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Abstract: The aim of this paper is to generalize Caristi’s theorem, Bollenbacher and Hicks’ theorem, and also Hicks and 
Rhoades’ theorem by substituting the continuity assumption with relatively weaker conditions of k-continuity or (C; k) 
condition in a complete metric space with a w-distance. Another proof for Caristi’s theorem using Zorn’s lemma will be 
given. Some examples will confirm the novelty and usefulness of our results.
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1. Introduction
Caristi [1] proved the following important theorem:
Theorem 1.1. [1] Suppose ( , )d  is a complete metric space, : →   is a self-map, and : [0, )ϕ → ∞  is a 

lower semi-continuous such that for all ,∈x   

( , ) ( ) ( ).d ϕ ϕ≤ −x x x x 

Then,  has a unique fixed point.
Caristi-type fixed-point theorems are of interest in the field of fixed-point theory and show other faces for the 

Banach contraction principle. This theorem has been investigated in several general structures of metric spaces. For 
example, Abodayeh et al. [2] generalized Caristi-Kirki’s theorem from partial metric spaces to M-metric spaces. 
Interested readers can see the generalizations of Caristi-Kirk’s theorem on partial metric spaces by Karapinar [3], and 
for other generalizations, see [4]. Some generalizations of Caristi’s fixed-point theorem with applications to the fixed-
point theory of weakly contractive set-valued maps and the minimization problem were obtained by Amini-Harandi [5]. 
Pant et al. [6] gave a new improvement to this theorem when the mapping φ is not lower semi-continuous in general. 
Zakeri et al. [7] proved some new fixed point theorems in this field for convex contraction mappings by replacing 
weaker conditions of k-continuity or -orbitally lower semi-continuity on a complete metric space with a w-distance.

With this motivation, we will prove some generalizations to Caristi’s fixed-point theorem under the existence of 
the w-distance structure on a complete metric space. We will use the k-continuity or (C; k) condition in place of the 
continuity to obtain our generalizations.
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Kada et al. [8] introduced the concept of a w-distance on a metric space for generalizing the fixed point theorem by 
Caristi, Ekeland’s -variational-variational principle, and the non-convex minimization theorem of Takahashi in a complete metric 
space with a w-distance.

Definition 1. [8] Let  be a metric space endowed with a metric d. A function  : ×  → [0,∞) is called a 
w-distance on  if it satisfies the following properties:

(1)	 ( , ) ( , ) ( , ) for any , , ;≤ + ∈   x z x y y z x y z

(2)	  is lower semi-continuous in its second variable; i.e., if and in ,n∈ →  ���x y y  then ( , ) liminf ( , );n n≤x y x y 

(3)	 For each 0,>  there exists a 0δ >  such that ( , )  and ( , )  imply ( , ) .dδ δ≤ ≤ ≤  z x z y x y  
Example 1. [8] 

(i)	 Let ( ), ⋅  be a normed space. Then, the functions : [0, )× → ∞    defined by ( , ) = + x y x y  and 
( , ) for each ,= ∈ x y y x y  are two w-distances on . 

(ii)	 Let (, d ) be a metric space and let : →   be a continuous map. Then, the function : [0, )× → ∞    
defined by

( , ) max{ ( , ), ( , )},d d= x y x y x y  

for every , ,∈x y  is a w-distance on .
The following lemma has a crucial role in proving our theorems in this paper.
Lemma 1. [8] Let (, d ) be a metric space and  be a w-distance on .
(i)	 Suppose that { }nx  is a sequence in  such that lim ( , ) lim ( , ) 0,n n n n= = x x x y  then .=x y  Particularly, from 

( , ) ( , ) 0,we have .= = = z x z y x y

(ii)	 If ) ,( , ) ( ,n n n n nα β≤ ≤ x y x y  for any ,n∈  where { } and { }n nα β  are sequences in [0, ∞) converging to 0, then 
{ } converges to .ny y  

(iii)	Suppose that  is a w-distance on a metric space ( , ),and { } is a sequence in nd x  such that for all 0,ε >  
there exists an N Nε ∈  such that m n Nε> >  implies ,( , )  (or lim ( , ) 0).n m m n n mε< =x x x x   Then, the sequence { }nx  is 

Cauchy.
Remark 1.1. Let ( , ) ( , ) ( , ) 0≤ + =  a a a b b a = ( , ) ( , ) ( , ) 0≤ + =  a a a b b a  = 0. Then, by triangular inequality, we have ( , ) ( , ) ( , ) 0≤ + =  a a a b b a  and so 

( , ) 0= a a  and from Lemma 1, we get .=a b

Let us now describe the plan of this paper. In Section 2, we will give some preliminaries that are necessary 
for other sections. In Section 3, we will give a generalization of Caristi’s [1] theorem, Bollenbacher and Hicks’ [9] 
theorem, and also Hicks and Rhoades’ [10] theorem using the substitution of the continuity assumption with relatively 
weaker conditions of k-continuity or (C; k) condition in a complete metric space with a w-distance. (See Theorems 3.1-
3.3 below.) In Section 4, using the concept of w-distance, we will give some new versions of Caristi’s theorem. (See 
Theorem 4.1 below.) In the final section, we will obtain another proof for Caristi’s theorem using Zorn’s lemma, which 
is one of the important results in this paper. (See Theorem 5.1 below.)

2. Preliminaries
We start this section with some useful definitions.
The concept of k-continuity on a metric space ( , )d  defined by Pant & Pant [11] in as follows:
Definition 2. [11] A self-mapping on a metric space ( , )d  is said to be k-continuous, (k = 1, 2, 3, ...). If for every 

sequence 1{ } in  from k
n n

− →x x z,  one can conclude that .k
n →x z 

Example 2. On the metric space ( )( , ) [1,5], ,define : byd = ⋅ →   

1  1 3;
( ) 3

3  3 5.

 + ≤ ≤= 
 < ≤

x
x

x

x


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Then,  is not k-continuous for each k ≥ 0. Indeed,

1

2
1

2

3 1  1 3;
3( )

2 3   3 5.
3

k i
i
k

k
k i
i

k

=

−
=
−

 + Σ
+ ≤ ≤= 

+ Σ < ≤

x
x

x

x



Note that lim ( ) 3k k
n→∞ ≠x   for every k ≥ 0.

Example 3. On the metric space ( )( , ) [2,4], ,define :  byd = ⋅ →  

2  if  2 3,

0  if   3 4.

= ≤ ≤

= < ≤

x x

x x





So, limn n z→∞ =x  implies 2lim .n n z→∞ =x  On the other hand, lim can be verified as 0n n→∞ = =x z z  or 2.=z  Also, 
for every n, we have 2 2.n =x  Therefore, 2lim 2 .n n→∞ = =x z   Thus,  is 2-continuous, but  is not continuous at 3.=x  

Definition 3. For the metric space ( , ), ,d ∈ x  and the self-map : ,→   we define the -orbit  of x as 
follows:

2( ; ) { , , ,...}.O ∞ =x x x x 

The mapping  is said to be orbitally continuous at x if for each sequence {xn} in { } in ( ; ),n O ∞x x  which is convergent to 
, then nu x  is convergent to ,as n →∞u  [10].

 is called weakly orbitally continuous if whenever the set { :lim }im
i∈ =x x u  is non-empty implies the set 

{ :lim lim }i im m
i i∈ = ⇒ =y y u y u    is non-empty [6].

Suppose that : [0, )→ +∞   is a function. Then, is called the -orbitally    is called the lower semi-continuous at   
 if for every sequence { } in ( ; ) that n nO ∞ →x x x x u, one can conclude that ( ) liminf ( )n n→∞≤ u x [12].

This is clear to see that every k-continuous mapping  is weakly orbitally continuous, but the converse is not true 
in general.

Example 4. Let [0,3]=  equipped with the Euclidean metric. Define : M M→  by

1  if  1 2, 0  if   2 3,             3 3.
2
+

= ≤ < = ≤ < =
x

x x x x  

If 11 1 3 12 3, then lim ;while lim . Thus, 
2 2 4 2

n n
n n

+
→∞ →∞≤ < = = ≠ =x x x    is not orbitally continuous.

On the other hand, if we get 3,=x  it implies lim 3 3 and lim ( 3) 3 3. So,  n n
n n→∞ →∞= = =     is a weakly orbitally 

continuous mapping.
We suppose  the  sequence  { 0}n  such  tha t  fo r  every  ,k∈  th i s  impl ies  1lim ( 0) 1k n

n
−

→∞ =   and 
lim ( 0) 1 1. Hence, k n

n→∞ = ≠    Hence,  is not k-continuous.
Definition 4. [13] For the metric space ( , ), the mapping :d →    satisfies the condition (C; k) if there exists 

a non-negative constant k such that for each sequence { }nx  in , 

implies ( ) sup ( ),limn nk→ ∈ ≤ ⋅x u u x 

where ( ) ( , ), .d= ∈x x x x   The condition of (C; 1) was introduced by Ćirić [14].
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3. Main results
In this section, we will give one of the main results of this paper. The following theorem is a generalization of 

the Caristi [1] fixed-point theorem and ([6], Theorem 2.10) in the setting of w-distance; also, this theorem improves 
Theorem 2 in [8] for a great class of the mapping : [0, ),ϕ → ∞  which is not necessarily proper lower semi-continuous 
and bounded from below. 

Theorem 3.1. Suppose that (, d ) is a complete metric space endowed with a w-distance  on it. Let  : → 
be a self-map and let : [0, ),ϕ → ∞  be a function such that for each ,∈m  we have

				                      ( , ) ( ) ( ).ϕ ϕ≤ − m m m m  					      (1)

Suppose that either of the following holds:
(a)	 the mapping  is k-continuous or k is continuous;
(b)	 for every  with ,we have inf{ ( , ) ( , ) : } 0;∈ ≠ + ∈ >    w w w x w x x x 
(c)	 the map ( ) ( , ) is -orbitallyd=x x x    lower semi-continuous;
(d)	 the mapping  satisfies the condition (C; k) 
Then, the mapping  has a fixed-point u. Moreover, if ,=0 0u u  we have ( , ) 0.= 0 0u u  
Proof. Step 1. 1lim ( , ) 0.n→∞ + = n nx x

Suppose 0 .∈x  Define a sequence 1 0 2 1 1{ } by , ,..., ,...,−= = =n n nx x x x x x x    that is, 0
n=nx x  for every 1.≥n Then, 

from (7), we get 0 1 0 0 0 0 0 1( , ) ( , ) ( ) ( ) ( ) ( ).ϕ ϕ ϕ ϕ= ≤ − = − x x x x x x x x   Again using (7), and applying the inductive way, 
we have

1 2 1 2

2 3 2 3

3 4 3 4

4 5 4 5

1 1

1 1

( , ) ( ) ( )

( , ) ( ) ( )

( , ) ( ) ( )

( , ) ( ) ( ) 

                ...

( , ) ( ) ( )

( , ) ( ) ( )

n n n n

n n n n

ϕ ϕ

ϕ ϕ

ϕ ϕ

ϕ ϕ

ϕ ϕ

ϕ ϕ

− −

+ +

≤ −

≤ −

≤ −

≤ −

≤ −

≤ −













x x x x

x x x x

x x x x

x x x x

x x x x

x x x x

So, by adding inequalities implies that

0 1 1 2 2 3 1 1 0 1 0( , ) ( , ) ( , ) ... ( , ) ( , ) ( ) ( ) ( ).n ϕ ϕ ϕ− + ++ + + + + ≤ − ≤    n n n nx x x x x x x x x x x x x

Taking the limit as ,n →∞  the above inequality yields

				                          
1 0

0
( , ) ( ).ϕ

∞

+
=

≤∑ n n
n

x x x
						       

(2)

Thus, the series in (2) is convergent. Therefore, 1lim ( , ) 0.n→∞ + = n nx x

Step 2. We claim that

					                ,
lim ( , ) 0.= n m
m n

x x 						       (3) 

From (2), we get 10
( , ) .∞

+=
≤ ∞∑  n nn

x x  Let 0 and .ε > >m n  So, there exists an 0n  such that for each 0 ,, ≥m n n  we 
have
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1

1( , ) ( , ) .ε
−

+
=

≤ <∑
m

n m i i
i n

x x x x 

So, (3) holds. By Lemma 1, {xn} is a Cauchy sequence. Since  is complete, there exists a ∈u  such that 
 in .u→ nx  Also, for any positive integer k, we get .→

n

k
x u  

Step 3. We will prove that =u u  under either of the conditions (a)-(d).
Case (a). Suppose that  is a weakly orbitally continuous mapping. We have 0{ }nx  converges for every 0 . in x  

So, weak orbital continuity yields that there exists 0 ∈y  such that 0limn u→∞ =ny  and 1
0limn

+
→∞ =n y u   for some 

in .u  Hence, ,=u u  and therefore, u is a fixed point of . If  is a k-continuous mapping or k is continuous mapping 
for some positive integer k, then  is weakly orbitally continuous and the proof follows.

Case (b). Assume that for  with ,∈ ≠w w w  we have inf{ ( , ) ( , ) : } 0,x+ ∈ >  x w x x  and ∈n  be fixed. We 
know that {xn} converges to u and ( ,.) nx  is lower semi-continuous. So,

0(li( , ) inf , ) ( )m .ϕ
→∞

≤ ≤ n n m
m

x u x x x

Let .≠u u  Thus, by hypothesis, we get

0 inf ( , ) ( , ) : inf ( , ) ( , ) : 0.{ } { }+< + ∈ ≤ + ∈ =    n n n 1x u x x x x u x x n

This is a contradiction. So, we have =u u,  and therefore,  has a fixed point.
Case (c). Define :  by ( ) ( , )→ = x x x    for each is -orbitally∈ �x   lower semi-continuous. Suppose that  

{xn} is a sequence in 0( ; )O ∞x  defined by x0 = x and 1
0 0and +

+= = = n
n 1 nx x x x x   for each {0}.∈ ∪n  Suppose that .= →n

nx x u  
Therefore,

10 ( , ) ( ) inf ( ) inf ( , ) inf ( , ) 0.lim lim limn nx x+
+ +→∞ →∞ →∞

≤ = ≤ = = =  n n 1 n 2
n n n

u u u x x x    

Thus, we get u = u. 
Case (d). Suppose that mapping : →   satisfies the condition (C; k). Then, there exists a non-negative 

constant k such that for each sequence {xn} in  from 0→ ∈nx x , one can obtain that 0( ) sup ( ),where ( ) ( , ), .limk≤ ⋅ = ∈ nx x x x x x    
0( ) sup ( ),where ( ) ( , ), .limk≤ ⋅ = ∈ nx x x x x x   

So, u = u.

Therefore, we showed that under either of the conditions (a)-(d ), the self-map  has a fixed point.
Finally, we prove ( , ) 0.= u u  Assuming the theorem, we have

( , ) ( , ) ( ) ( ) ( ) ( ) 0.ϕ ϕ ϕ ϕ= ≤ − = − = u u u u u u u u 

Thus, ( , ) 0.= u u  Therefore, we get the desired result.
In the following example, we will show that our generalization of the Caristi fixed point theorem [1] and Theorem 

2.10 in [6] are real; i.e., it shows that a Caristi contraction with respect to metric d may not be a Caristi contraction with 
respect to w-distance . Also, Theorem 1.1 and Theorem 2.10 in [6] do not work, while Theorem 3.1 gives us a fixed 
point.

Example 5. Assume [0, )= +∞  equipped with usual metric d. Let a function : [0, )× → +∞    defined by 
( , ) = m n n be a w-distance on a complete metric space ( , ).d  Also, we consider : →   by

					           

def 0 if 0 1,
1 if 1.

≤ ≤
=  >

m
m

m


 					      
(4)

Then,  is not continuous, but it is a 2-continuous mapping.
Now, we define : [0, )ϕ → +∞  as
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def
0 if 0,

( ) 1 if 0 1,
if 1.

ϕ
=

= − < ≤
 >

m

m m m

m m 					      
(5)

Therefore, for 0 1,≥ ≤m  we have

( , ) 0 1 1 0 ( ) (0) ( ) ( ).ϕ ϕ ϕ ϕ= = ≤ − = − − = − = − m m m m m m m m  

So, it implies ( , ) ( ) ( ).ϕ ϕ≤ − m m m m   In addition, for m > 1, we get

( , ) 1 0 ( ) (1) ( ) ( ).ϕ ϕ ϕ ϕ= = ≤ = − = − = − m m m m m m m m  

This shows that ( , ) ( ) ( ).ϕ ϕ≤ − m m m m   
On the other hand, inequality (7) doesn’t hold for metric d because for 1 1,

2
< ≤m  we have

( , ) 0 1 ( ) ( ).d ϕ ϕ= − = − = > − = −m m m m m m m m m  

In other words, it follows

( , ) ( ) ( )         0.d ϕ ϕ≤ − ∀ </m m m m m 

Therefore, this shows that relation (7) holds for w-distance  but metric d doesn’t satisfy this inequality.
So, Theorem 1.1 and Theorem 2.10 in [6] do not work.
This yields that  satisfies all the conditions of Theorem 3.1. Thus,  has a fixed-point m = 0. 
The following theorem is an extended version of Bollenbacher and Hicks’ [9] theorem in setting w-distance.
Theorem 3.2. Suppose that (, d) is a complete metric space endowed with a w-distance  on it. Let : →   

be a self-map and let : [0, )ϕ → ∞  be a function such that for each x in , we have

					           ( , ) ( ) ( ),ϕ ϕ≤ − y y y y  						      (6)

for each ( , )O∈ ∞y x  and each Cauchy sequence in ( , )O ∞x  converges to some point in . Assume that either of the 
conditions (a)-(d) in Theorem 3.1 holds. Then,  has a unique fixed point. Moreover, for this fixed-point u, we have 
(u, u) = 0. 

Proof. The proof is similar to the proof of Theorem 3.1, and so we deleted it.
The following theorem, improve and generalize Hicks and Rhoades’ theorem [10] in the setting of w-distances.
Theorem 3.3. Suppose that (, d) is a complete metric space endowed with a w-distance  on it and 0 < k < 1. Let 

for the self-map : →   there exists an in x  such that

					            2( , ) ( , ),k≤ y y y y   						      (7)

for each ( , ).O∈ ∞y x  Assume that either of the conditions (a)-(d) in Theorem 3.1 holds. Then,  has a unique fixed point. 
Moreover, for this fixed-point ,we have ( , ) 0.=u u u   

Proof. Putting 1( ) (1 ) ( , ),kϕ −= − y y y  for all ( , ),O∈ ∞y x  and using Theorem 3.2, one can conclude the statement.
Remark 3.1. Respectively, taking  = d in Theorems 3.1, 3.2, and 3.3, we can obtain Caristi’s [1] theorems, 

Theorem 2.10 in [6], Bollenbacher and Hicks’ [9] theorem, and also Hicks and Rhoades’ [10] theorem as special cases.
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4. Some new versions of Caristi’s theorem
In this section, we will prove some results which is a generalization of Caristi’s theorem for the lower semi-

continuous function : [0, ).ψ × → ∞   We start with the following theorem, which is a new version of Caristi’s 
theorem in the setting of w-distances:

Theorem 4.1. Suppose that (, d) is a complete metric space endowed with a w-distance  on it. Let  be a self-
mapping on , and let ,  and let : [0, )ψ × → ∞    be a lower semi-continuous function with respect to the first variable such 
that for every , ,∈m n  

					     ( , ) ( , ) ( , ).ψ ψ≤ − m n m n m n  					      (8)

Assume that either of the conditions (a)-(d) in Theorem 3.1 holds. Then,  has a unique fixed point. Moreover, for this 
fixed-point u, we have  (u, u) = 0.

Proof. Let ∈m  be an arbitrary point. Define and ( ) ( , ).ϕ ψ= =n m m m m   Then, from (8) for all ∈m , we 
obtain

( , ) ( ) ( ).ϕ ϕ≤ − m m m m 

Also, by the hypothesis for ψ, this implies φ is a lower semi-continuous mapping. Hence,  can satisfy the conditions of 
Theorem 1.1. So, it follows the desired result. Now, we will show that  has a unique fixed point. Let r, t be two distinct 
fixed points of . From (8), we have

( , ) ( , ) ( , ) ( , ) ( , ) 0.r t r t r t r t r tψ ψ ψ ψ≤ − = − =  

Hence, we get (r, t) = 0, which yields r = t. The uniqueness concludes the proof of the theorem. 
In the following corollary, we generalize and improve Theorem 2 in [15].
Corollary 1. Suppose that (, d) is a complete metric space endowed with a w-distance  on it. Let  be a self-

mapping on . If, for every , ,∈m n  there exists [0,1)η∈  such that

					            ( , ) ( , ).η≤ m n m n  						      (9)

Assume that either of the conditions (a)-(d) in Theorem 3.1 holds. Then,  has a unique fixed point. Moreover, for this 
fixed point u, we have (u, u) = 0.

Proof. Let m, n be arbitrary points on ( , ). We define ( , ) .
1

ψ
η

=
−




m n
m n . In (9), we get

(1 ) ( , ) ( , ) ( , ).η− ≤ −  m n m n m n 

It follows from the above inequality that

( , ) ( , )( , ) ( , ) ( , ).
1 1

ψ ψ
η η

≤ − = −
− −

 


m n m n
m n m n m n

   

Thus, by applying the relation (8) in Theorem 4.1, one can conclude that  has a unique fixed point.	
Corollary 2. Suppose that  be a w-distance on a complete metric space (, d) such that (m, m) = 0 for all 

,and ∈m  be a self-mapping on . If there exists a lower semi-continuous mapping :[0, ) [0, )α +∞ → +∞  with

 

( )( ) , for all  > 0 and  tt t t
t

αα <  is a non-decreasing map and that

					          ( , ) ( ( , )),α≤ m n m n  				                 (10)
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for every , .∈m n  Assume that either of the conditions (a)-(d) in Theorem 3.1 holds. Then,  has a unique fixed point. 
Moreover, for this fixed-point ,we have ( , ) 0.=u u u   

Proof. Let ,m n be arbitrary points on .  We define ( , )( , ) ,if ;( ( , ))1
( , )

ψ α= ≠
−






m n
m n m n

m n

m n

 and ( , ) 0.ψ =m m

Using the inequality (10), we have

( ( , ))1 ( , ) ( , ) ( , ).
( , )

α 
− ≤ − 

 


  


m n

m n m n m n
m n

 

It follows from the above inequality that

( , ) ( , )( , ) .( ( , )) ( ( , ))1 1
( , ) ( , )

α α≤ −
− −

 


 
 

m n m n
m n

m n m n

m n m n

 

We know that ( ) /t tα  is non-decreasing and ( , ) ( , );< m n m n   thus

( , ) ( , )( , ) ( , ) ( , ).( ( , )) ( ( , ))1 1
( , ) ( , )

ψ ψα α≤ − = −
− −

 


 
 

m n m n
m n m n m n

m n m n

m n m n

    
 

Using Corollary 1, one can obtain that  has a unique fixed point.
Remark 4.1. Respectively, putting d=  in Theorem 4.1, Corollaries 1 and 2, we can obtain theorem Caristi [1], 

Corollaries 2.1-2.3 [16], and also Banach principle theorem [17] as a special case.

5. Another approach of Caristi’s theorem using Zorn’s lemma
In Theorem 2, Kada et al. [8] generalized the original Caristi’s theorem in the setting of w-distances without 

using Zorn’s lemma. Recently, Kirk and Shahzad [18] gave an easy and nice proof for the original Caristi’s theorem in 
complete metric spaces using Zorn’s lemma. In the following theorem, we will improve and generalize Theorem 3 [18] 
and Theorem 2 [8] in the setting of w-distances using Zorn’s lemma.

Theorem 5.1. Suppose that (, d) is a complete metric space endowed with a w-distance  on it. Let :S →  
be a self-map, and let : [0, )ϕ → ∞  be a lower semi-continuous function such that

				           ( , ) ( ) ( ) .ϕ ϕ≤ − ∀ ∈ m m m m m  				                (11)

Then,  has a fixed point. Moreover, for this fixed point ,we have ( , ) 0.=m m m

Proof. Define the Brøndsted partial order on  as follows:

  ( , ) ( ) ( ).ϕ ϕ⇔ ≤ − m n m n m n

Suppose that J is an ordered set, and { } is a chain in ( , ). Jδ δ∈ m  So, we have

( ) ( , ) ( ) ( ).µ η µ η µ ηµ η ϕ ϕ≤ ⇒ ⇔ ≤ − m m m m m m

Thus, it implies { ( )} Jδ δϕ ∈m  is decreasing. Moreover, φ is bounded below. Therefore, lim ( ) .tδδ
ϕ =m  Hence, we get

,
lim ( , ) 0,µ ηµ η

= m m  and Lemma 1 implies that the sequence { } Jδ δ∈m  is a Cauchy net. From the completeness of the space
, there exists ∈m  such that lim ( ) .δ δ =m m  Thus, for each ,Jµ∈  we conclude that 
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( , ) lim ( , ) lim( ( ) ( )) ( ) ( ) ( ).tµ µ δ µ δ µ µδ δ
ϕ ϕ ϕ ϕ ϕ= ≤ − = − ≤ − m m m m m m m m m

So, for every ,we get .J µµ ∈ m m  Therefore, m is an upper bound for the chain { ( )} .Jδ δϕ ∈m  Now, from Zorn’s

lemma,  ( , )  has a maximal element .m  On the other hand, the relation (11) implies that .m Sm  Thus, .=m m  The 
rest of proof is similar to the proof of Theorem 3.1.

6. Conclusion
In this paper, we generalized and proved many famous theorems in fixed point theory, such as Caristi’s [1] 

theorem, Bollenbacher and Hicks’ [9] theorem, and also Hicks and Rhoades’ [10] theorem, by substituting the continuity 
assumption  with relatively weaker conditions of k-continuity or when  obeys the (C; k) condition in a complete 
metric space with a w-distance. Then, we gave some new versions of Caristi’s theorem. In the end, we obtained another 
proof of Caristi’s theorem using Zorn’s lemma.
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