< ≤ ≤ =ℵ+ −ℵ  and : .n n
xj × →   . The present article is organized as follows: We begin with 

some preliminary definitions and established results of nabla fractional calculus in Section 2. In Section 3, under suitable 
assumptions on the non-linear function j, we obtain sufficient conditions for the existence of a unique bounded solution 
of (1) on a well-defined space using the Banach fixed point theorem with respect to the weighted supremum norm. In 
Section 4, we analyze the dependence of solutions of (1) on initial conditions and parameters. Finally, in Section 5, we 
discuss the Ulam-Hyers stability of (1) and conclude the article with problems to illustrate the application of established 
results.

2. Preliminaries
Let ℝ and ℤ˗ be the sets of all real numbers and non-positive integers, respectively. Define { , 1, 2, 3, }x x x x x= + + + …

...} for any .x∈  Assume empty sums and products are 0 and 1, respectively. Let : xξ →  and 1.R∈  The nabla 
difference of s of order 1 is defined by ( )( ) ( ) ( 1)s s sα α α= − −  for 1,xα +∈  and the Rth-order nabla difference of ξ can

be defined recursively by ( ) ( )( )1( ) ( )R Rξ α ξ α−=    for .x Rα +∈

Definition 2.1. (See [18]). The generalized rising function for \α −∈   and ρ ∈ such that ( ) \ ,α ρ −+ ∈  , is 
defined by

( ) ,
( )

ρ α ρα
α

Γ +
=

Γ

where Г(.) represents the Euler gamma function  and sα −∈ ∈  such that, ( ) \ ,α ρ −+ ∈   then we use the convention 

that 0.βα =
Lemma 2.2. (See [10]). Assume the following are well defined:

i. ß ß( ) ;α α αℵ ℵ++ℵ =
ii. If α ≤ s, then ;sαℵ ℵ≤
iii. If , then .s sα α−ℵ −ℵℵ< ≤ ≤
Definition 2.3. (See [18]). Let  ,  and \ .xα ζ∈ ∈ −   . The nabla fractional Taylor monomial of ζth-order is 

given by

( )( , ) ,
( 1)

xH x
ζ

ζ
αα
ζ
−

=
Γ +

provided the right-hand side exists.
Lemma 2.4. (See [3]). Let 1 and .xζ ρ> − ∈  Then, the following results of Taylor monomials hold:
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1. ( )If , then ( , ( )) 0.Hρ ζα α ρ∈ ≥ 
2. If , then ( , ( )) 0.Hρ ζα α ρ∈ ≥ 
3. 1If 1 0 and  , th . ( , ( )) 0en Hρ ζα ζ α ρ+∈ < < ≥   is a decreasing function of α.
4. If 1 0, then ( , ( )) and Hρ ζα ζ α ρ∈ − < <   is an increasing function of ρ.
5. If 0 , then ( , ) ( , ) for each fixed .v xv H x H xζζ α α α< ≤ ≤ ∈
Definition 2.5. (See [5]). Let :  and 0xξ ζ→ >  . The nabla sum of ζth-order of ξ is given by

( ) 1( ) ( , ( )) ( ), ,x x
x

H
α

ζ
ζ

ρ

ξ α α ρ ξ ρ α−
−

=

= ∈∑  

where ( ) 1.ρ ρ= −
Theorem 2.6. (See [5]). (Power Rule) Let 0 and 1.ζℵ> > −  Then,

( 1)( 1) ( 1) for .
( 1)x xx xζ ζζα α α
ζ

−ℵ +ℵΓ +
− + = − + ∈

Γ +ℵ+


Definition 2.7. (See [5]). Let : ,  0xξ ζ→ >   and choose 1W ∈  such that 1 .W Wζ− < ≤  The Riemann-
Liouville nabla difference of ζth-order of ξ is given by

( ) ( )( )( )( ) ( ), .W W
x x x W
ζ ζξ α ξ α α− −

+= ∈  

Remark 2.8. It can be observed from Definition 2.5 and Definition 2.7 that if : ,xξ →   then ( ) ( ):  and : .x x x x W
ζ ζξ ξ−

+→ →    

( ) ( ):  and : .x x x x W
ζ ζξ ξ−

+→ →    
Definition 2.9. (See [4]). Let ζ > 0, choose 1W ∈  such that 1 .W Wζ− < ≤  and : .x Wξ − →   The ζ th-order Caputo 

nabla difference of ξ is given by

( ) ( )( )
* ( ) ( ) ( ), .W W

x x x
ζ ζξ α ξ α α− −= ∈  

Definition 2.10. (See [28, 29]). Let : ,0 ß 1,xξ → ≤ ≤   and choose 1W ∈  such that 1 .W W− <ℵ≤  The ℵth-order 
and : ,0 ß 1,xξ → ≤ ≤  th-type Hilfer nabla difference of ξ is defined by

( ) ( ),ß ß( ) (1 ß)( )( ) ( ), .W W W
x x W x x Wξ α ξ α αℵ − −ℵ − − −ℵ

+ += ∈   

The type : ,0 ß 1,xξ → ≤ ≤   allows to interpolate continuously from the Riemann-Liouville case ,0
x x
ℵ ℵ≡   to the Caputo case ,1

* .x x
ℵ ℵ≡ 

Definition 2.11. [30] The one-parameter discrete Mittag-Leffler function is defined by

0

( )( , ) ,
( 1)

k
k

k

xF x
k

αα
ℵ∞

ℵ
=

−
Λ − = Λ

Γ ℵ +∑

where 0 1, 1 and .xα<ℵ< Λ < ∈
Lemma 2.12. [10] Consider (0,1).Λ∈  Then,
a. ( ,0) 1;Fℵ Λ =
b. ( , )F xαℵ Λ − →∞ monotonically with respect to α;
c. [ )( , ) : 1, ;xF xαℵ Λ − → ∞

d. 1
1( , ) ( , ) 1 .( )x F x F xα α−ℵ

+ ℵ ℵΛ − = Λ − −
Λ



Throughout Section 3, we take
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( ) ( , )  for  0 1  and  .xw F xα α αℵ= Λ − < Λ < ∈

3. Unique bounded solution
In this section, under suitable assumptions on the non-linear function j, we obtain sufficient conditions for the 

existence of a unique bounded solution of (1) on a well-defined space using the Banach fixed point theorem with respect 
to the weighted supremum norm. First, we state some important definitions and theorems of functional analysis [31], 
which are vital in establishing the main results.

Definition 3.1. We define the set

( ) { :   with  }.n n
xl l ξ ξ∞ ∞

∞
= = → < ∞  

Then, ( ), .l l∞ ∞=  is a Banach space consisting of bounded sequences of real vectors with ( ), .l l∞ ∞=  been the supremum 
norm defined by

sup ( ) .
xα

ξ ξ α
∞

∈
=



Definition 3.2. ( ), .w wl l∞ ∞=  denotes the Banach space consisting of bounded sequences of real vectors with ( ), .l l∞ ∞=  been 
weighted supremum norm defined by

( )
sup ,

( )x
w wα

ξ α
ξ

α∈
=



where [ ): 1, , ( ) 1, ( )xw w x w α→ ∞ = →∞  monotonically with respect to α.
Theorem 3.3. [28] ξ is a solution of the initial value problem (1) if and only if ξ is a solution of the Volterra 

summation equation

   
0 1 1

1
( ) ( , ( )) ( , ( )) ( , ( )), .x

x
H x H j

α

ι
ρ

ξ α ξ α α ρ ρ ξ ρ α− ℵ−
= +

= + ∈∑  
    

(2)

Define the following operator

0 1 1
1

( ) ( , ( )) ( , ( )) ( , ( )), .x
x

T H x H j
α

ι
ρ

ξ α ξ α α ρ ρ ξ ρ α− ℵ−
= +

= + ∈∑  

Remark 3.4. It is clear from Theorem 3.3 that ξ is a fixed point of T if and only if ξ is a solution of (1).
Theorem 3.5. (See [10]). Consider D > 0 a random constant. Then, consider the function j defined on n

x ×   or 
on a sub-region of the type

{ }( , ) : ( )   for all  .xM Dα ξ ξ α α= ≤ ∈

Let j be a continuously differentiable function with respect to the second argument on n
x ×   (or M), and also 

assume there exists a constant Q > 0 such that for all ( , )  (or ),n
x Mα ξ ∈ ×   

( , ) , ( 1,2, , ),
p

j Q p nα ξ
ξ

∂
≤ = …

∂

then j is Lipschitz continuous with Lipschitz constant Q with respect to its second argument on ( , )  (or ),n
x Mα ξ ∈ ×   
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Theorem 3.6. [Contraction Mapping Theorem] [31] Let H be a closed subset of a Banach space X. Assume 
Y : H → H is a contraction mapping, that is, there exists a µ, 0 < µ < 1 such that

,Y Yh hξ µ ξ− ≤ −

for all , .h Hξ ∈  Then, the operator Y has a unique fixed-point t in H.
We make the following assumptions on j:
(H1) j is Lipschitz continuous with respect to its second variable on n

x ×  , i.e., there exists a constant [ )0,Q∈ Λ  
such that for all ( , ),( , ) ,n

xhα ξ α ∈ ×   

( , ) ( , ) .j j h Q hα ξ α ξ− ≤ −

(H1)’j is Lipschitz continuous with respect to its second variable on M, i.e., there exists [ )0,Q∈ Λ  a constant such 
that for all ( , ),( , ) ,xh Mα ξ α ∈ ×

( , ) ( , ) .j j h Q hα ξ α ξ− ≤ −

(H2)

( ,0)
sup

( )x
w

j
j

wα

α
α∈

= < ∞


(H2)’

( ,0)
sup

( )x
w

j Dj
w Qα

α
α∈

= < < ∞
Λ −



(H3) For any pair of elements ξ and h in  

2
1 1( , ) ( , ) ( ) , ,xj j h M x hια ξ α α ξ α−

+− ≤ − − ∈

   where M1 ≥ 0 and ℵ < t2 < 1. 
(H4) x1 = M1Г(1˗ t2) < 1. 
(H5) j is continuous concerning the second argument.
The following result can be easily verified with Definition 2.3 and Lemma 2.4.
Lemma 3.7. Consider ß ßι =ℵ+ −ℵ  where 0 1 and 0 ß 1.<ℵ< ≤ ≤   Then,

 1( , ( )) 1, .xH x tι α− ≤ ∈

Theorem 3.8. Suppose that (H1) and (H2) hold. Then, there exists a unique solution for the initial value problem (1) 
defined on 1( , ( )) 1, .xH x tι α− ≤ ∈  

Proof. We first show that : .w wY l l∞ ∞→  We have seen that wl
∞  is a complete metric space with the norm-weighted sup-

metric defined by
 

( ) ( )
( , ) sup ,

( )x

h
h

wα

ξ α α
ξ

α∈

−
=





for each pair , .wh lξ ∞∈  Using Lemmas 2.12 and 3.7, we have
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Thus, we have . Let , w wY l h lξ ξ∞ ∞∈ ∈  and consider

1
1

1
1

( ) ( )
sup

( )
1                sup ( , ( )) ( , ( )) ( , ( ))
( )

( ) ( )
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x
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Since ,Q Y< Λ  is a contraction. Hence, by Theorem 3.6, Y has a unique solution in wl
∞ . 

We now state here the local existence result using the Banach fixed point theorem.
Theorem 3.9. (See [25]). Let ( , )X X=   be a complete metric space containing an open ball 0( )rC t′

  having centre t0 
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and radius 0: ( ). Let rE Cr t X′′ →  be a contractive map with a positive number 1 > q as the contraction constant. If

0 0( , ) (1 ) ,E q rα α ′< −

then there exists a unique fixed point in 0( )rC α′  for the operator E.
Theorem 3.10. Suppose that the conditions (H1)’ and (H2)’ hold. Let l > 0 and define a set

{ }(0) : ,w
l ww

B l lξ ξ ∞= < ⊂

where

2 .
( )

Dl
Q

=
Λ −

Then, there exists a unique bounded solution of (1) in (0).w
lB

Proof. Clearly, Y maps (0) into . w
l wB l∞  We have seen that Y is a contraction, with 1.Q

<
Λ

 Now, we use Theorem 3.9 
and Lemma 2.12 to establish a unique bounded solution in (0).w

lB  Consider

1
1

1
1

1
1

0 0
0 0 sup

( )

1              sup ( , ( )) ( ,0)
( )

( ,0)1              sup ( , ( )) ( )
( ) ( )

1              sup ( , ( )) ( )
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w
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w
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α

−ℵ
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∈
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∈

=
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Λ − Λ

 
= − Λ Λ −  

 = − Λ 









Hence, from Theorem 3.9 the result follows and there exists a unique bounded solution in (0).w
lB

Now, we show the boundedness of the solution of (1) under suitable assumptions on the non-linear function j.
Theorem 3.11. Assume j satisfies (H5) and there exists constants [ )1 1,1  and 0Cι ∈ ℵ ≥  such that

     1
1 1( , ( )) ( ) , .xj C x ια ξ α α α−

+≤ − ∈      (2)

Then, there exists a positive constant
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1 1
2 0

1

(1 )max , ,
( 1)

CC ιξ
ι

 Γ −
=  Γ ℵ− + 

such that the solution of (1) satisfies

( )1
2( ) 1 ( ) , .xC x ιξ α α αℵ−≤ + − ∈

Proof. Using Lemma 3.7 in (2), for ,xα ∈  we have

1

1 1

1

0 1 1
1

1 0 1 1
1

1 1
0 1 1 0

1

2

( ) ( , ( )) ( , ( )) ( , ( ))

         ( , ( )) ( , ( ))( )

(1 )         ( ) ( )
( 1)

         1 ( ) .

 

 

 ( )

x

x

x

H x H j

H x C H x

CC x x

C x

α

ι
ρ

α
ι

ι
ρ

ι ι

ι

ξ α ξ α α ρ ρ ξ ρ

α ξ α ρ ρ

ιξ α ξ α
ι

α

− ℵ−
= +

−
− ℵ−

= +

− ℵ−−ℵ
+

ℵ−

≤ +

≤ + −

Γ −
≤ + − = + −

Γ ℵ− +
≤ + −

∑

∑

 

 



As 1, ( ) 0,x ια α ℵ−→∞ − →  implying that

2( ) 2 , .xC tξ α ≤ ∈

4. Data dependence
In this section, we analyze the dependence of solutions of (1) on initial conditions and parameters. It can be easily 

shown that ß ß 1,ι =ℵ+ −ℵ ≤  the result of which helps us to say 1( , ( ))H xι α−   is a decreasing function of α by Lemma 2.4.
Theorem 4.1. Assume that j satisfies conditions (H3) and (H5). Suppose ξ and h satisfy the initial value problems

	 	 	
( ) ( ),ß (1 )

0 1( ) ( , ( )), ( ) ( ) , ,x x xx
j xι

α
ξ α α ξ α ξ α ξ ξ αℵ+ − −

+=
 = = = ∈   

	 	 	 	
(3)

               ( ) ( ), ß (1 ) 
0 1( ) ( , ( )), ( ) ( ) , ,x x xx

h j h h h xι

α
α α α α ξ αℵ − −

+=
 = = = ∈        (4)

respectively, where 0 and 0 1.> <ℵ<ℵ+ <   Then,

            ( ) ( ) ( ),h Oξ α α− =         (5)

provided (H4) holds.
Proof. The initial value problems (3) and (4) are equivalent to

0 ß ß ß 1 1
1

0 1 1
1

( ) ( , ( )) ( , ( )) ( , ( )), ,

( ) ( , ( )) ( , ( )) ( , ( )), ,

x
x

x
x

H x H j

h H x H j h

α

ρ
α

ι
ρ

ξ α ξ α α ρ ρ ξ ρ α

α ξ α α ρ ρ ρ α

ℵ+ + −ℵ − − ℵ+ −
= +

− ℵ−
= +

= + ∈

= + ∈

∑

∑





   

 

respectively. Using Lemma 2.2 and Lemma 2.4, for 1,xα +∈  we have
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( ( )) ( ( ))                   ( , ( )) ( , ( ))

( ) ( )

( 1) ( )                    ( ) 1
( ) ( (1 ß))

(              

 

    

 

 

 

   

x x

x

j j h

x x

ι

α α

ρ ρ

ι

ξ
ι

α ρ α ρρ ξ ρ ρ ρ

α ι α ι ξ
ι ι

α

−

ℵ+ − ℵ−

= + = +

−
−

−
Γ

− −
+ −

Γ ℵ+ Γ ℵ

− + Γ
≤ − + −

Γ Γ + −

−
+

∑ ∑






 




  

1

1

1

1

1

0

( )) ( , ( )) ( , ( ))  
( )

( ( )) ( )                     ( , ( )) ( ) 1
( ) ( )

(2) ( ) ( (1 ß))                    1
( ) ( (1 ß)) ( )

 

 

 

x

x

j j h

j h

x
x

α

ρ

α

ρ

ι

ρ ρ ξ ρ ρ ρ

α ρ ρ ρ α ρ

ι α ι ξ
ι ι α ι

ℵ+ −

= +

ℵ−

= +

−

−
Γ ℵ+

 − Γ ℵ
+ − +ℵ − Γ ℵ Γ ℵ+ 

Γ Γ − + + −
≤ −
Γ Γ + − Γ − +

∑

∑














 

 

1

1

1

1

( ( ))                  ( , ( )) ( , ( ))
( )

( ( )) ( ) ( )                    ( , ( )) 1 .
( ) (

 

)
 

) (

 
x

x

j j h

j h

α

ρ

α

ρ

α ρ ρ ξ ρ ρ ρ

α ρ α ρρ ρ
α ρ

ℵ+ −

= +

ℵ−

= +

−
+ −

Γ ℵ+

− Γ ℵ Γ − +ℵ+
+ −

Γ ℵ Γ ℵ+ Γ − +ℵ

∑

∑




 
     

(6)

Since

10

1 ( ) ( (1 ß))lim 1
( (1 ß)) ( )

x A
x

ι α ι
ι α ι→

Γ Γ − + + −
− =

Γ + − Γ − +


 

and

20

1 ( ) ( )lim 1 ,
( ) ( )

Aα ρ
α ρ→

Γ ℵ Γ − +ℵ+
− =
Γ ℵ+ Γ − +ℵ


 

we have

             
( ) ( (1 ß)) 1 ( ),
( (1 ß)) ( )

x O
x

ι α ι
ι α ι

Γ Γ − + + −
− =

Γ + − Γ − +



       

(7)

             

( ) ( )1 ( ).
( ) ( )

Oα ρ
α ρ

Γ ℵ Γ − +ℵ+
− =
Γ ℵ+ Γ − +ℵ




                    
(8)

Substituting (7) and (8) in (6), for 1,xα +∈ , we have
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2 2

2 2

1 1

0 1
1 1

( )
0 1 1 1

( ( )) ( ( ))( ) ( ) ( ) ( ) ( ) ( )   ( ) ( )
( ) ( )

                     ( ) ( ) ( ) ( ) ( ) ( )

                  

x x

x x

h O M h x O j x

O M h x O j x

α α
ι ι

ρ ρ

ι ι

α ρ α ρξ α α ι ξ ξ α α ρ ρ

ι ξ ξ α α α α

ℵ+ − ℵ−
− −

∞
= + = +

− −− ℵ+ −ℵ
+ +∞

− −
− ≤ + − − + −

Γ ℵ+ Γ ℵ

= + − − + −

∑ ∑

 





 
 



 

2 2

2 2

2 2
0 1

2 2

2 2
0 1

2 2

(1 ) (1 )   ( ) ( ) ( ) ( )   ( ) ( )
(1 ) (1 )

(1 ) (1 )                     ( ) ( ) ( ) (1)   ( ) (1)
(1 ) (1 )

              

O M h x O j x

O M h O j

ι ι

ι ι

ι ιι ξ ξ α α α α
ι ι

ι ιι ξ ξ α α
ι ι

ℵ− + ℵ−
∞

ℵ− + ℵ−
∞

Γ − Γ −
= + − − + −

Γ − +ℵ+ Γ − +ℵ

Γ − Γ −
≤ + − +

Γ − +ℵ+ Γ − +ℵ





 


 


0 1 2 2       ( ) ( ) ( ) (1 ) ( ) (1 ).O M h O jι ξ ξ α α ι ι
∞

= + − Γ − + Γ − 

Then, we have the relation

0 2

1 2

(1 )
( ) ( ) ( ),

1 (1 )
j

h O
M

ι ξ ι
ξ α α

ι
∞

 + Γ − 
− ≤  − Γ − 



implies that

( ) ( ) ( ).h Oξ α α− = 

Theorem 4.2. Assume that j satisfies conditions (H3) and (H5). Suppose ξ and h satisfy the initial value problems

               ( ) ( ),ß (1 )
0 1( ) ( , ( )), ( ) ( ) , ,x x xx

j xι

α
ξ α α ξ α ξ α ξ ξ αℵ − −

+=
 = = = ∈        (9)

              ( ) ( ),ß (1 )
0 1( ) ( , ( )), ( ) ( ) , , x x xx

v j h h h x hι

α
α α α α αℵ − −

+=
 = = = ∈                   (10)

respectively, where 0 < ℵ < 1. Then,

( )0 0( ) ( ) ,h O hξ α α ξ− = −

provided (H4) holds.
Proof. The initial value problems (9) and (10) are equivalent to

0 1 1
1

0 1 1
1

( ) ( , ( )) ( , ( )) ( , ( )), ,

( ) ( , ( )) ( , ( )) ( , ( )), ,

x
x

x
x

H x H j

h h H x H j h

α

ι
ρ

α

ι
ρ

ξ α ξ α α ρ ρ ξ ρ α

α α α ρ ρ ρ α

− ℵ−
= +

− ℵ−
= +

= + ∈

= + ∈

∑

∑





 

 

0 1 1
1

0 1 1
1

( ) ( , ( )) ( , ( )) ( , ( )), ,

( ) ( , ( )) ( , ( )) ( , ( )), ,

x
x

x
x

H x H j

h h H x H j h

α

ι
ρ

α

ι
ρ

ξ α ξ α α ρ ρ ξ ρ α

α α α ρ ρ ρ α

− ℵ−
= +

− ℵ−
= +

= + ∈

= + ∈

∑

∑





 

 

respectively. Using Lemma 2.4, we have for 1,xα +∈
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2

1 1

0 0
1

1 1

0 0 1
1

0 0 1 1

( 1) ( ( ))( ) ( ) ( , ( )) ( , ( ))
( ) ( )

(2) ( ( ))                    ( ) ( ) ( )
( ) ( )

                    ( ) ( )

x

x

x

xh h j j h

h M h x

h M h

ι α

ρ

ι α
ι

ρ

α α ρξ α α ξ ρ ξ ρ ρ ρ
ι

α ρξ ξ α α ρ
ι

ι ξ ξ α α

− ℵ−

= +

− ℵ−
−

= +

+

− + −
− ≤ − + −

Γ Γ ℵ

−
≤ − + − −

Γ Γ ℵ

= − + −

∑

∑







    

    

    

2

2

2

2
0 0 1

2

2
0 0 1

2

0 0 1 2

( )

(1 )                    ( ) ( ) ( )
(1 )

(1 )                    ( ) ( ) (1)
(1 )

                    ( ) ( ) (1 ).

x

h M h x

h M h

h M h

ι

ι

ι

α

ιι ξ ξ α α α
ι

ιι ξ ξ α α
ι

ι ξ ξ α α ι

−−ℵ

ℵ−

ℵ−

−

Γ −
= − + − −

Γ − +ℵ

Γ −
≤ − + −

Γ − +ℵ

= − + − Γ −

Thus, we have

0 0

1 2

( ) ( ) ,
(1 )

h
h

M
ι ξ

ξ α α
ι

−
− ≤

Γ −

implies that

( )0 0( ) ( ) .h O hξ α α ξ− = −

Theorem 4.3. Assume that j and j1 both satisfies (H3) and (H5). Suppose ξ and h are the solutions to the initial value 
problems

               
( ) ( ),ß (1 )

0 1( ) ( , ( )), ( ) ( ) , ,x x xx
j xι

α
ξ α α ξ α ξ α ξ ξ αℵ − −

+=
 = = = ∈   

               (11)

               ( ) ( ),ß (1 )
1 0 1( ) ( , ( )), ( ) ( ) , ,x x xx

h j h h h xι

α
α α α α ξ αℵ − −

+=
 = = = ∈                   (12)

respectively, where 0 1.<ℵ<  Then,

( )1( ) ( ) ,h O j jξ α α
∞

− = −

provided (H4) holds.
Proof. The initial value problems (11) and (12) are equivalent to

0 1 1
1

( ) ( , ( )) ( , ( )) ( , ( )), ,x
x

g H x H j
α

ι
ρ

ξ α α α ρ ρ ξ ρ α− ℵ−
= +

= + ∈∑  

0 1 1 1
1

( ) ( , ( )) ( , ( )) ( , ( )), ,x
x

h H x H j h
α

ι
ρ

α ξ α α ρ ρ ρ α− ℵ−
= +

= + ∈∑  

respectively. Using Lemma 2.4, we have for 1,xα +∈



Volume 5 Issue 1|2024| 791 Contemporary Mathematics

1

1
1

1

1
1

1

1

( ( ))( ) ( ) ( , ( )) ( , ( ))
( )

( ( ))                     ( , ( )) ( , ( )) ( , ( )) ( , ( ))
( )

( ( ))                     ( , ( )) ( , ( ))
( )

 

x

x

x

h j j h

j j h j h j h

j j h

α

ρ

α

ρ

α

ρ

α ρξ α α ρ ξ ρ ρ ρ

α ρ ρ ξ ρ ρ ρ ρ ρ ρ ρ

α ρ ρ ξ ρ ρ ρ

ℵ−

= +

ℵ−

= +

ℵ−

= +

−
− ≤ −

Γ ℵ

−
= − + −

Γ ℵ

−
≤ −

Γ ℵ

∑

∑

∑







2

2

1

1
1

1

1 1
1

1 1 1

( ( ))                    ( , ( )) ( , ( ))
( )

( ( ))                     ( ) ( ) ( )
( )

                     ( ) ( ) ( )

       

x

x

x

j h j h

M h j j x

M h j j x

α

ρ

α
ι

ρ

ι

α ρ ρ ρ ρ ρ

α ρξ α α ρ

ξ α α α

ℵ−

= +

ℵ−
−

∞
= +

−−ℵ
+∞

−
+ −

Γ ℵ

−
≤ − + − −

Γ ℵ

 = 

 

− + − −





∑

∑







2

2

2
1 1

2

2
1 1

2

1 1 2

(1 )              ( ) ( ) ( )
(1 )

(1 )                     ( ) ( ) (1)
(1 )

                     ( ) ( ) (1 ).

M h j j x

M h j j

M h j j

ι

ι

ιξ α α α
ι

γξ α α
ι

ξ α α ι

ℵ−
∞

ℵ−
∞

∞

Γ − = − + − −  Γ − +ℵ

Γ − ≤ − + −  Γ − +ℵ

 = − + − Γ − 

Thus, we have

[ ]
2 1

1 2

(1 )
( ) ( ) ,

1 (1 )
j j

h
M
ι

ξ α α
ι

∞
Γ − −

− ≤
− Γ −

implies that

( )1( ) ( ) .h O j jξ α α
∞

− = −

5. Ulam-Hyers stability
In this section, we discuss the Ulam-Hyers stability of (1) and conclude the article with two examples to 

demonstrate the applicability of the established results. We consider the following nabla fractional difference equation:

              ( ),ß
1( ) ( , ( )), ,d

x xjξ α α ξ α αℵ
+= ∈                  (13)

where 10 1, 0 ß 1, : .d n n
xj +<ℵ< ≤ ≤ × →    Let for 0 and : ,d n

xψ +> →   we consider the following inequalities:

            
,ß

1( ) ( , ( )) , ,d
x xjτ α α τ α αℵ

+− ≤ ∈                   (14)

        
,ß

1( ) ( , ( )) ( ), ,d
x xjτ α α τ α ψ α αℵ

+− ≤ ∈                 (15)

        
,ß

1( ) ( , ( )) ( ), .d
x xjτ α α τ α ψ α αℵ

+− ≤ ∈                 (16)
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Definition 5.1. The equation (13) is Ulam-Hyers stable if there exists a real number kj > 0 such that for each 0,>  
and for each solution : d n

xτ →   of the inequality (14), there exists a solution : d n
xξ →   of the equation (13) with

( ) ( ) , .d
j xkτ α ξ α α− ≤ ∈

Definition 5.2. The equation (13) is Ulam-Hyers-Rassias stable with respect to ψ if there exists kj,ψ > 0 such that for 
each 0,>  and for each solution : d n

xτ →   of the inequality (15), there exists a solution : d n
xξ →   of the equation (13) 

with

,( ) ( ) ( ), .d
j xk ψτ α ξ α ψ α α− ≤ ∈

Definition 5.3. The equation (13) is generalized Ulam-Hyers-Rassias stable with respect to ψ if there exists kj,ψ > 
0 such that for each solution : d n

xτ →   of the inequality (15) there exists a solution : d n
xu →   of the equation (13) 

with

,( ) ( ) ( ), .d
j xk ψτ α ξ α ψ α α− ≤ ∈

Remark 5.4. It can be observed that Definition 5.2 ⇒ Definition 5.1 and Definition 5.2 ⇒ Definition 5.3.
We now state here a discrete analogue of Gronwall’s inequality.
Definition 5.5. (See [13]). The nabla Mittag-Leffler function for 1, 0,f < ℵ>  and ß ,∈  is defined by

, ,ß ß
0

( , ) ( , ), .k
f k x

k
E x f H xα α α

∞

ℵ ℵ +
=

= ∈∑ 

Theorem 5.6. (See [2]). (Generalized Gronwall Inequality) Let ℵ > 0, j be a non-negative function and q, s be non-
negative and non-decreasing functions defined on 0  such that 0( )  for all ,s Mα α≤ ∈  where M is a constant. If

( )0 0( ) ( ) ( ) ( ) ( ), ,j q s jα α α α α−ℵ≤ + Γ ℵ ∈

then 

( ) ( ), ,0 0( ) ( ) ( ,0), .sj q E αα α α αΓ ℵ ℵ≤ ∈

Remark 5.7. The function : n
xτ →   is a solution of the inequality (14) if and only if there exists a function   

 j1 : n
xτ →   such that
(i) 1,( ) , d

xξ α α +≤ ∈

(ii) ( ),ß
1 1( ) ( , ( )) ( ), .d

x xj jτ α α τ α α αℵ
+= + ∈ .

Remark 5.8. If : d n
xτ →   is a solution of (13) then τ is a solution of the following inequality

1 1
1

( ) ( ) ( , ( )) ( , ( )) ( , ( )) ( , 1).
x

x H x H j H d x
α

ι
ρ

τ α τ α α ρ ρ τ ρ− ℵ− ℵ
= +

− − ≤ +∑  

By Remark 5.7, we have

        ( ), ß
1 1

 ( ) ( , ( )) ( ), .d
x xj jτ α α τ α α αℵ

+= + ∈Ñ                 (17)

Then, the solution of (17) is given by
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[ ]1 1 1
1

( ) ( ) ( , ( )) ( , ( )) ( , ( )) ( ) ,
x

x H x H j j
α

ι
ρ

τ α τ α α ρ ρ τ ρ ρ− ℵ−
= +

= + +∑ 

then we can write

1 1 1 1
1 1

1
1

( ) ( ) ( , ( )) ( , ( )) ( , ( )) ( , ( )) ( )

                                                                                         ( , ( ))

              

 

x x

x

x H x H j H j

H

α α

ι
ρ ρ

α

ρ

τ α τ α α ρ ρ τ ρ α ρ ρ

α ρ

− ℵ− ℵ−
= + = +

ℵ−
= +

− − =

≤

∑ ∑

∑

  

 

                                                                            ( , 1)
                                                                                          ( , 1).

H x
H d x

αℵ

ℵ

= +
≤ +



We assume 
(L1) j is continuous function with respect to second variable; 
(L2) There exists xj > 0 such that

( , ) ( , )  for each    and  , .d n
j xj j h x h hα ξ α ξ α ξ− ≤ − ∈ ∈ 

Theorem 5.9. (13) with ξ(x) = ξ(0) is Ulam-Hyers stable if the conditions (L1) and (L2) hold.
Proof. Let τ satisfy the inequality (16). From Theorem 3.3, the unique solution ξ of (13) with initial condition 

( )(1 )
0( ) ( )x x

xι

α
ξ α ξ ξ− −

=
  = =   is given by

0 1 1
1

( ) ( , ( )) ( , ( )) ( , ( )), .d
x

x
H x H j

α

ι
ρ

ξ α ξ α α ρ ρ ξ ρ α− ℵ−
= +

= + ∈∑  

It follows with the help of Remark 5.8 that

0 1 1
1

0 1 1
1

1 1
1 1

( ) ( ) ( ) ( , ( )) ( , ( )) ( , ( ))

                     ( ) ( , ( )) ( , ( )) ( , ( ))

                       ( , ( )) ( , ( )) ( , ( ))

x

x

x x

H x H j

H x H j

H j H

α

ι
ρ

α

ι
ρ

α α

ρ ρ

τ α ξ α τ α ξ α α ρ ρ ξ ρ

τ α ξ α α ρ ρ τ ρ

α ρ ρ τ ρ α ρ

− ℵ−
= +

− ℵ−
= +

ℵ− ℵ−
= + = +

− ≤ − −

≤ − −

+ −

∑

∑

∑ ∑

 

 

 

0 1 1 1
1 1

1
1

( , ( ))

                     ( ) ( , ( )) ( , ( )) ( , ( )) ( , ( )) ( , ( )) ( , ( ))

                     ( , 1) ( , ( )) ( ) ( ) .

x x

j
x

j

H x H j H j j

H d x x H

α α

ι
ρ ρ

α

ρ

ρ ξ ρ

τ α ξ α α ρ ρ τ ρ α ρ ρ τ ρ ρ ξ ρ

α ρ τ ρ ξ ρ

− ℵ− ℵ−
= + = +

ℵ ℵ−
= +

≤ − − + −

≤ + + −

∑ ∑

∑  

  

 

Then, from Theorem 5.6, we have

, ,0 , ,0 ,( ) ( ) ( , 1) ( ,0) ( , 1) ( ,0) ,  for  .
j j

d
x x j xH d x E H d x E d k ψτ α ξ α α αℵ ℵ ℵ ℵ− ≤ + ≤ + = ∈  

Thus, (13) is Ulam-Hyers stable.
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5.1 Example

We construct here two examples to demonstrate the applicability of the established results in the preceding 
sections.

Example 5.10. Consider the initial value problem

         

( )0.5,ß
0 1( ) (0.1)sin ( ), ,

(0) 1.

u α α ξ α α

ξ

 = + ∈



=



                (18)

Take Λ = 0.4. Then, we see that j satisfies (H1) with Q = 0.1. Thus, we have Q < Λ and

0 0.5

( ,0)
sup sup .

( ) (0.4.( 0))x

j
w Fα α

α α
α α∈ ∈

= < ∞
−

 

Thus, by Theorem 3.8, (18) has a unique bounded solution defined on ℕ0.
Example 5.11. Consider the initial value problem

    

( )0.5,ß 2
0 1( ) 1 (0.05) ( ) , ,

(0) 1.

gξ α α α α

ξ

  = − + ∈ 


=



                (19)

Take Λ = 0.4 and D = 1. Then, we see that j satisfies (H1)’ with Q = 0.1. Thus, we have Q < Λ and

0 0.5

( ,0) 1sup sup 1 3.333.
( ) (0.4.( 0))x

j D
w F Qα α

α α
α α∈ ∈

−
= < < =

− Λ −
 

Thus, in Theorem 3.10, (19) has the unique bounded solution (0),w
qB  where

2 11.111.
( )

Dq
Q

= =
Λ −

6. Conclusion
In this work, we, under suitable assumptions on the non-linear function, have established sufficient conditions for 

the existence of a unique bounded solution. For this purpose, we have used the Banach fixed point theorem on a well-
defined space for a non-linear initial value problem involving the Hilfer nabla fractional difference operator of order 
0 < ℵ < 1. We have also analyzed the Ulam-Hyers stability of the considered problem and made some interesting 
observations on the dependence of its solutions on initial conditions and parameters. Finally, we have concluded this 
article by constructing suitable problems to illustrate the application of established results. The development of the 
Hilfer nabla fractional operator and its properties are scarce in the literature. Conditions on existence, uniqueness, 
and stability analysis such as Ulam-Hyers stability for the considered initial value problem involving the Hilfer nabla 
fractional operator would play a vital role in the analysis of possible models involving the nabla fractional Riemann-
Liouville and Caputo operators.
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