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Abstract: This paper deals with the effects of magnetic fields on unsteady Casson blood fluid flow in a stenosis artery. 
The effects of thermo-diffusion, thermal radiation, metabolic heat sources, and heat absorption are also considered. The 
flow is confined by the oscillating pressure gradient. The governing equations are remodeled into a system of PDEs 
in cylindrical form, which is then converted to dimensionless form using the similarity transformation. A definition of 
the Caputo-Fabrizio fractional order derivative is applied to the governing dimensionless form. The Laplace transform 
and the finite Hankel transform are used to obtain the analytic results. From the graphical results, it is illustrated that 
the external magnet reduced the rate of blood flow. It is also deduced that radiation tends to improve the rate of heat 
transfer, whereas the thermo-diffusion parameter tends to reduce the mass transfer process.

Keywords: stenosed artery, magnetic field, thermal diffusion, Casson fluid, magnetic particles, thermal radiation, 
fractional derivative 

Nomenclature

2 cπ A critical value of this model
α Fractional parameter
A0 Systolic pressure gradient
A1 Diastolic pressure gradient

B
 Magnetic field

2 cB

r

π
µ µ

β
τ

= Casson fluid’s material parameter

D Differential operator 
d Stenosis location
F Inclination angle parameter

pf Frequency of the pulse

Contemporary Mathematics
http://ojs.wiserpub.com/index.php/CM/

Copyright ©2025 Harshad Patel, et al.
DOI: https://doi.org/10.37256/cm.6120252609
This is an open-access article distributed under a CC BY license 
(Creative Commons Attribution 4.0 International License)
https://creativecommons.org/licenses/by/4.0/

http://www.wiserpub.com/
http://ojs.wiserpub.com/index.php/CM/
https://ojs.wiserpub.com/index.php/CM/
https://doi.org/10.37256/cm.4220232500
https://creativecommons.org/licenses/by/4.0/


Volume 6 Issue 1|2025| 289 Contemporary Mathematics

G Particle mass parameter
γ Casson fluid parameter

aH Non-dimensional Hartman number
K Stokes constant
Kc Chemical reaction parameter

( )KN v u
ρ

− Force of relative motion between blood and magnetic particles

λ Relaxation time
L0 Stenosis length
m The average mass of magnetic particles

Bµ Plastic dynamic viscosity
N Magnetic particles number
Nr Thermal radiation parameter
ω Pulsatile frequency

2 pfω π= Angular frequency
P Oscillating pressure gradient

eP Peclet number
∅ Phase angle
Qm Metabolic heat source
r Radial coordinator
ρ Fluid density

KNR λ
ρ

= Non-dimensional particle concentration parameter

R0 Regular artery radius 
2

z
e

RR
vλ

= Reynolds number

S Laplace transform parameter
Sc Schmidt number
σ Electrical conductivity
Sr Soret parameter

rτ Yield stress

mθ Metabolic heat absorption
u(r, t) The velocity of the fluid
v(r, t) The velocity of the particle
υ Kinematic viscosity

1. Introduction
The new subfield of fluid mechanics is called bio-magnetic fluid dynamics (BFD), and it focuses on the 

performance of fluids subjected to magnetic fields [1]. BFD has a significant impact on many areas of medical 
engineering, bio-medical engineering, blood clotting, and the destruction of cancerous tumors [2, 3]. Haik et al. [4] 
introduced the BFD model to examine the motion of bio-magnetic fluid blood. Magnetohydrodynamics (MHD) 
studies an electrically conducting fluid in a magnetic field and is used in industry and engineering [5]. Primarily 
explored electromagnetic flow with application in measuring blood flow by Kolin [6], and MHD device usage to treat 
cardiovascular diseases by slowing blood flow was further explored by Korchevskii and Marochnick [7]. Several 
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scholars have looked at blood flow as a non-Newtonian fluid that behaves like magnetohydrodynamics; this concept is 
discussed in ref. [8, 9]. Habu et al. [10] concluded that an external magnetic field can control blood flow. Shit and Majee 
[11] observed that body vibration can impact the axial wave profile, temperature, and flow rate. The oscillatory flow 
of viscous fluid in a thin-walled tube exposed to elasticity and a magnetic field has been researched to treat localized 
diseases like cancer. Tzirtzilakis [12] developed a mathematical model that could explain the importance of BFD 
through an external magnetic field. In the occurrence of a magnetic field, Vincent et al. [13] investigated the velocity 
profile of turbulent blood flow in inclined arteries. Tripathy and Sharma [14] looked at how different viscosities affected 
MHD-inclined arterial blood flow when chemical reactions were involved. Unsteady MHD blood flow across a parallel 
channel plate was mathematically analyzed by Eldesoky [15]. His research found that when the heat source increases, 
the axial velocity and temperature rise, but the normal velocity and Prandtl number fall. Heat transport and blood flow in 
the circulatory system have been investigated for a long time for their potential role in the control of body temperature. 
A model of BFD with heat transfer in arteries was suggested by Chao [2].

Examining the fractional-order derivatives of the effects of a magnetic field, thermal diffusion, and body 
acceleration on blood flow is unique. In 1695, Leibniz first planned the idea of fractional calculus, and in 1832, 
Liouville expanded on this idea. Fractional derivatives have been effectively employed in many fields, including fluid 
mechanics, biology, mathematics, economics, etc. As per Caputo fractional derivatives, Laplace, and finite Hankel 
transforms, an external magnetic field reduced the motion and heat transfer processes [16]. The effect of magnetic fields 
on Casson fluid was investigated by Ali et al. [17] in their research on magnetic particles and blood flow. Recently, 
many researchers discussed the fractional time derivative model for blood flow problems [18-21].

The Soret effect refers to the thermo-diffusion phenomenon that occurs when there is a temperature gradient. The 
study of heat and mass transfer phenomena in porous mediums is studied theoretically and experimentally to build blood 
flow devices in biomedical engineering and technology. Ellahi et al. [22] examined nanoparticle-enhanced peristaltic 
pulsatile blood flow with a chemical reaction. Hayat et al. [23] studied the thermo-diffusion effect on peristaltic flow to 
calculate blood concentration. Khan et al. [24] studied the cross-diffusion effect on second-grade fluid flow. The cross-
diffusion effects on the MHD flow of ferromagnetic fluid were theoretically investigated by Vafai et al. [25].

In this research, the fractional time derivative simulation of MHD Casson blood is discussed with stenosed arteries. 
The analytical expression of blood velocity, magnetic particle velocity, temperature profiles and concentration profiles 
are obtained using Laplace and Finite Hankel transformation. The mathematical analysis of said problems is useful for 
improving human health. From the results, it is concluded that the magnetic particle tends to reduce the blood viscosity, 
which is useful for controlling the blood flow velocity. Due to this result, we can improve the health condition of 
cardiovascular disease patients. Hence, these works can be helpful in solving many cardiovascular disease problems 
that disturb the regular rate of blood flow. This solution can be used to treat hypotension by bringing the patient’s blood 
pressure up to a healthy level. Magnetic fields at different angles effectively reduce strokes, swellings, and pains.

2. Mathematical formulation
The focus of the current research is on unsteady fluid flow in an angled stenosed artery, which is outlined in Figure 

1 and z-axis indicates axial direction, while the r-axis indicates radial direction. The model was developed using the 
incompressible Casson blood fluid that is accelerated through fluctuating pressure.

Figure 1 displays a graphic of the magnetic field that is delivered to the body to increase blood flow, with the 
generated magnetic field considered to be minimal. At time zero, both the blood and the magnetic particles were at rest. 
Blood flow and heat transfer are modeled using the Navier-Stokes and energy equations, while the magnetic field is 
described by Maxwell’s relations and particle motion is governed by Newton’s second law.
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Figure 1. Schematic diagram of the flow geometry of the model

Unsteady motion in a cylinder with axis symmetry and radius R0, due to a constant transverse magnetic field and 
pressure gradient

                                                                        0 1 0cos( ), 0tA AP
P

Aω−
∂
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∂

= >
                                                                   

(1)

Geometrically, the stenosis, which is symmetric but non-symmetric in the radial direction, can be described as
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Rz and R0 represent the stenosed and un-stenosed radius of the artery, L0 represents the stenosis’s length, and d  
represents its position. q ≥ 2 indicates the shape of stenosis.

The governing equations in cylindrical form are as follows:

                                     

22
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11 11 ( ) sin .K sinu u u u
t z rr

Nv v u v g
p r

σ θ
β ρ ρ

β∂   += − +
∂
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 ∂ 

∂ ∂ ∂
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The relative velocity of magnetic particles is denoted by ( ) KN v u
ρ

− . For a low relative velocity, the Reynolds 

number is maintained. 
Due to Newton’s second law, which governs the movement of magnetic particles

                                                                                  
( )  vm K u v

t
∂

= −
∂                                                                               

(4)

where m indicates the average mass of magnetic particles.
The energy equation in the cylindrical coordinate can be written as 
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The concentration equation in the cylindrical coordinate can be written as
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The approximated heat flux, which appears in equations (5), is considered
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4 ,  where .q BT T

r T
α α β χ

∞

∞

∂ ∂
− = − =
∂ ∂∫                                                       

(7)

Where 1, , B
T

β χ ∂
∂

 denote the radiative absorption coefficient, Planck’s constant, and the frequency, respectively.

To consider the time-fractional model, equations (3) to (6) will be multiplied by 0

0

R
A
ρ

λ =  to yield a term. So, 

equations (3) to (6) can be written in fractional derivative form as 
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where Caputo-Fabrizio operator is
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The Laplace transform of Caputo-Fabrizio operator can be express as
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with α(0 < α < 1) being the fractional order parameter.
The initial and boundary condition with stenosed artery of radius Rz are 
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The dimensionless form of equations (8) to (11) can be written as
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3. Solution of the problem
Now, the Laplace transform technique is applied in equations (15) to (18), we obtain 
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With boundary condition (1, ) (1, ) (1, ) 0u s v s sθ= = =  from equation (21),
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Inputs equation (24) into equation (20),
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Applying the finite Hankel transformation of order zero in equations (25) and (22) with the boundary condition (19), 
the following equation can be obtained:
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where 
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0
0

( , ) . ( , ) ( , )H n nu r s r u r s J r r dr= ∫  represents the finite Hankel transformation of the velocity and temperature 

function. 
Here, ( )0 00,J x J=  ( )0 00,J x J=  is first kind zero order Bessel’s function, and , 1, 2,3, ..nr n = … 1, 2, 3, … are the positive roots of 

equation.
Reform of equations (26) to (28), we get
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Similarly, when we process the energy equation (27), we get
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Now, rearrange the equation (32)
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Now, applying the inverse Laplace transform of equations (31), (33), and (44) are 

(47)( ) ( ) ( )
( ) ( )

7 8

7 8

0 9 0 10
9 101 )

7 7 8 8

1 9 1 10*cos *cos

sin sin
1 1  (

,

 

B t B t
n

H n
n B t B t

A B A B
e B e BJ r

B B F B B Fu r t
r

A B e t A B e t

φ φ

ω ω

    
− + + − + +    

∴ =     
 + 



Volume 6 Issue 1|2025| 297 Contemporary Mathematics

(48)( ) ( )15 151 14
13

15

(
,

)
1B t B tn

H n
n

J r Br t B e e
r B

θ − − 
∴ = + − 

 

(49)( ) ( )1
13 1 15 14 1 15

(
  

)
, ,n

i
n

J r
B F B t B R B t

r − = − + − 

(50)( ) 27 311
29 30 31

(
,  

) B t B tn
H n

n

J r
r t B B e B e

r
− − ∴∅ = + + 

Fluid velocity and temperature are obtained by taking the inverse Hankel transformation of equations (47), (48), 
and (50)
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The velocity of a magnetic particle can be expressed from equation (24)
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(58)( ) ( ) ( ) 1233 321 ,0 1, *, B tv B Br t u er t α = − < < 

4. Numerical results and analysis 
By analyzing the effects of various physical parameters on the velocities of blood, magnetic particle velocity, 

temperature, and concentration profiles, numerical results are obtained and presented in Figures 2 to 16. For the 

numerical calculations, the following parameters are fixed: A0 = 0.5, A1 = 0.1,  
4
πω = , Re = 2, G = 2, Ha = 1, and R = 0.5. 

In this model, the values of fractional order derivative are considered as α = 0.2, 0.6, and 1. 
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Figure 2. u(r, t) for A0
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Figure 3. u(r, t) for A1
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Figure 4. u(r, t) for γ
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Figure 5. u(r, t) for R

                         

Ha = 1, 1.5, 2, 2.5

B
lo

od
 fl

ow
 v

el
oc

ity
 u

(r
, t

)

Radial axis r

0.005

0

0.01

0.015

0.02

0.025

0.10 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Figure 6. u(r, t) for Ha



Contemporary Mathematics 300 |Harshad Patel, et al.

                         

Pe = 0.5, 1, 1.5, 2

Te
m

pe
ra

tu
re

 θ
(r

, t
)

Radial axis r
0.10 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.01

0

0.015

0.02

0.025

0.03

0.005

Figure 7. θ(r, t) for Pe

                         

Nr = 1, 1.5, 2, 2.5

Te
m

pe
ra

tu
re

 θ
(r

, t
)

Radial axis r
0.10 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.004

0

0.006

0.008

0.01

0.012

0.002

Figure 8. θ(r, t) for Nr
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Figure 11. v(r, t) for G
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Figure 13. C(r, t) for Sr
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Figure 14. u(r, t) for α and Ha
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Figure 16. θ(r, t) for α and Pe

Figures 2 and 3 show the effects of the systolic pressure gradient and the diastolic pressure gradient on blood 
velocity. It is seen that the motion of the blood improves with increasing values of the parameters. Physically, when 
we increase the pressure gradient, fluid is accelerated, and due to this, the velocity of the blood flow is also increased. 
The non-Newtonian character of blood is reflected in the Casson parameter. Higher values of the Casson parameter are 
related to Newtonian nature. As can be seen in Figure 4, as the Casson parameter is raised, blood velocity increases. 
The increase in the Casson fluid parameter decreases the yield stress, and consequently, the boundary layer thickness 
decreases. Casson’s behavior is more important in small arteries because of the possibility of red blood cell collection 
and distribution there owing to the rotation of the artery’s axis. Figure 5 shows how the fluid motion is affected by the 
particle concentration R. It is seen that the blood velocity decreases with an increase in R.

The velocity profile has always been more strongly influenced by the magnetic field. To study the effect of 
Hartman number on blood flow, Figure 6 is plotted. The velocity of blood decreases with an increasing value of the 
Hartman number. During this time, the charged particles would be rotating due to the impact of a magnetic field. As 
a result of the magnetic orientation, red blood cells and magnetic particles would be maintained in suspension much 
longer. In addition to increasing blood viscosity, a greater concentration of magnetic particles will raise the axial flow 
rate. The magnetic fields can be used in the fluid flow model to increase the Lorentz force, which would reduce blood 
flow. Therapeutic applications and therapy procedures connected to atherosclerosis, fractured bones, controlled tissue 
damage, and cancer may benefit from a controllable magnetic field. Figure 7 shows the effect of the Pe on temperature 
profiles. It is illustrated that the Pe tends to improve the heat transfer process. The effects of thermal radiation parameters 
on temperature profiles are shown in Figure 8. Physically, when we increase the thermal radiation parameter, the 
blood becomes thin due to radiation, and hence the heat transfer process is improved. Figure 9 displays a variation 
in temperature at different metabolic heat sources. Increasing the metabolic heat source has a warming effect on 
temperature. In the absence of a metabolic heat source, blood vessel temperatures are lower. Temperatures in the system 
increased because of a metabolic heat source, while the wall temperature remained at zero to follow the boundary 
condition. The effect of increasing metabolic heat absorption on temperature is represented in Figure 10. The size of 
the particles is what determines the value of the parameter for the particle mass, known as G. According to Figure 
11, the magnetic particle velocity tends to decrease as the mass parameter is increased. As shown in Figure 12, the 
velocity profiles vary with the Reynolds number. The Reynolds number is inversely proportional to the fluid’s velocity. 
The fluid’s velocity gradually increases as Reynold’s number rises. Physically, lower viscosity (increased velocity) 
will increase. Figure 13 illustrates concentration profiles for various values of the thermos-diffusion parameter Sr. It is 
concluded that an increase in Sr decreases the concentration profile and the boundary layer thickness. The Soret effect, or 
thermo-diffusion, which is a driving factor for mass diffusion, may also be caused by a temperature gradient. Therefore, 
the Soret effect increases with an increasing temperature gradient.
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Figures 14 to 16 show the effects of fractional order parameter α, magnetic parameter Ha, Casson parameter, and 
Pe on velocity and temperature profiles. All figures indicate the impact of the fractional order parameter on velocity and 
temperature profiles. It is also seen that velocity is increasing, whereas temperature decreases with increasing values of 
α. This result helps analyze the difference between a fractional-order derivative and an integer-order derivative. From 
Figures 14 to 16, the effects of Ha, H, and Pe are already discussed in previous figures.

5. Conclusion 
The following are the key findings of the current study:
• It is notable that the axial velocity of blood flow can be controlled by applying an external magnetic field of the 

correct strength. Research into atherosclerosis treatment will benefit from this information.
• Heat transfer processes improve with increasing values of thermal radiation and Pe.
• The concentration level of the fluid rises with the fall due to the thermos-diffusion parameter. This result will be 

important to investigate during cancer hyperthermia treatment.
• The fractional order parameter α tends to improve the motion of the blood flow. Due to this, it is observed that 

blood velocity delays with the fractional-order model.
• Temperatures lower as the fractional parameters are increased, which implies that the heat transfer process is 

much faster for the fractional-order model.
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