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Abstract: For solving a system of nonlinear partial differential equations (PDE) emerging in an attractor one-
dimensional chemotaxis model, we used a relatively new analytical method called the new modified homotopy 
perturbation method (NMHPM). We use NMHPM for solving one-dimensional Keller-Segel models for different types. 
Some properties show biologically acceptable dependency on parameter values, and numerical solutions are provided. 
NMHPM’s stability and reduced computing time provide it with a broader range of applications. The algorithm provides 
analytical approximations for different types of Keller-Segel equations. Some numerical illustrations are given to show 
the efficiency of the algorithm.
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1. Introduction
Many phenomena in fluid mechanics, viscoelasticity, biology, physics, engineering, and other areas of science

can be successfully modeled with the use of PDE. There are many numerical methods proposed for solving PDE 
phenomena, for example, the finite volume method (FVM) [1], the finite different method (FDM) [2-4], the variational 
iteration method (VIM) [5-8]. There are also many works in numerical methods for solving PDE phenomena of all 
kinds; we mention some of them [9-14], and the homotopy perturbation method (HPM) [15-26]. This is the last one 
(HPM), which was established by He [5, 27]. The HPM has been used by many authors to solve many problems in 
mathematics. This method, which does not require a small parameter in an equation, has a significant advantage in that 
it provides an approximate analytical solution to a wide range of linear and nonlinear problems in applied sciences.

The chemotaxis model is an important model analysis for many researchers, and it is regarded as one of the most 
important phenomenon studies, with Patlak [28] and Keller-Segel [29] being the first to discover it. Chemotaxis is 
represented by a model to explain the chemotaxis phenomenon, a chemical attraction that exists between organisms. 
Among the most important works accomplished for this phenomenon, we mention [30-32].
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2. Alternative framework
The algorithm of the HPM was introduced in [33, 34] and a modification algorithm of the HPM was introduced

by Momani and Odibat [24]. The basic concepts of the HPM for the following nonlinear differential equation are as 
follows:

( ) ( ) ( ),  ,L u N u f r r+ = ∈Ω   (1)

with the boundary condition of

, 0,  ,uB u r
n
∂  = ∈Γ 
∂ 

(2)

where L is a linear differential operator and N is a nonlinear differential operator, f(r) is a known analytic function. B is 
a boundary operator, n is the unit outward normal, and Γ is the boundary of the domain Ω. This HPM defined homotopy 
as

( , ) : [0,1] ,v r p Ω× →  (3)

which corresponds to

0( , ) (1 )[ ( ) ( )] [ ( ) ( ) ( )] 0,H v p p L v L u p L v N v f r= − − + + − = (4)

or

0 0( , ) ( ) ( ) ( ) [ ( ) ( )] 0,H v p L v L u pL u p N v f r= − + + − = (5)

where r∈Ω  and [0,1]p∈  are the attached parameters, and u0 is the initial approach value that fulfills the initial 
condition. From equations (4) and (5), it is obtained

0( ,0) ( ) ( ) 0,H v L v L u= − = (6)

and

( ,1) ( ) ( ) ( ) 0.H v L v N v f r= + − = (7)

He [5] assumes that the solutions of (4) and (5), can be expressed as the power series of p:

2 2
0 1

0
...i

i
i

v p v v pv p v
=

= = + + +∑ (8)

the approach solution of (1) is

0 1 21 0
lim ...ip i

u v v v v
→

=

= = + + +∑ (9)

Furthermore, the HPM method is modified [35] into the modified HPM (MHPM) by including um on both sides of the 
homotopy equation (10). In this paper, we study a new modification of HPM (NMHPM) for solving a one-dimensional 
Keller-Segel model of different types. Now, we consider the system of nonlinear coupled equations given below:
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1 1

2 2

( ) ( , ) ( ),  ,
( ) ( , ) ( ),  ,

t u

t c

u L u N u c f r r
c L c N v c f r r
+ + = ∈Ω

 + + = ∈Ω (10)

where L1 and L2 are linear operators, N1 and N2 are nonbilinear operators, and fu(r) and fc(r) are analytical functions. The 
initial conditions are

0

0

( ,0) ( ),
( ,0) ( ),

u x u x
c x c x

=
 = (11)

From equation (10), we obtained the homotopy equation (12)

1 0 1 1

1 0 2 2

( , ) (1 )[ ( ) ( )] [ ( ) ( , ) ( )] 0,
( , ) (1 )[ ( ) ( )] [ ( ) ( , ) ( )] 0.

t u

t c

H v p p L v L u p v L v N v u f r
H v p p L v L c p v L v N v c f r

= − − + − − − =
 = − − + − − − = (12)

Hence, the solution of (4) and (5) in the form of p-power series is

2
0 1 2

0
2

0 1 2
0

...

...

i
i

i
i

i
i

v p v v pv p v

v p v v pv p v
=

=

 = = + + +



= = + + +


∑
∑ (13)

by substituting (12) to (13) and taking p = 1, the solution function of (9) will be

0
( ) ( ),n

n
u t v t

=

= ∑ (14)

and

0
( ) ( ),n

n
c t v t

=

= ∑ (15)

or

0
( ) ( ( ), ( )) ( ( ), ( )).n n

n
S t u t c t v t v t

=

= = ∑

3. Convergence of HPM
We have the equation

0 0( , ) ( ) ( ) ( ) [ ( ) ( )] 0,H v p L v L u pL u p N v f r= − + + − = (16)

According to equation (16), we obtain

0 0( ) ( ) ( ) [ ( ) ( )],L v L u pL u p N v f r= + + − (17)

Applying the inverse operator, L–1, to both sides of equation (17), we obtain

1 1
0 0[ ( ) ( ) ],v u p L f r L N v u− −= + − − (18)

Suppose that 
0

,i
i

i
v p v

=

= ∑  substituting (3) into the right-hand side of equation (18), we have equation (18) in the 
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following form:
1 1

0 0
0

[ ( ) ( ) ],i
i

i
v u p L f r L N p v u− −

=

= + − −∑ (19)

if p → 1, the exact solution may be obtained by using

1
lim
p

U V
→

= (20)

( )1 1

0
( ) i

i
i

L f r L N p v− −

=

= − ∑ (21)

( )1 1

0
( ) ( )i

i
i

L f r p L N v− −

=

= − ∑ (22)

Theorem 1. (Sufficient condition of convergence.) Suppose that X and Y are Banach spaces and N: X → Y is a 
contractive nonlinear mapping, that is:

      , : ( ) ( ) , 1.W Z X N W N Z W Zε ε∀ ∈ − ≤ − ≤ ≤   

Then, according to Banach’s fixed point theorem, N has a unique fixed point u, that is, N(u) = u. Assume that the 
sequence generated by the HPM can be written as

1

0
( 1), ( 1) ,

n

n n n i
i

W N W N W W
−

=

= − − = ∑

and suppose that 0 0 ( ),W W Br W= ∈  where

( ) ,Br W Z X Z W r= ∈ − ≤

Then, we have
i.	 ( )0.nW Br W∈
ii. lim .nn

W W
→∞

=

The proof of convergence of the series (14) and (15) has been proved in [26, 36, 37]. Hence, the convergence of the 
series u(t), v(t) is proved, and as S(t) = (u(t), v(t)), so S(t) is convergent.

4. Application
We consider the Keller-Segel model as follows:

            

( ) 0,  in ( , ) [0,1],
0,  in ( , ) [0,1],

t xx x x

t xx

u u uc x t
c c u c x t
− + = ∈ ×

 − − + = ∈ ×



    (23)

with subject to the initial conditions of

 
0

0

( ,0) ( ), ,
( ,0) ( ), ,

u x u x
c x xc

x
x

= ∈
 = ∈



  (24)

where u = u(x, t) denotes the population density of biological individuals and c = c(t, x) denotes the concentration of 
chemical substance. Now that we have solved the Keller-Segel model by NMHPM, we take into account the homotopy 
defined as follows:



Volume 5 Issue 1|2024| 1097 Contemporary Mathematics

0

0

( , ) (1 )[ ] ( ( ) ) 0,

( , ) (1 )[ ] ( ) 0,

t t xx x x

t t xx

u
H v p p v p v v vv

t

c
H v p p v p v v vv

t

∂ = − − + − + = ∂


∂ = − − + − − = ∂
(25)

or

0

0

( ) 0
(( , ), ) (1 ) .

0

t
t xx x x

t xx
t

u
v v v vvt

H v v p p p
c v v vv

v
t

∂ −  − +   ∂     = − + =     
     ∂ − −    − ∂ 

(26)

Substituting v and v  from (13) into (25) or (37) terms, we can obtain:

0 0

0

0 0

,

:

,

v u
t t

p
v c
t t

∂ ∂ = ∂ ∂

∂ ∂ =
∂ ∂

(27)

2 2
0 0 0 01

02 2
1

2
01

0 02

0,
:

0,

v v v vv v
t x xx x

p
vv v v

t x

 ∂ ∂ ∂ ∂∂
− + + = ∂ ∂ ∂∂ ∂


 ∂∂

− − + = ∂ ∂
(28)

22 2
0 0 02 1 1 1 1

1 02 2 2
2

2
2 1

0 0 1 12

0,
:

0.

v v vv v v v vv v
t x x x xx x x

p
v v v v v v
t x

 ∂ ∂ ∂∂ ∂ ∂ ∂ ∂
− + + + + = ∂ ∂ ∂ ∂ ∂∂ ∂ ∂


∂ ∂

− − + − + = ∂ ∂
(29)

We can write (29) as follows:

22 1
1 11

2 2
0

2 1
1

2
0

, 1: ,

, 1: ,

i
j i j i ji

i j
j
i j

i
i i

j j
j
i j

v v vv
v t v i n

x xx x

v v
v v i n

t x

−
− − − −−

=
≠

−
−

=
≠

  ∂ ∂ ∂∂
∂ ∂ = − + =  

∂ ∂∂ ∂ 
∂ ∂ = + − =
 ∂ ∂


∑

∑ (30)

for solving (29) or (30), we integrate with t, we obtain
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22 1
1 11

2 2
0

2 1
1

2
0

,  1: ,

, 1: ,

i
j i j i ji

i j
j
i j

i
i

i j j
j
i j

v v vv
v v dt i n

x xx x

v
v v v dt i n

x

−
− − − −−

=
≠

−
−

=
≠

  ∂ ∂ ∂∂ = − + =   ∂ ∂∂ ∂   

 
∂ = + − = ∂
  

∫ ∑

∫ ∑

with initial conditions u0(x) and c0(x) is known.

5. Numerical solutions test for Keller-Segel model
Now, we solve this problem with the initial condition defined as

0 0

0 0

( ) ( ) cos , ( ) ,
( ) ( ) cos , ( ) ,

v x u x kx x
v x c x kx x

= = ∈
 = = ∈



 (31)

we have for i = 1, 2, ...,

2 2 2 2 2
1

2
1

( sin( ) cos( ) cos( )),
cos( ),

v t k kx k kx k kx
v k t kx

 = − − +


= −

and

               

4 2 3 4 2 2 4 2 2 4 2 4 2 2

2

2 2 2 2 2 4 2

2

( cos( ) ) (5 cos( ) ) (5 sin( ) ) ( cos( )) (5 cos( )sin( ) ) ,
2 2 2 2 2

( ) cos( ) ( cos( )) .
2 2

k t kx k t kx k t kx k t kx k t kx kxv

k t k t kx k t kxv


= − + + −


+ = −

The remaining terms can be obtained using the iterative formula. However, we only consider a few terms of the 
series of solutions, and the asymptotic solution is given as:

1 2 3 4

1 2 3 4

( , ) ( , ) ( , ) ( , ) ( , ) ...

( , ) ( , ) ( , ) ( , ) ( , ) ...

u x t v x t v x t v x t v x t

c x t v x t v x t v x t v x t

= + + + +


 = + + + +

In the below, we show some results of the approximation solution of one-dimensional Keller-Segel with different 
parameter types. The following Figures 1 to 3 illustrate the biological behavior of the coupled solution for the following 
set of constants: k = 1, 1.2, 1.4, 1.6, 1.7, and 1.8.
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Keller-Segel model u(x, t)

(a) u(x, t) for k = 1
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 t)
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Keller-Segel model u(x, t)

(c) u(x, t) for k = 1.2
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Keller-Segel model c(x, t)

(b) c(x, t) for k = 1

v(
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(d) c(x, t) for k = 1.2
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Figure 1. Coupled solution for k = 1 and 1.2
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Keller-Segel model u(x, t)

(a) u(x, t) for k = 1.4

v(
x,

 t)
 

0.5

1

0 0.5
1

1.5
2

0
x t

-500
0

500
1,000

-1,000
-1,500
-2,000

Keller-Segel model u(x, t)

(c) u(x, t) for k = 1.6
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Keller-Segel model c(x, t)

(b) c(x, t) for k = 1.4
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Keller-Segel model c(x, t)

(d) c(x, t) for k = 1.6
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Figure 2. Coupled solution for k = 1.4 and 1.6
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Keller-Segel model u(x, t)

(a) u(x, t) for k = 1.7

v(
x,

 t)
 

0.5

1

0 0.5
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0
x t
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0
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1
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(c) u(x, t) for k = 1.8

Keller-Segel model u(x, t)
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Keller-Segel model c(x, t)

(b) c(x, t) for k = 1.7

v(
x,

 t)
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Keller-Segel model c(x, t)

(d) c(x, t) for k = 1.8

v(
x,

 t)
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1

0 0.5
1
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0
x t

0

500

1,000

1,500

-500
-1,000

Figure 3. Coupled solution for k =1.7 and 1.8

6. Test method for classical Keller-Segal model
Where we study the numerical solution for the classical version of the new HPM (NHPM) with initial conditions,

we present the results of the approximate coupled solution of different types of parameters and source terms and 
functions. We define the new version of the Keller-Segel model as follows:

( , ) ( ) 0,  in ( , ) [0,1],

( , ) 0,  in ( , ) [0,1],

t u xx x x

t c xx

u x t u uc x t

c x t c u c x t

δ χ

δ ρ τ

− + = ∈ ×


 − + − = ∈ ×



 (32)

where u = u(x, t) denotes the density of the cells in position [0],x∈  at time , ( , )t c c x t∈ =  is the concentration of 
chemical attractant in position ,x∈  at time [0,1], , ,t τ ρ∈  and χ  are positive constants, where diffusion coefficients δu 
and δc, respectively, are assumed as constants. With zero Dirichlet boundary conditions and initial conditions, we define

0

0

( ,0) ( ),   ,
( ,0) ( ),   .

u x u x x
c x c x x

= ∈
 = ∈





Now, we study numerical coupled solutions of the problem (32) by NHPM with initial conditions as follows:

2
0

2
0

( ) ( 1) ,

( ) ( 1) ,

x

x

u x x e

c x x e−

 = +


= + (33)
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and parameters 1 2 1.u cd dτ ρ χ δ δ= = = = = = =
Now, we compute the approximate solution of the problem associated with the initial condition and the parameters 

defined in (33) and (6) (respectively) by NHPM, and we find

2
0

2
0

( ) ( 1) ,

( ) ( 1) ,

x

x

v x x e

v x x e−

 = +


= + (34)

we have for i = 1, 2, ...

1

1

(2 ( 1) ( ( 1))( ( 1)) (2 ( 1))( 1)),
(2 ( 1) 2 ( 1)),

x x x x x x x x x

x x x

v t e e x e e x e e x e e e x x
v t e e x e x

− − −

− −

 + + − − + + + + − + +


− + + −

=

= +

and

2 2 2 2 2
2 2 2 2

2

2 2 2
2 2 2

2

(5 ) ( )) (3 ) ( ) (3 ) (3 ),
2 2 2 2 2

(3 ) (7 )2 2 .
2 2 2

x x x x
x x

x x
x x

t e t e t t xe t xev t x t x e t xe

t t xe t ev t xe t e t x

− −
− −

− −


+ + +



= − + +

 − − − −


= −

.

.

.

Now, we show the approximate solution in Figures 4 to 8 with different parameters.

Keller-Segel model u(x, t)
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Keller-Segel model v(x, t)
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0.6 0.8 1

0
0.4

Figure 4. The approximate solution of u(x, t) and v(x, t) with the parameters τ = 2.75, ρ = 10−3, χ = 0.05, δu = 1.5, δc = 10−3
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Keller-Segel model u(x, t)
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Figure 5. The approximate solution of u(x, t) and v(x, t) with the parameters τ = 3.75, ρ = 5 × 10−5, χ = 5 × 10−4, δu = 2, δc = 10−5

Keller-Segel model u(x, t)
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Figure 6. The approximate solution of u(x, t) and v(x, t) with the parameters τ = 4.5, ρ = 10−9, χ = 2.5, δu = 2.5, δc = 10−7
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Keller-Segel model u(x, t)
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Keller-Segel model v(x, t)

v(
x,

 t)
 

0.5

1

0
x t0.2

0.6 0.8 1

0
0.4

60

80

100

40

20
0

Figure 7. The approximate solution of u(x, t) and v(x, t) with the parameters τ = 1, ρ = 1, χ = 1, δu = 1, δv = 1

In this case, we present a solution to the problem (8) with the source term functions cos( ) 1, cos( ) 1x x
u vf x e f x e−= + = − 

cos( ) 1, cos( ) 1x x
u vf x e f x e−= + = − , and 1, 1, 1, 1, 1.u cτ ρ χ δ δ= = = = =  

The behavior of the solution of the system of equations (8) with initial conditions in equations (33) and various 
types of parameters (6) is shown in the above Figures 4 to 7. These solutions describe the biological cell density 
and chemical substance concentrations in places x ∈ R and t ∈ [0, 1] for a particular set of theoretical parameters 
chosen from the literature. While Figure 8 shows the behavior of a coupled solution for as source terms functions fu 
and fc of space, we can deduce that the cell density biological increases in space as the concentration of the chemical 
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substance decreases. When source terms functions fu and fc are used, the cell density biological and chemical substance 
concentrations increase in space. The approximate solutions obtained, as seen in the graphical depiction, mimic the 
behavior of the real-world situation.
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Figure 8. Coupled solution for source term functions fu and fc

7. Test method for the new version of the Keller-Segal model
We consider the new version of the Keller-Segel model defined as:

( , ) ( ) 0,  in ( , ) [0,1],

( , ) 0,  in ( , ) [0,1],

t xx x x

t xx x x

u x t u uc x t

c x t c uc u c x t

− + = ∈ ×


 − + − = ∈ ×



 (35)

with the initial condition as follows:

0

0

( ,0) ( ) ,  in ( ) ,

( ,0) ( ) ,  in ( ) .

x

x

u x u x me x

c x c x ke x−

 = = ∈


 = = ∈



 (36)

Now, we use homotopy (12) to solve the new version of the Keller-Segel model by NMHPM, so we have

0

0

( ) 0
(( , ), ) (1 ) .

0

t
t xx x x

t xx
t

u
v v v vvt

H v v p p p
c v v vv

v
t

∂ −  − +   ∂     = − + =     
     ∂ − −    − ∂ 

(37)

The NMHPM method gives the solution of the new version of the Keller-Segel model as follows:
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22 1
1 11

2 2
0

2 1
11

12
0

,   1: ,

,   1: ,

i
j i j i ji i

j
j
i j

i
i j ji

i j j
j
i j

v v vv v
v i n

t x xx x

v vvv v v i n
t x xx

−
− − − −−

=
≠

−
− −−

− −
=
≠

  ∂ ∂ ∂∂ ∂
= − + =   ∂ ∂ ∂∂ ∂  




∂ ∂  ∂∂


+ += =  ∂ ∂ ∂∂  



∑

∑
(38)

22 1
1 11

2 2
0

2 1
11

12
0

,  1: ,

,  1: ,

i
j i j i ji

i j
j
i j

i
i j ji

i i j j
j
i j

v v vv
v v dt i n

x xx x

v vv
v v v dt i n

x xx

−
− − − −−

=
≠

−
− −−

− −
=
≠

  ∂ ∂ ∂∂ = − + =   ∂ ∂∂ ∂   

 ∂ ∂∂ = − = ∂ ∂∂
 

+

 

∫ ∑

∫ ∑

So, the solution reads

0

0

( ) ,

,

x

x

v x me

v ke−

 =

 = (39)

1

1

( , ) ,

( , ) ,

x

x

v x t me t

v x t ke t−

 =


 = (40)

2
2

2
2

1( , ) ,
2

1( , ) ,
2

x

x

v x t me t

v x t ke t−

 =



 =


(41)

3
3

3
3

1( , ) ,
6

1( , ) ,
6

x

x

v x t me t

v x t ke t−

 =



 =


(42)

         

4
4

4
4

1( , ) ,
24

1( , ) ,
24

x

x

v x t me t

v x t ke t−

 =



 =


(43)

.

.

. (44)
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The iteration formula can be used to acquire the remaining terms. Only a few terms of the solutions are considered, 
and the asymptotic solution is as follows with n = 0, 1, ...:

2

2

1( , )

1( , ) ,

x n
n n

h

x n
n n

h

v x t me t
h

v x t ke t
h

=

−

=

 =





 =



∏

∏
(45)

Thus, we obtain the approximation solution of the problem as follows:

0 0

2

0 0

2

1

) .

( , ) ,

1( ,

N N
x N

N N N
n n

n

N N
x N

N N N
n n

n

u x t v me t
n

c v x t ke t
n

= =

=

−

= =

=

 = =





 = =



∑ ∑
∏

∑ ∑
∏

(46)

The biological behavior of the coupled solution for the following and fixed time t = 0.5 and t = 1 sets is shown in 
Figures 9 and 10:
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Figure 9. Coupled solutions as function of x for a fixed time
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Figure 10. Coupled solutions of uN(x, t) and cN(x, t)

8. Conclusion
In this research, we demonstrate how to solve nonlinear coupled partial differential equations emerging in an

attractor one-dimensional Keller-Segel dynamics system using a relatively new analytical technique, the NMHPM. The 
model mimics the regular biological diffusion behavior seen in the field, according to the analysis and conclusions of the 
nonlinear system of attractors in the one-dimensional Keller-Segel equation.
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