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1. Introduction
The theory and implementation of fuzzy systems have advanced significantly in many areas since Zadeh [1] first

introduced the idea of fuzzy sets in 1965, particularly in the theory of fuzzy control systems. Fuzzy differential equations
have been explored by many authors [2–5]. Fuzzy differential equations were studied for the first time by Kaleva [6]. In
addition to presenting the existence and uniqueness theorem for a fuzzy differential equation solution, he also addressed
the characteristics of differentiable fuzzy set value mappings. Zadeh’s extension of a function with regard to a parameter
and the independent variable is the fuzzy optimization problem, which is an objective function in [7].

Fuzzy integro-differential equations have earned notable in the theory of fuzzy analysis, which has made them
occupy a valuable place in theory, application, measurement theory and control theory. Impulsive functional differential
equations represent a significant area of study because these equations provide a suitable foundation for the mathematical
modeling of many phenomena and real processes explored in electronics, optimal control, economics and other fields
[8–11]. However, a nonlocal condition is better at describing natural events compared to a classical initial condition. In
recent years, the Cauchy problem with the nonlocal condition has also attracted a lot of interest [12–15].

In Ramesh et al. [16] studied the existence and uniqueness of a solution of the fuzzy impulsive differential equation

Copyright ©2024 Najat H. M. Qumami, et al.
DOI: https://doi.org/10.37256/cm.5420242578
This is an open-access article distributed under a CC BY license
(Creative Commons Attribution 4.0 International License)
https://creativecommons.org/licenses/by/4.0/

Volume 5 Issue 4|2024| 4399 Contemporary Mathematics

http://ojs.wiserpub.com/index.php/CM/
http://ojs.wiserpub.com/index.php/CM/
https://www.wiserpub.com/
https://orcid.org/0000-0002-8329-7641
https://orcid.org/0000-0003-0481-4944
https://orcid.org/0000-0001-7578-3685
https://doi.org/10.37256/cm.5420242578
https://creativecommons.org/licenses/by/4.0/


ρ ′(κ) = P(κ, ρκ)

ρ(κ0) = ρ0 ∈ Xn,

∆ρ(κn) = Inρ(κn), κ ̸= tn, n = 1, 2, 3, . . . , k,

by using the method of successive approximation. Then Benchohra et al. [17] studied existence of impulsive fuzzy
differential equations by using a fixed point theorem for absolute retract.

In Vengataasalam et al. [18] studied the existence and uniqueness of the nonlocal impulsive fuzzy differential
equation

ρ ′(κ) = A ρ(κ)+P(κ, ρκ), κ ∈ [0, a]

∆ρ(κn) = Inρ(κn), κ ̸= tn, n = 1, 2, 3, . . . , k,

ρ(0) = h(κ1, κ2, . . . , κq, ρ(.))+ρ0,

by using the Banach fixed point theorem.
Motivated by the above work, in this article, we study the fuzzy nonlocal impulsive integro-differential equations as

form:

ρ ′(κ = A ρ(κ)+P(κ, ρκ ,
∫ κ

0
H (κ, µ, ρµ)dµ), κ ∈ (0, K ]

∆ρ(κn) = Inρ(κn), κ ̸= tn, n = 1, 2, 3, . . . , k,

ρ(κ)+h(ρσ1 , ρσ2 , . . . , ρσq)(κ) = ψ(κ), κ ∈ [−r, 0], (1)

where A : [0, K ] → Xn is the fuzzy coefficient, Xn is the set of all normal, convex, and upper semicontinuous fuzzy
numbers with bounded α-levels, P: [0, K ]× C ([−r, 0], Xn)×Xn → Xn, H : [0, K ]× [0, K ]×Xn → Xn and
h: (C ([−r, 0], Xn)q → Xn are regular fuzzy nonlinear functions, In ∈ C (Xn, Xn), and ψ: [−r, 0] → Xn are bounded
functions. ∆ρ(κn) = ρ(κ+

n )−ρ(κ−
n ), ρ(κ+

n ) = lim
h→0+

ρ(tn+h), ρ(κ−
n ) = lim

h→0+
ρ(tn−h) represents the left and right limits

of ρ(κ) at κ = tn, respectively, n = 1, 2, ... k. For any function ρ defined on [−r, K ] and any κ ∈ [0, K ], we denote ρκ
the element of C ([−r, 0], Xn) defined by ρκ(w) = ρ(κ +w); w ∈ [−r, 0]. Here, ρκ(.) represents the history of the state
from time κ − r, up to the present time κ .

The objective of this article is to obtain the existence and uniqueness of a mild solution to equation (1). Note that
here we are generalizing and improving the results mentioned in [16–18]. Also we are achieving better results by using a
modified version of the Banach contraction theorem and impulsive inequality. Like in paper [17], hypothesis (A1) is not
required if we use our method.

Contemporary Mathematics 4400 | Najat H. M. Qumami, et al.



The remainder of the article is structured as follows: In Section 2, we give the preliminaries and hypotheses. In
Sections 3 and 4, we prove the existence, uniqueness, nearness, and convergence of the solution of first-order nonlocal
impulsive nonlinear fuzzy integro-differential equations. In Section 5, we give an illustrative application of our results,
and we conclude the results in Section 6.

2. Preliminaries and hypotheses
Let Pr(R

n) be the family consisting of all nonempty, convex, and compact subsets ofRn. Denote byXn = {ϑ : Rn →
[0, 1] such that ϑ satisfy (1)–(4) as bellow.

1) ϑ is normal, that is, there exists ρ0 ∈Rn such that ϑ(ρ0) = 1.
2) ϑ is fuzzy convex, that is, for ρ, ν ∈Rn and 0 < λ ≤ 1, ϑ(λρ +(1−λ )ν)≥ min{ϑ(ρ), ϑ(ν)}.
3) ϑ is upper semicontinuous.
4) [ϑ ]0 = {ρ ∈Rn: ϑ(ρ)> 0} is compact.
For 0 < α ≤ 1, [ϑ ]α = {ρ ∈Rn: ϑ(ρ)≥ α}. Then from (1)–(4), it follows that the α- level sets [ϑ ]α ∈ Pr(R

n).
If h: Rn ×Rn →Rn is a function, then by using Zadeh’s extension principle, we can extend h to Xn ×Xn → Xn by

the equation [h(ϑ , σ)(w)] = sup
w=h(ρ, ν)

min{ϑ(ρ), σ(ν)}.

It is well knowledge that [h(ϑ , σ)]α = h([ϑ ]α , [σ ]α), ∀ϑ , σ ∈Xn, 0 ≤ α ≤ 1 and the function h is a continuous. In
addition, we have

[ϑ +σ ]α = [ϑ ]α +[σ ]α , [aϑ ]α = a[ϑ ]α ,

where

ϑ , σ ∈ Xn, 0 ≤ α ≤ 1, a ∈R.

Let Ξ1, Ξ2 ̸= ϕ be bounded subsets of Rn. The Hausdorff metric is defined as follows

H ∗
d (Ξ1, Ξ2) = max

{
sup

ξ1∈Ξ1

inf
ξ2∈Ξ2

∥ξ1 −ξ2∥, sup
ξ2∈Ξ2

inf
ξ1∈Ξ1

∥ξ1 −ξ2∥
}

where ∥.∥ denotes the usual Euclidean norm inRn. Then (Pr(R
n), H ∗

d ) is a separable and complete metric space [19].
We define the complete metric d∞ on Xn by

d∗
∞(ϑ , σ) = sup

0<α≤1
H ∗

d ([ϑ ]α , [σ ]α) = sup
0<α≤1

[ϑ α
l −σα

l , ϑ α
r −σα

r ]

for all ϑ , σ ∈ Xn. (Xn, d∗
∞) is a complete metric space. Also ∀ϑ , σ , µ ∈ Xn and λ ∈R, we have d∗

∞(ϑ + µ, σ + µ) =
d∗

∞(ϑ , σ) and d∗
∞(λϑ , λσ) = |λ |d∗

∞(ϑ , σ).
We define 0̂ ∈Xn as 0̂(ρ) = 1 if ρ = 0 and 0̂(ρ) = 0 if ρ ̸= 0. The supremum metric H1 onC([0, 1], Xn) is defined

by

Volume 5 Issue 4|2024| 4401 Contemporary Mathematics



H1(ϑ , σ) = sup
0≤κ≤K

d∗
∞(ϑ(κ), σ(κ))

Hence (C ([0, 1], Xn), H1) is a complete metric space.
Definition 1 A family of functions (D(κ))κ≥0 of continuous linear operators on Xn is called fuzzy C0-semigroup if
1. For all ρ ∈ Xn the mapping D(κ)(ρ): R+ → Xn is continuous with respect to κ ≥ 0,
2. D(κ +µ) = D(κ)D(µ) ∀κ, µ ∈R+,
3. D(0) = I where I is the identity operator on Xn.
Definition 2 A continuous function ρ(κ): [0, K ]→ Xn is said to be a mild solution of equation (1) if

ρ(κ) = D(κ)[ψ(0)−h(ρσ1 , ρσ2 , . . . , ρσq)(0)]+
∫ κ

0
D(κ −µ)P(µ, ρµ ,

∫ µ

0
H (µ, σ , ρσ )dσ)dµ

+ ∑
0<σn<κ

D(κ −σn)Inρ(σn), κ ∈ (0, K ]

ρ(κ)+h(ρσ1 , ρσ2 , . . . , ρσq)(κ) = ψ(κ), κ ∈ [−r, 0].

Lemma 1 ([20], p.12) Let a nonnegative piece-wise continuous function ρ(κ) satisfies κ ≥ κ0 the inequality

ν(κ) ≤ B+
∫ κ

κ0

ρ(µ)ν(µ)dµ + ∑
0<σn<κ

βnρ(σn)

where B ≥ 0, βn ≥ 0, ρ(κ) > 0, σn are the first kind discontinuity points of the function ρ(κ). Then the following
estimate holds for the function ρ(κ),

ρ(κ) ≤ B ∏
κ0<σn<κ

(1+βn)exp(
∫ κ

κ0

ρ(µ)dµ).

Lemma 2 ([21], p.196) Let E be a Banach space. Let D : E → E be an operator which maps the elements of E into
itself for which D r is a contraction, where r is a positive integer. Then D has a unique fixed point.

We introduce the following hypotheses:
(A1) The linear and continuous operator A generates a C0 semigroup (D(κ))κ≥0 on Xn such that ∥D(κ)∥Xn ≤

M , ∀κ ≥ 0 with M > 0.
(A2) Let P: [0, K ]×C ([−r, 0], Xn)×Xn → Xn such that for every η , ζ ∈ C , κ ∈ [0, K ], ρ, ν ∈ Xn and there

exists LP > 0 such that

d∞(P(κ, η , ρ), P(κ, ζ , ν))≤LP [d∞(η , ζ )+d∞(ρ, ν)]

(A3) Let H : [0, K ]× [0, K ]×Xn → Xn such that for every ρ, ν ∈ Xn, κ, µ ∈ [0, K ] and there exists LH > 0
such that
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d∞(H (κ, µ, ρ), H (κ, µ, ν))≤LH d∞(ρ, ν)

(A4) Let h: (C [−r, 0], Xn)q → Xn and there exists Q such that

d∞(h(ρσ1 , ρσ2 , . . . , ρσq)(κ), h(νσ1 , νσ2 , . . . , νσq)(κ))≤Qd∞(ρ, ν), ∀κ ∈ [−r, 0]

(A5) Let In: Xn → Xn such that for every ρ, ν ∈ Xn, κ ∈ [0, K ], n = 1, 2, 3, . . . , k and there exists Ln such that

d∞(Inρ(κn), Inν(κn))≤Lnd∞(ρ, ν).

3. Main result
Theorem 1 Suppose that the hypotheses (A1)−(A5) are satisfied. Then the equation (1) has a unique mild solution

ρ on [−r, K ].
Proof. Consider ρ(κ) be a mild solution of the equation (1) then it satisfies the equivalent integral equation

ρ(κ) = D(κ)[ψ(0)−h(ρσ1 , ρσ2 , . . . , ρσq)(0)]+
∫ κ

0
D(κ −µ)P(µ, ρµ ,

∫ µ

0
H (µ, κ, ρσ )dσ)dµ

+ ∑
0<σn<κ

D(κ −σn)Inρ(σn), κ ∈ (0, K ]

ρ(κ)+h(ρσ1 , ρσ2 , . . . , ρσq)(κ)] = ψ(κ), κ ∈ [−r, 0]. (2)

Now we rewrite equation (1) as follows:
For ψ ∈ C ([−r, 0], Xn), define ψ̂ ∈ Xn by

ψ̂(κ) =


ψ(κ)−h(ρσ1 , ρσ2 , ..., ρσq)(κ) if κ ∈ [−r, 0]

D(κ)[ψ(0)−h(ρσ1 , ρσ2 , . . . , ρσq)(0)] if κ ∈ [0, K ]

If w ∈ Xn and ρ(κ) = w(κ)+ ψ̂(κ), κ ∈ [−r, K ], so that it is clear that w satisfies

w(κ) =



0 if κ ∈ [−r, 0]

∫ κ
0 D(κ −µ)P(µ, wµ + ψ̂µ ,

∫ µ
0 H (µ, σ , wσ + ψ̂σ )dσ)dµ

+ ∑
0<σn<κ

D(κ −σn)In(wσ + ψ̂(σn)) if κ ∈ [0, K ]

(3)
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if and only if ρ(κ) satisfies the equation (1)We define the operator Λ: Xn → Xn by

(Λw)(κ) =



0 if κ ∈ [−r, 0]

∫ κ
0 D(κ −µ)P(µ, wµ + ψ̂µ ,

∫ µ
0 H (µ, σ , wσ + ψ̂σ )dσ)dµ

+ ∑
0<σn<κ

D(κ −σn)In(wσ + ψ̂(σn)) if κ ∈ [0, K ]

(4)

From the definition of an operator Λ defined by the equation (4), It should be mentioned that the equation (3) can
be expressed as w = Λw.

We now demonstrate that Λn is a contraction on Xn for some positive integer n. Let w, ν ∈Xn and using hypotheses
(A1)− (A5) we get

d∗
∞((Λw)(κ), (Λν(κ))) ≤ d∗

∞

(∫ κ

0
D(κ −µ)P(µ, wµ + ψ̂µ ,

∫ µ

0
H (µ, σ , wσ + ψ̂σ )dσ)dµ

+ ∑
0<σn<κ

D(κ −σn)In(wσ + ψ̂(σn)),
∫ κ

0
D(κ −µ)P(µ, νµ + ψ̂µ ,

∫ µ

0
H (µ, σ , νσ + ψ̂σ )dσ)dµ + ∑

0<σn<κ
D(κ −σn)In(νσ + ψ̂(σn))

)

≤ d∗
∞

(∫ κ

0
D(κ −µ)[P(µ, wµ + ψ̂µ ,

∫ µ

0
H (µ, σ , wσ + ψ̂σ )dσ),

P(µ, νµ + ψ̂µ ,
∫ µ

0
H (µ, σ , νσ + ψ̂σ )dσ ]dµ

)

+d∗
∞

(
∑

0<σn<κ
D(κ −σn)[In(wσ + ψ̂(σn)), In(νσ + ψ̂(σn))]

)

≤
∫ κ

0
∥D(κ −µ)∥Xn [d∗

∞

(
P(µ, wµ + ψ̂µ ,

∫ µ

0
H (µ, σ , wσ + ψ̂σ )dσ),

P(µ, νµ + ψ̂µ ,
∫ µ

0
H (µ, σ , νσ + ψ̂σ )dσ ]dµ

)

+ ∑
0<σn<κ

∥D(κ −σn)∥d∗
∞

(
In(wσ + ψ̂(σn)), In(νσ + ψ̂(σn))

)
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≤
∫ κ

0
M LP [d∗

∞(wµ , νµ)+
∫ µ

0
LH d∗

∞(wσ , νσ )dσ ]dµ

+ ∑
0<σn<κ

M Lnd∗
∞(w, ν)

≤
∫ κ

0
M LPd∗

∞(wµ , νµ)dµ +
∫ κ

0
M LP

∫ µ

0
LH d∗

∞(wσ , νσ )dσdµ

+ ∑
0<σn<κ

M lnd∗
∞(w, ν)

≤ M LPd∗
∞(w, ν)κ +M LPLH d∗

∞(w, ν)
κ2

2
+ ∑

0<σn<κ
M Lnd∗

∞(w, ν)

≤ M LPd∗
∞(w, ν)κ +M LPLH d∗

∞(w, ν)κK + ∑
0<σn<κ

M Lnd∗
∞(w, ν)

≤
[
M LP(1+LH K )κ + ∑

0<σn<κ
M Ln

]
d∗

∞(w, ν)

≤
[
M LP(1+LH K )κ + ∑

0<σn<κ
M Ln

]
H1(w, ν)

d∗
∞((Λ

2w)(κ), (Λ2ν(κ))) = d∗
∞(Λ(Λw)(κ), Λ(Λν(κ)))

≤
∫ κ

0
∥D(κ −µ)∥Xnd∗

∞

(
P(µ, Λwµ + ψ̂µ ,

∫ µ

0
H (µ, σ , Λwσ + ψ̂σ )dσ),

P(µ, Λνµ + ψ̂µ ,
∫ µ

0
H (µ, σ , Λνσ + ψ̂σ )dσ)

)
dµ

+ ∑
0<σn<κ

∥D(κ −σn)∥d∗
∞

(
In(Λwσ + ψ̂(σn)), In(Λνσ + ψ̂(σn))

)

≤
∫ κ

0
M LP [d∗

∞(Λwµ , Λνµ)+
∫ µ

0
LH d∗

∞(Λwσ , Λνσ )dσ ]dµ

+ ∑
0<σn<κ

M d∗
∞(Λw, Λν)
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≤
∫ κ

0
M LPd∗

∞(Λw, Λν)dµ +
∫ κ

0
M LP

∫ µ

0
LH d∗

∞(Λw, Λν)dσdµ

+ ∑
0<σn<κ

M Lnd∗
∞(Λw, Λν)

≤ M LP [M LP [1+LH K ]]H1(w, ν)[
∫ κ

0
µdµ +

∫ κ

0
LH

∫ µ

0
σdσdµ]

+[M ∑
0<σn<κ

Ln]
2H1(w, ν)

≤ M 2L2
P [1+LH K ]H1(w, ν)[

κ2

2
+LH

κ3

3
]+ [M ∑

0<σn<κ
Ln]

2H1(w, ν)

≤ M 2L2
P [1+LH K ]H1(w, ν)[

κ2

2!
+LH K

κ2

2!
]+ [M ∑

0<σn<κ
Ln]

2H1(w, ν)

≤ M 2L2
P [1+LH K ]H1(w, ν)[1+LH K ]

κ2

2!
+[M ∑

0<σn<κ
Ln]

2H1(w, ν)

≤ M 2L2
P [1+LH K ]2H1(w, ν)

κ2

2!
+[M ∑

0<σn<κ
Ln]

2H1(w, ν)

≤ {M LP [1+LH K ]κ]2

2!
+[M ∑

0<σn<κ
Ln]

2}H1(w, ν).

Continuing in this way, we get

d∗
∞((Λ

nw)(κ), (Λnν(κ))) ≤
{
[M LP [1+LH K ]κ]n

n!
+[M ∑

0<σn<κ
Ln]

n
}

H1(w, ν)

≤
{
[M LP [1+LH K ]K ]n

n!
+[M ∑

0<σn<κ
Ln]

n
}

H1(w, ν).

For n large enough, [M LP [1+LH K ]K ]n

n! +[M ∑
0<σn<κ

Ln]
n < 1. Thus there exists a positive integer n such that Λn is a

contraction in Xn. By virtue of lemma (2) the operator Λ has a unique fixed point w̃ in Xn. Then ρ̃ = w̃+ ψ̂ is a solution
of the equation (1).
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4. Nearness and convergence of solutions
Consider the fuzzy impulsive nonlocal equation (1), along with the fuzzy impulsive nonlocal equation

ρ ′(κ) = A ρ(κ)+P̃(κ, ρκ ,
∫ κ

0
H (κ, µ, ρµ)dµ), κ ∈ (0, K ]

∆ρ(κn) = Ĩnρ(κn), κ ̸= tn, n = 1, 2, 3, . . . , k,

ρ(κ)+ h̃(ρσ1 , ρσ2 , . . . , ρσq)(κ) = ψ̃(κ), κ ∈ [−r, 0], (5)

where H is as given in (1), P̃: [0, K ]×C ([−r, 0], Xn)×Xn → Xn, h̃: (C ([−r, 0], Xn))q → Xn, Ĩn ∈ C (Xn, Xn), and
ψ̃ ∈ C ([−r, 0], Xn).

Theorem 2 Assume that the function P, H , h, In in equation (1) satisfy hypotheses (A0)− (A3) and there exists
nonnegative constants ε1, ε2, ε3, ε4 such that

d∗
∞

(
P(κ, η , ρ), P̃(κ, η , ρ)

)
≤ ε1

d∗
∞

(
h(ρσ1 , ρσ2 , ..., ρσq)(κ), h̃((ρσ1 , ρσ2 , ..., ρσq)(κ)

)
≤ ε2

d∗
∞

(
ψ(κ), ψ̃(κ)

)
≤ ε3

d∗
∞

(
Inρ(κn), Ĩnρ(κn)

)
≤ ε4 (6)

Let ρ(κ) and ν(κ) be respectively solutions of (1) and (5) on [−r, K ]. Then the following inequality holds:

H1(ρ, ν)≤
M [ ∏

0<σ<κ
(1+M Ln)exp(M LPK )]

[1−Γ ∏
0<σ<κ

(1+M Ln)exp(M LPK )]
[ε1K + ε2 + ε3 + ε4]

Proof. Using the facts that ρ(κ) and ν(κ) be respectively solutions of (1) and (5) and hypotheses (A0)− (A3) we
obtain, for κ ∈ [r, 0]
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d∗
∞

(
ρ(κ), ν(κ)

)
= d∗

∞

(
ψ(κ)−h(ρσ1 , ρσ2 , . . . , ρσq)(κ), ψ̃(κ)− h̃(νσ1 , νσ2 , . . . , νσq)(κ)

)

≤ d∗
∞

(
ψ(κ), ψ̃(κ)

)
+d∗

∞

(
h(ρσ1 , ρσ2 , . . . , ρσq)(κ), h̃(νσ1 , νσ2 , . . . , νσq)(κ)

)

≤ d∗
∞

(
ψ(κ), ψ̃(κ)

)
+d∗

∞

(
h(ρσ1 , ρσ2 , . . . , ρσq)(κ), h(νσ1 , νσ2 , . . . , νσq)(κ)

)

+d∗
∞

(
h(νσ1 , νσ2 , . . . , νσq)(κ), h̃(νσ1 , νσ2 , . . . , νσq)(κ)

)

≤ ε3 +QH1(ρ, ν)+ ε2 (7)

For κ ∈ [0, K ]

d∗
∞

(
ρ(κ), ν(κ)

)
≤ ∥D(κ)∥Xn

[
d∗

∞

(
ψ(κ), ψ̃(κ)

)
+d∗

∞

(
h(ρσ1 , ρσ2 , . . . , ρσq)(κ),

h̃(νσ1 , νσ2 , . . . , νσq)(κ)
)]

+
∫ κ

0
∥D(κ −µ)∥Xnd∗

∞

(
P(µ, ρµ ,

∫ µ

0
H (µ, σ , ρσ )dσ), P̃(µ, νµ ,

∫ µ

0
H (µ, σ , νσ )dσ)

)
dµ

+ ∑
0<σn<κ

∥D(κ −σn)∥Xnd∗
∞

(
Inρ(κn), Ĩnν(σn)

)

≤ M [ε3 +Qd∗
∞(ρ, ν)+ ε2]+M LP

∫ κ

0
[d∗

∞(ρµ , νµ)

+LH

∫ µ

0
d∗

∞(ρσ , νσ )dσ ]dµ +M ε1K

+ ∑
0<σn<κ

M Lnd∗
∞(ρ(σn), ν(σn))+M ε4
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sup
0≤κ≤K

(d∗
∞(ρ(κ), ν(κ)) ≤ sup

0≤κ≤K

{
M [ε1 +Qd∗

∞(ρ, ν)+ ε2]+M LP

∫ κ

0
[d∗

∞(ρµ , νµ)

+LH

∫ µ

0
d∗

∞(ρσ , νσ )dσ ]dµ +M ε3K

+ ∑
0<σn<κ

M Lnd∗
∞(ρ(σn), ν(σn))+M ε4

}

H1(ρ, ν) ≤ M [ε1κ + ε2 + ε3 + ε4 +[Q+LP lH
κ2

2
]]H1(ρ, ν)+

∫ κ

0
M LPH1(ρ, ν)dµ

+ ∑
0<σn<κ

M LnH1(ρ, ν). (8)

Let Γ = Q+LPLH
K 2

2 , define the function w: [−r, K ] → Xn by w(κ) = sup{d∞(ρ(µ), ν(µ)): −r ≤ µ ≤ κ} ,
κ ∈ [0, T ]. Let κ∗ ∈ [−r, κ] be such that w(κ) = d∞(ρ(κ∗), ν(κ∗)). If κ∗ ∈ [0, κ] then from inequality (8) we have

w(κ) = H1(ρ(κ∗), ν(κ∗)) ≤ M [ε1K + ε2 + ε3 + ε4 +ΓH1(ρ, ν)]+
∫ κ∗

0
M LPH1(ρ, ν)dµ

+ ∑
0<σn<κ

M LnH1(ρ, ν). (9)

Now applying lemma (1) to the inequality (9) we get

H1(ρ, ν) ≤
(

M [ε1K + ε2 + ε3 + ε4 +ΓH1(ρ, ν)]
)

∏
0<σ<κ

(1+M Ln)exp(M LPK ).

Hence we get

H1(ρ, ν) ≤
M [ ∏

0<σ<κ
(1+M Ln)exp(M LPK )]

[1−Γ ∏
0<σ<κ

(1+M Ln)exp(M LPK )]
[ε1K + ε2 + ε3 + ε4].

Remark 1 The result given in the above theorem, relates the solutions of equations (1) and (5) in the sense that if
P and P̃ , ψ(κ) is close to ψ̃(κ) and h is close to h̃. Then not only the solutions of equations (1) and (5) are close to
each other, but also depend continuously on the functions involved therein.

Consider
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ν ′(κ) = A ν(κ)+Pm(κ, νκ ,
∫ κ

0
H (κ, µ, νκ)dµ), κ ∈ (0, K ]

∆ν(κm) = Imν(κm), κ ̸= tm, m = 1, 2, 3, . . . , k,

ν(κ)+hm(νσ1 , νσ2 , . . . , νσq)(κ) = ψm(κ), κ ∈ [−r, 0], (10)

where H is given in equation (1), Pm: [0, K ]×C ([−r, 0], Xn)×Xn → Xn, hm: C ([−r, 0], Xn)q → Xn and ψm(κ) is a
sequence in Xn.

We have the following corollary as an immediate consequence of the aforementioned theorem:
Corollary 1 Suppose that the following P, H , h, In in 1 satisfy the hypotheses (A0)− (A4) and there exists

nonnegative constants εm, ε ′m, δm, δ ′
m such that

d∗
∞

(
P(κ, η , ρ), Pm(κ, η , ρ)

)
≤ εm

d∗
∞

(
h(ρσ1 , ρσ2 , ..., ρσq)(κ), hm((ρσ1 , ρσ2 , ..., ρσq)(κ)

)
≤ ε ′m

d∗
∞

(
ψ(κ), ψm(κ)

)
≤ δm

d∗
∞

(
Inρ(κn), Imρ(κn)

)
≤ δ ′

m (11)

where εm → 0, ε ′m → 0, δm → 0, δ ′
m → 0 as m → ∞. If ρ(κ) and νm(κ), m = 1, 2, ... be respectively solutions of equations

(1) and (10) on [−r, K ]. Then as m → ∞, νm(κ)→ ρ(κ) on [−r, K ].
Remark 2 The result obtained in this corollary provides sufficient conditions that ensure solutions of equations (10)

will converge to solutions of equation (1).

5. Application
Consider the following nonlinear fuzzy partial functional differential equation, to clarify the result mentioned in

Section 3 of the type

∂
∂κ

ν(v, κ) =
∂ 2

∂v2 ν(v, κ)+Q

(
κ, ν(v, κ − r),

∫ κ

0
W (κ, µ, ν(µ − r))dµ

)
,

v ∈ [0, π], κ ∈ [0, K ] (12)
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ν(0, κ) = ν(π, κ) = 0, 0 ≤ κ ≤ K (13)

ν(v, κ)+
q

∑
n=1

ν(v, κn +κ) = ψ(v, κ), 0 ≤ v ≤ π, −r≤ κ ≤ 0 (14)

∆ν(v, tn) = In(ν(v, tn)), n = 1, 2, 3, . . . , k, (15)

where Q: [0, K ]×Xn ×Xn → Xn, W : [0, K ]×Xn → Xn, In: Xn → Xn are continuous. We assume that the functions
Q, W and In satisfy the following conditions:

i. ∀ κ ∈ [0, K ] and ρ, ν ∈ Xn, ∃ LQ > 0 such that:

d∗
∞

(
Q(κ, v, ρ), Q(κ, w, ν)

)
≤ LQ

(
d∗

∞(w, v)+d∗
∞(ρ, ν)

)

ii. ∀ κ ∈ [0, K ] and ρ, ν ∈ Xn, there exists LW > 0 such that:

d∗
∞

(
W (κ, µ, ρ), W (κ, µ, ν)

)
≤ LW d∗

∞(ρ, ν)

iii. ∃ cn, d > 0 such that:

d∗
∞(In(ρ), In(ν))≤ cnd∗

∞(ρ, ν), n = 1, 2, 3, . . . , k,

q

∑
n=1

d∗
∞(ν(v, κn +κ), ν(w, κn +κ))≤ d

We define the operatorA : Xn →Xn byA w=w′′ with domainD(A ) = {w∈Xn: w andw′ are absolutely continuous,
w′′ ∈ Xn and w(0) = w(π) = 0}. Then the operator A can be written as

A w =
∞

∑
m=1

−m2(w, wm)wm, w ∈ D(A ),

where wm(v) = (
√

2
π )sin(mv), m = 1, 2, 3, . . . is the orthogonal set of eigenvectors of A and A is the infinitesimal

generator of an analytic semigroup D(κ), κ ≥ 0 and is given by

D(κ)w =
∞

∑
m=1

exp(−m2κ)(w, wm)wm, w ∈ Xn.
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Now, the analytic semigroup K (κ) being compact, there exists M such that |K (κ)| ≤ M ∀ κ ∈ [0, K ]. Define
the functions P: [0, K ]×C ([−r, 0], Xn)×Xn → Xn, H : [0, K ]× [0, K ]×C ([−r, 0], Xn)→ Xn, In: Xn → Xn as
follows

P(κ, η , ρ)(v) = Q(κ, η(−r)v, ρ(v)),

H κ, µ, ζ ) = W (κ, µ, ζ (−r)v),

where κ ∈ [0, K ], η , ζ ∈ C ([−r, 0], Xn), ρ ∈ Xn and 0 ≤ v ≤ π . With these choices of the functions the equations
(12)− (15) can be formulated as an fuzzy integro-differential equations in Xn

ρ ′(κ) = A ρ(κ)+P(τ, ρκ ,
∫ κ

0
H (κ, µ, ρµ)dµ), κ ∈ (0, K ]

∆ρ(κn) = Inρ(κn), κ ̸= tn, n = 1, 2, 3, . . . , k,

ρ(κ)+h(ρσ1 , ρσ2 , ..., ρσq)(κ) = ψ(κ), κ ∈ [−r, 0].

Since all the hypotheses of the theorem (1) are satisfied, the theorem (1), can be used to warranty that a mild solution
exists ν(v, κ) = ρ(κ)v, κ ∈ [0, K ], v ∈ [0, π], of the nonlinear fuzzy partial integro-differential equations (12)− (15).

6. Conclusions
In this article, the modified version of the Banach contraction principle was employed to get the existence and other

qualitative properties of nonlocal impulsive fuzzy solutions for nonlinear integro-differential equations. An application
example was given to prove the validity of our result.
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