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Abstract: The present paper aims at providing an insight to embedded Runge-Kutta sixth order (RKSD) ordinary
differential equation method for solving the initial value problem of order six of type v"(u) = flu, v, v', v",v"""). The
concept of order conditions for the three and four stages up to the eighth and ninth orders, respectively, is designed
and evaluated; furthermore, the zero-stability of the proposed method is proved. Comparisons are made between these
orders with the help of a mathematical example, and global and local truncated error norms are evaluated.
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1. Introduction

This paper focuses on solving the equations of the form
v (W) = fu,v,v'w"v"w") (1)
with initial conditions as
v(ug) =g, V' (ug) = . v" (1) = g, v" (g ) = g V"™ (ug) = g’ V" () = - )

The solution and optimization of ordinary differential equations (ODEs) have been of great interest to scientists for
a very long time [1, 2], as they occupy a special place in many executions in the field of science and engineering [3-6].
For instance, third-order ODEs are used in thin film flow problems [7-10], and fifth-order differential equations are used
in fiber preservation transformations [11]. Beccar et al. [12] and Abdulsalam et al. [13] contributed towards analyzing
various orders of ODEs. Malhotra et al. [14] optimized the real-life problem, and Kaur et al. [15] used an improvised
concept for solving the differential equations. Hussain et al. [16] have worked on numerical integration of third-
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order differential equations using the four-stage fifth-order Runge-Kutta method. The method proposed is considered
to require a smaller number of stages than existing Runge-Kutta methods [17]. Hatun et al. [18] have developed a
simulator containing 38 different Runge-Kutta-based methods for solving differential equations. The solution to the
problem can be presented numerically as well as graphically, and a performance analysis can also be obtained through
this. Mechee et al. [19] in their paper solve special fourth-order ODEs by using direct explicit integrators of the Runge-
Kutta method. By using this technique, the authors have saved computational time, further increasing efficiency [20].
However, some authors, like Pandey et al. [21] have worked on sixth-order differential equations, but their work is
limited to only boundary value problems, and not much work has been reported on solving sixth-order ordinary initial
value problems. Moreover, the calculation of the errors associated with the methods is still an issue.

The current research paper brings forth the Runge-Kutta technique for evaluating global and local truncated errors
of the initial value problem (1-2).

2. Runge-Kutta type sixth order ODE

The sixth order ODE evaluated in this paper be represented as:
v (u) = f(u,v,v',v",v"’, viv) 3)
with initial conditions as
v(ug) = gV (ug) = agv" (ug) = g, v" (itg) = ags V™ (utg) = @', v" (ug) = - 4)

2.1 Derivation of Runge-Kutta sixth order (RKSD) method

+hv! +ﬁ +h3 ”’+E ’”+— +h6E 5
Vil = Vp Vn 2V 31 Vi 4'vn Slvn 111 ()
' ’ " hz h3 5 ’
Vi =V, Hhy, + 2v +3' A v +h E bk (6)
" h2 iv h3 v 4 S r
I_V +hV +7Vn +¥Vn+h E 117(1 (7)

v = '"+hv —v, +h3z b’k

+l it (8)
V=V e b ilb,.”ki ©
n+1 - V + hz i l (10)

where
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" iv
k = f(u v,V vy ”,vn)

n?

, ne’ e et . he ne re
ko =flu,+chyv, +hcy, +——v + ——v'+ —V'+—v' +h Za k. v+ hey! + v+ —Ly
’ ' 2 3! 41 " 5! v 2 3t

h4 4 hZC.Z “ h3 3 hZCIZ
v +h Zaljkj,vn+hcv + 5 v, +h Za,jk},v"+hcv 2’ vn v

/A

s ZZ k! + he! + Za_ jfori=1,2,3,....,s

The parameters a;;,bf where p is a derivative, i.e., p=0...iv and ¢; e RVi, j=1,2,3,...,s

ij>%i

*  Explicit method: a@; = 0 ati > ;j and
*  Explicit method: a; # 0 ati <.

The Taylor’s series concept been applied in evaluating the expression for different variables linked with Runge-

Kutta method in equation (5-10).

wp
b,

T
bi

Mathematica is used to deal with complex calculations. The main purpose of the construction of embedded
explicit RKSD methods is to lower local truncated error. The method computes vZ,, to obtain an approximate value to
v? (u,,,) where p is a derivative, i.e., p=0...v and v, , is the calculated solution and v(u,,,) is the exact solution.

Equation (5-10) can also be represented as:
Vpel =V, Hhy,
V;H—l = vln +hy',
Vo =Vt Y,
Vst =V, +hy",
Vn+1 V + h'// >

v v v
Vil —Vn +hl/l

The differentials for the equation are as under:

(11)
(12)
(13)
(14)
(15)
(16)
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Fl(ﬁ) =) = f(u v, v vn,vn Vi )

7
Fi( ) g(u V?‘}n’vn’vn ’Vn ) f +f v +fv uu +fv”vuuu + fv’”vuuuu +f;,"Vvuuuuu’

() _ '
Fi =8u + 8V + EvVuu + EvVuuy + EvViuuu + gv""vuuuuu

the local truncation errors [24-26] of v"(u) where p is a derivative, i.e., p=0...

exact solution of (1) into (11-16).

T = h|:‘//p

Further, using equations (17-19) in equations (11-16), the increment functions ,y',i",iy" are obtained as:

> bk :Z';lb,-F](Q+z::lbicihlﬂ(7)+%z;b, Zh2F +—z e F

Similarly,

3 k=X bR 3wt - 3w

—APJ, where p =(0),(i),(ii),...... .(v)

++O(h6)

z bR FC ++0(h6)

S nk =Y B RO B R Z b 2h2F® +31 bR +40(°)

S btk => RO LY prehr” +%Zj=lbfvci2h21ﬂ(8) +%Zj=lijc§h3ﬂ(9) ++0(°)
Z bv 2h2

2 k= 3 R 3 prenr)

The local truncation errors (20) are as follows:

1 1
7, = h {Zbk (6! L )+%hFl(7)

Ty =k {Zb;ki —[iFl“) +%hFl(7)

1

o =0 bk, - Fl(6)+§hFl(7)
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FOLLpp  Ly2p®  Lyspo) j
41 5! 6!

+—h?E® +ih3Fl(9) ......... j
41 5!

—z b EHF ++O(h6)

Lp2p®  Lyspo) j
81 9!

Lp2g® Lyago j
7! 8!

6!

+ih 2Fl(8) +%h 3F1(9) ......... H

1

1

(17

(18)

(19)

v are calculated after substitution of the

(20)

e2))

(22)

(23)

24)

(25)

(26)

27)

(28)

(29)

(30)
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2 =h {Zbivki—(FI(G)+%h1¢1(7)+%h21§(8)+%h3ﬂ(9) ......... H 31

3. Order conditions of third/fourth stages eighth-/ninth-order RKSD method
(RKSDS8/RKSD9)
As per the findings in Section 2, the required third-stage eighth-order RKSD (RKSDS8) and fourth-stage ninth-order

RKSD (RKSD?9) order conditions are framed as follows:
The order terms for v :

1 1
Sixth order: >, = —=— 32
el 720 (32)
1 1
Seventh order: > b,c; = —=—— (33)
7! 5040
Eighth order: ¥ p.c? = L, Zb.% - (34)
20160 40320
The order terms for v’ :
Fifth order: b, = —=—— (35)
’ 51120
. 1 1
Sixth order: X b.c; =—=—— 36
* 61" 720 (36)
Seventh order: Yb,c; ! Zb’a§ ! 37
v : iCi = aoan &b =,
2520 Y5040
. Cy 1 = =1 = 1
Eighth order: X b,¢; =——,Yb,c,a; =——— Y bc;a; =——,Yba; =——— (38)
6720 740320 13440 40320
The order terms for v":
P | 1
Fourth order: >, =—=— 39
2 Y41 24 (39)
" 1 1
Fifth order: Xb ¢, = —=——, 40
s 120 (40)
Sixth order: Y5, ¢? = L,Zb;aéi. - 41)
360 Y720
Seventh order: Y b ¢ = L Sh e - = ; Sh e a§ = L b aE = L (42)
CTTT 40" T T 50407 T Y 168077 T Y 5040
, Va1 L= L= L= L=
Eighth order: 2b;¢; =——,Ybcja; =———Ybc;a; =——,2bc,c;a; =———2bca; =——,
1680 20160 3360 10080 40320
. = 1 = 1
2bca;=——2b a, =——— 43-49
710080 V40320 ( )
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The order terms for v’’’ :

1
Third order; 2.b, =—=— 50
316 (50)
Fourth order: Yb." L (51
ourth order: icl-—z——4
1 =1
Fifth order: Y5, ¢/ =—,¥ b, a; =—— 52-53
60 77120 ( )
Sixth order: S5} = S 5c o Shea -l sy o) (54-57)
S D) TR0 00 T T 0407 Y 700
1 o= 1 "o = . = a . =1
Seventh order: ¥b, ¢} =——,> b ca, = Yb cta, =——Xb cc,a;, =——, 3 b ¢ a; =——,
v 210 709500 T 400, 77071260 T70 75040
SHea - sya oL
1260 5040 (58-64)
. = D = = o= 1
Eighth order: Y5, ¢; =—,%b" ¢ja; =——,%b" ¢} a; =—=,¥b/c/c;a; =——Tb/c;c}a; =——
336’ 6720 672 2016 8064
Sh ¢t = SHa = She,a, = TGy S =
2016 y 7708064 4 4 T7T 40320
— 1
b a; =——
7 40320 (65)
The order terms for v
. a1
First order: 25, =3 (66)
. o 11
Third order: 2b"¢c; =—=— (67)
316
Fourth order: Y5"c? = zb'vz = 214 (68-69)
. é 1 = =
Fifth order: 5"c; =—,Xb"c;a; =——,Xb"¢; a; =—,Xba; = 70-73
Z i Z 0 Z (g Bhad ] 40 z 120 ( )
Sixth order: X" f‘=i Yb'a, = —. Zb’vczaE — Zb’vcza_:— Shie, i:L
T 3T Y 07T Y 3607 180
= = 1
b a zbw z Pa, =— (74-81)
L “ =70
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Seventh order: Y.5"c] = Zb”’ 3a_ Yh'ca Zb’v a4y =—— Zb”czc a;
840 5040
= = = = 1
:_thvcca z lV 2 z lV 2 ”:_ szvcc a, =——
7Y 1008 i = 2 20° i 252 71008
= 1
Sh'ca =—— Sha DY A — 82-93
5040 i = 1008 i 5040 ( )
Eighth order: ¥ 5" f’:L Yhe 4z=— >hc 4a=,»j:— Zbl’vcfcjz L —,
56 1680 112 336
= E 1
szv 2 Za _ Z lV o Z lV 3 _ Z lV 3 =,
Py 134 K 6720 4 =336
= = _ _ 1
waclzc a; = wa ai' Z lV a; = Z lV a; = ,
Iy 1344 7% 6720 Y 40320 Y6720
) = 1
2b'a; = ,2bc 2 a; ,2bc 2 a; =——Yb"c;c,a; =——. 94
v 40320 i 20160 Y 1344° % 6720 64
The order terms for v :
First order: 35 =1 95)
1
Second order: 2.5/c; =3 (96)
Third order: ¥ 5c? =~ vaaz—% (97-98)
. v.3 v é 1 v = 1 VE 1
Fourth order: 2.b/c; = Zbl c;a E,Zbi ¢;a =§,Zb,- b =2, (99-102)
Fifth order: Y5'c? :%,zb;a:,j g b 2::6_ Shcla; =— Zb,v ¢, /Z:%,Zb;cia:y:%,
= 1
Yhca; =— 103-109
JY 120 ( )
1 v 1 v = v = v v E 1 v =
Sixth order: 2b; f:g,Zbi c;aij Zb, ca a; = Zbl 13 a; = Zb, ,] m’Zbi c?aij
=—.Yb'c]a, Y Yblec a; =—,Yb'c.a; =——, Y b'c,a; = ,zb.va,. =— 110-120
360 te P GiC i 144 FTH 07T T 144 Y720 ( )
= 1 = = = 1 =
Seventh order: Y.5/c® == va 4a =m,2bivcfaij =1— Zb,vcfcj a; E,Zbivcfcfaij =@,Zbivcic;aij
1 = 1
va 32400 B . va 32400(1» - va 2 va 268 2 =), 121-130
84 % = 840’ Py = i 840 ( )
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v 2 v2 _ v 268 = 1 v 268 s
20y = 55 20 4 = ﬁzb % =540 =" T % = Soa0
S = e =L

840 5040
Bighth order: $b/] = - S hca = So'cSa =L St a =L Sorcdla -
ighth order 3 i = 336" lc’a”_l cicia Tare ¢l ay 192,
b Iz 1 ,Zb,vC,Cfaz,,- Thc 424007 a =; b 42400 Zblvclscl
960 5760 Y1680’
=— Zb,vc,cjg —Zb,vclcjalj——z ba, U——Z ,V? a; L,
192 960 5760 6720 192
1
zblvctzc a; = ’Zbl clczat z V 2 a; va 2 a; =—-,
J7T 960 7Y i~ 20160 7960
— 1 1
Xbleica; =——,2bc.a; :—,Zbivciw =—.
7% 75760 740320 Y5760

4. Zero-stability of RKSD8 and RKSD9 method

l]

(131-136)

(137-157)

The most important precondition for obtaining the convergence [21, 23] of numerical problem is evaluating zero-

stability of the system, as explained by Dormand et al. [10]. The array form of the findings is as follows:

1L
) r . 2
1 0000 0ff Yn
01000 of Mw | |01 1
00 100 0| |0
0001 0 Ofrvm, |
000010}[4\;;11 0 0 0
(00000 1 s |
The characteristic equation will be expressed as follows:
g)=|le-4

N|— |~

2.
hv",
3. m
hv'"
4_iv
h'v),

Wy

n

Hence, p(¢) =(£—1)6 we get the roots to be £ =1 with multiplicity 6. In other words, the finding proves its
authenticity to the desired zero stability of the proposed method as no root is found to be greater than 1 and also the

multiplicity of the roots is at most 6.

5. Construction of third stage RKSD8 method

The present section focused towards the development of third stage RKSD8 method based on results (32-157) for
evaluating values of ¢;, b? , where p is a derivative, i.e., p=0...
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_2802(:3—4(cz+c3)+1 b — 4c; -1 B 1-4c,
LT 201600, 2 720160¢, (¢; - ¢,)’ ? 7 20160¢; (¢5 —¢,)
b 378cy03 —63(c; +¢3)+18 . 63c; —18 L 18—-63c,
= , N = o
' 45360c,c; 45360c, (c; —¢,) 45360c; (c; —¢,)
B 20c,03 =5(c, +¢5)+2 o — Sc; -2 w_ —S5c,+2
b 120c,c4 : 21206, (¢ —¢y) P 1200 (¢ - ¢y)
b 6c,5¢4 —2(c2 +c3)+1 w o 205—1 b — 1-2c¢,
h 12¢,c4 ’ 2 1202(03—c2)’ 3 1203(c3—c2)’
s 6003 =3(c3+¢y)+2 v 3c;-2 v 2-3c,
bl = N bz = > b3 =0
6c,c5 6¢;(e5 =) 6c3(c3 —¢y)
=3 +4c,
C=——
—4+6¢4
Table 1. The Butcher tableau for third stage RKSD8 method
0 0 0
3Ly =S
5 | 487 800
2|2 -n 1355
7| 735 588 170 504
1ottty 4y 2 o2 7 5 49 1 25 49 13 1000 49
1531 1330 1293 | 288 823 | 135 475 889 144 198 528 8 132 264 36 99 132

Hence, the findings of variables reflected in Table 1 helps in evaluating the the result values of error norms as:

“z’(g)“ — 1435611076, “T’(S)“ — 13946210,
2 2

~166233x107°,

z_iv(S)H

2

=1363695x107° and

o

2

6. Construction of fourth stage RKSD9 method

r'(g)H — _139462x10™, “r”(g) “ = 317733210,
2 2

-

2

=2310676x10~° and ”rf)” —2310676x107°
2

The present section focused towards the development of third stage RKSD8 method based on results (32-157) for

evaluating values of ¢, b? , where p is a derivative, i.e., p=0...v as follows:

1

%—bz—b3—b4,

b =

—(1—3(02 +c3)+12czc3)
- 60480c, (c3 —c4)(c4 —cz)’

4

Contemporary Mathematics

2

’

1 =

oy 1
T P
[4 4 4 12)

- 5040c, (c2 —03)(c4 —cz) '

1
b —b'—=b r’
120 2 3 4

b2_

_ 3(04 +cz)—1—120402
- 60480c;, (62 —c3)(c3 —64) ’

3

[280304 —8(04 +c3)+3
_2016Oc2 (cz —c3)(c4 —cz)’

’
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5 [—280304 +8(c4 +c3)—3}
S 20160c;, (02 —63)(03 —64)’

. —[210403 —7(c4 +c3)+3]
: 2520c, (c2 —c3)(c4 —cz)

B

iv 1 v iv iv
b = by —b by,

~ —[280304 —8(c2 +c3)—3}

4

o —[50204 +2(c¢y +cz)—1]

o 120¢5 (¢; —¢5) (5 —¢4) ’

, [—60204 +4(cy +cz)—3:|
} 60c; (02 —c3)(c3 —c4)

>

20160, (c5—cy)(ca—cs)

1
b''=— b —b," —b H,
1 24 2 3 4

. —[502c3 —2((:3 +c2)+3}
v 120¢5 (¢, —¢3) (3 —¢4)

>

- [60203 —4(03 +cz)+3:|

Y 12e, (65 —e)(es—cr)

5-2c
C) =—
24-90c,
Table 2. The Butcher tableau for fourth stage RKSD9 method
0 0 0
6 |35 -
7 490 8
o | 228 14 o 14
372 643 605 403 605
p 122 80 =53, [ =310 —10 861
36 491 133 39 17 667
oy rypr ot r 1 r o r o1
156 655 123 108 | 295 161 135 194 | 2450 877 170 589 114 206 137 705 272 912 860 408 76 919
11
853 214 789

Hence, the findings of variables reflected in Table 2 helps in evaluating the result values of error norms as:

—2.611267x107,

T(S)H =3.33726644x102,
2

®) “

=—1.135281x107"?, and Tfj)z =1.327371x107..

#®) “ —_1.53149x107"°, “T"(S) “ — _7.65743x107'8,
2 2

T!!/(S)

2

() “

— 2.37144x107, ‘

2

7. Numerical results

The present section is focused towards verification of results in above sections with the help of an example of order
SiX.

Problem 1: Consider the initial value problem given as: v (u)+20" (u)+v"(u)=0 with initial conditions
v(0)=0,'(0) = 0,v"(0) = Ly (0) =1, v (0)=1,* (0) =0.

Solution 1: The exact solution interval [0, 5] in this:

. . 1
v(x) = 3+2x—%smx—3cosx—xsmx+5xcosx
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LOG (Max.error)

0.5

0.25
Value of &

—+—Four stage RKSD9 —#— Three stage RKSD8 —+—RK

Figure 1. The efficiency of RKSD8, RKSD9 in comparison to Runge-Kutta method with 2 =0.1, 0.2, 0.25, 0.4, and 0.5

Problem 2: Consider the initial value problem given as: v" (u)—8v" (u)+16v"(u)=0 with initial conditions
v(0)=1,v'(0)=1,v"(0) = 0,»"(0) = 0, v"* (0) = 0,” (0) = 2.
Solution 2: The exact solution is in the interval [0, 3]:

-2x

Error

12.0

10.0
8.0
6.0
4.0
2.0

0.0

0.25

==f== Four stage RKSD9

0.2

Value of &

e=fll= Three stage RKSDS

0.15

e RK

Figure 2. The efficiency of RKSD8 and RKSD9 in comparison to Runge-Kutta method with # = 0.1, 0.15, 0.20, 0.25, and 0.3

Problem 3: Consider the initial value problem given as: v*' (1) —9v" (1) =0 with initial conditions v(0)=1,1"(0)

=1,v"(0)=0,v""(0)=0, " (0)=0,v" (0) = 2.
Solution 2: The exact solution is in the interval [0, 4]:

Contemporary Mathematics

v(x)=

-——+
81

—x
27

9

5
—Xx
18

3

81

3x
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=
g 0.8+
o
é 0 6 4
g/ .
Q
S 044
2
0.2
0.0
0.4 0.25 0.2 0.1
Value of
=== Four stage RKSD9 «=fll= Three stage RKSD8 RK

Figure 3. The efficiency of RKSD8 and RKSD9 in comparison to Runge-Kutta method with 2= 0.1, 0.2, 0.25, and 0.4

8. Conclusion

The present research paper accomplished its objective of finding the solution of sixth order IVP using the
embedded Runge-Kutta method. The basic motive for introducing the method at the third and fourth stages is that it
has proven beneficial for the evaluation of parameters under RKSD8 and RKSD?9. The results obtained in problems 1-3
proved the benefits of current findings with the traditional Runge-Kutta method by decreasing the errors values of the
required function w.r.t. different values of step sizes. Hence, the observed results will be useful for introspecting many
real-life problems related to engineering, science, and medical areas with more accuracy by minimizing the errors and
achieving zero stability in comparison to other existing Runge-Kutta methods.

Conflict of interest

The authors declare no conflict of interest financial or otherwise.

References

[1] Al-Shimmary AF. Solving initial value problem using Runge-Kutta 6th order method. ARPN Journal of
Engineering and Applied Sciences. 2017; 12(13): 3953-3961.

[2] Kumar D, Upadhyay S, Singh S, Rai KN. Legendre wavelet collocation solution for system of linear and nonlinear
delay differential equations. International Journal of Applied and Computational Mathematics. 2017; 3: 295-310.
Available from: https://doi.org/10.1007/s40819-017-0356-y.

[3] Ghawadri N, Senu N, Adel Fawzi F, Ismail F, Ibrahim ZB. Diagonally implicit Runge-Kutta type method for
directly solving special fourth-order ordinary differential equations with ill-posed problem of a beam on elastic
foundation. Algorithms. 2019; 12(1): 10. Available from: https://doi.org/10.3390/a12010010.

[4] FawziF, Senu N, Ismail F. An efficient of direct integrator of Runge-Kutta type method for solving y" = 1 (x, Vv, y')
with application to thin film flow problem. International Journal of Pure and Applied Mathematics. 2018; 120(1):
27-50. Available from: https://doi.org/10.12732/ijpam.v120i1.3.

[5] Jikantoro YD, Ismail F, Senu N, Ibrahim ZB. A new integrator for special third order differential equations with
application to thin film flow problem. Indian Journal of Pure and Applied Mathematics. 2018; 49: 151-167.
Available from: https://doi.org/10.1007/s13226-018-0259-6.

[6] Suksern S, Pinyo W. On the fiber preserving transformations for the fifth-order ordinary differential equations.

Volume 4 Issue 4/2023] 1087 Contemporary Mathematics


https://doi.org/10.1007/s40819-017-0356-y
https://doi.org/10.3390/a12010010
https://doi.org/10.12732/ijpam.v120i1.3
https://doi.org/10.1007/s13226-018-0259-6

Journal of Applied Mathematics. 2014; 2014: 735910. Available from: https://doi.org/10.1155/2014/735910.

[7] Hussain KA, Ismail F, Senu N, Rabiei F. Fourth-order improved Runge-Kutta method for directly solving special
third-order ordinary differential equations. Iranian Journal of Science and Technology, Transactions A: Science.
2017; 41: 429-437. Available from: https://doi.org/10.1007/s40995-017-0258-1.

[8] Al-Shimmary A. Numerical solution of nonlinear partial differential equation using Runge-Kutta 6th order method.
SSRN Electronic Journal. 2019; 1-8.

[9] Hussain KA, Abdulnaby ZE. A new two derivative FSAL Runge-Kutta method of order five in four stages order.
Baghdad Science Journal. 2020; 17(1): 166. Available from: https://doi.org/10.21123/bsj.2020.17.1.0166.

[10] Dormand JR, El-Mikkawy ME, Prince PJ. Families of Runge-Kutta-Nystrom formulae. IMA Journal of Numerical
Analysis. 1987; 7(2): 235-250. Available from: https://doi.org/10.1093/imanum/7.2.235.

[11] Wu TY, Liu GR. Application of generalized differential quadrature rule to sixth-order differential equations.
Communications in Numerical Methods in Engineering. 2000; 16(11): 777-784. Available from: https://doi.
org/10.1002/1099-0887(200011)16:11<777::AID-CNM375>3.0.CO;2-6.

[12] Beccar-Varela M, Bhuiyan M, Mariani M, Tweneboah O. Analytic methods for solving higher order ordinary
differential equations. Mathematics. 2019; 7(9): 826. Available from: https://doi.org/10.3390/math7090826.

[13] Abdulsalam A, Senu N, Majid ZA. Direct one-step method for solving third-order boundary value problems.
International Journal of Applied Mathematics. 2019; 32(2): 155-176.

[14] Malhotra R. Reliability and availability analysis of a standby system with activation time and varying demand.
In: Garg H, Ram M. (eds.) Engineering reliability and risk assessment. Elsevier; 2023. p.35-51. Available from:
https://doi.org/10.1016/B978-0-323-91943-2.00004-6.

[15] Kaur I, Arora S, Bala I. An improvised technique of quintic Hermite splines to discretize generalized Burger
Huxley type equations. [ranian Journal of Numerical Analysis and Optimization. 2023; 13(1): 59-79. Available
from: https://doi.org/10.22067/IJTNA0O.2022.75871.1120.

[16] Hussain K, Ismail F, Sen N. Two pairs of Runge-Kutta type methods for direct solution of special fourth-order
ordinary differential equations. Mathematical Problems in Engineering. 2015; 2015: 196595. Available from:
https://doi.org/10.1155/2015/196595.

[17] Wu X. A class of Runge-Kutta formulae of order three and four with reduced evaluations of function. Applied
Mathematics and Computation. 2003; 146(2-3): 417-432. Available from: https://doi.org/10.1016/S0096-
3003(02)00593-3.

[18] Hatun M, Vatansever F. Differential equation solver simulator for Runge-Kutta methods. Uludag Universitesi
Miihendislik Fakiiltesi Dergisi. 2016; 21(1): 145-162. Available from: https://doi.org/10.17482/uujfe.70981.

[19] Mechee MS, Kadhim MA. Direct explicit integrators of RK type for solving special fourth-order ordinary
differential equations with an application. Global Journal of Pure and Applied Mathematics. 2016; 12(6): 4687-
4715.

[20] Al-Shimmary AF. Solving initial value problem using Runge-Kutta 6th order method. ARPN Journal of
Engineering and Applied Sciences. 2017; 12(13): 3953-3961.

[21] Pandey PK. Solving numerically a sixth order differential equation as coupled finite difference equations approach.
Open Access Journal of Science. 2018; 2(6): 381-385. Available from: https://doi.org/10.15406/0ajs.2018.02.00115.

[22] Ponalagusamy R, Ponnammal K. Local truncation error for the parallel Runge-Kutta-fifth order methods.
Information Technology Journal. 2012; 11(9): 1141-1153. Available from: https://doi.org/10.3923/
itj.2012.1141.1153.

[23] Kaur M, Kumar S, Bhatti J. Numerical solution to sixth order ordinary differential equation using three stage
eighth order Runge-Kutta type method. ECS Transactions. 2022; 107(1): 5081. Available from: https://doi.
org/10.1149/10701.5081ecst.

[24] Wang Y, Zhao YB, Wei GW. A note on the numerical solution of high-order differential equations. Journal of
Computational and Applied Mathematics. 2003; 159(2): 387-398. Available from: https://doi.org/10.1016/S0377-
0427(03)00541-7.

Contemporary Mathematics 1088 | Manpreet Kaur, et al.


https://doi.org/10.1155/2014/735910
https://doi.org/10.1007/s40995-017-0258-1
https://doi.org/10.21123/bsj.2020.17.1.0166
https://doi.org/10.1093/imanum/7.2.235
https://doi
https://doi.org/10.3390/math7090826
https://doi.org/10.1016/B978-0-323-91943-2.00004-6
https://doi.org/10.22067/IJNAO.2022.75871.1120
https://doi.org/10.1155/2015/196595
https://doi.org/10.1016/S0096-3003
https://doi.org/10.1016/S0096-3003
https://doi.org/10.17482/uujfe.70981
https://doi.org/10.15406/oajs.2018.02.00115
https://doi.org/10.3923/
https://doi
https://doi.org/10.1016/S0377-0427
https://doi.org/10.1016/S0377-0427

