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Abstract: The main objective of the paper is to construct an susceptible-exposed-infected-recovered (SEIR) 
mathematical model by considering the transmission rate, death rate, and recovery rate as fuzzy parameters since we 
assumed heterogeneity in the population. We have examined the domain of the solutions and discussed the uniqueness 
of the constructed SEIR model. A qualitative analysis has been carried out to determine the stability of COVID-19 
using Routh-Hurwitz criteria. The basic reproduction number is obtained using the next-generation matrix method. 
Fuzzy basic reproduction numbers with respect to various virus loads have been calculated to know how fast the disease 
spreads at different levels of virus loads. One of the main aims is to perform sensitivity analysis, which is essential 
for determining the controlling parameter and helps the government and other policymakers develop regulations for 
the prevention and control of the spread. The numerical simulation, which has been calculated using the homotopy 
perturbation method and illustrated graphically, shows the importance of getting vaccinated, which is important in 
controlling the spread of COVID-19.
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1. Introduction
All individuals around the world have undergone a significant transformation as a result of COVID-19, one of

the largest groups of RNA viruses and the primary cause of the deadly disease. The sickness not only had a significant 
negative influence on people’s health, but it also had long-term financial and economic effects on everyone’s lives. The 
disease’s societal disruption is so severe that it leads to crises like acute poverty, unemployment, and child labor. Three 
years have passed since COVID shook the world, and individuals are still struggling to recover from the difficulties they 
faced. The disease was originally discovered in Wuhan, China, according to the World Health Organization (WHO), 
and the first case was reported on 31 December 2019. WHO proclaimed the illness a pandemic in March 2020 as it 
began to spread like wildfire. Although almost all of the governments established curfews, they took steps to ensure that 
this would not have an influence on children’s education. The illness is contagious, and symptoms include coughing, 
sneezing, loss of taste and smell, decreased oxygen levels, and sore throats. As the disease’s fatality rate rose rapidly, 
researchers and scientists around the world began working round-the-clock to produce a vaccine in the hope that it 
would help to stop the pandemic and save lives. Vaccines are typically used to increase the generation of antibodies 
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against a disease. As of May 2022, nearly all of the high-income countries had vaccinated 70% of their populace.
In terms of understanding, spreading, and controlling the disease in a systematic way, mathematical models are 

essential. It is simple to use modern computing capabilities to get the desired results. This is used to resolve issues across 
a number of fields. A mathematical model is crucial to understanding the various dynamics of a disease and thereby 
overcoming it early on. To explain how disease spreads in the Indian desert region of Bhilwara, the scientists used a 
compartmental model. They discovered a substantial difference in the number of infected cases, recovered cases, and 
case fatality rates over all four lockdown phases, with 95% and 99% confidence intervals [1]. The analysis of COVID-
19’s spread across a specific time period was suggested using an improved susceptible-infected-recovered (SIR). They 
determined that during that time, the cure rate was 0.05 and the reproduction rate was 0.4490. Their study’s findings 
suggested that the illness had been under control in China [2]. Tomchin and Fradkov [3] compared the anticipated 
outcomes for the SIR and susceptible-exposed-infected-recovered (SEIR) models, and they came to the conclusion 
that the data may be used to assess the effectiveness of lockdown protocols and choose the best strategy for quarantine 
measures. The authors of this study emphasized how the best method to cure this pandemic was to keep infected people 
away from healthy people and that migration should be rigorously prohibited in order to save human lives [4]. The 
authors of this article used a SIR model to analyze the spread of COVID-19 in a number of communities, including 
China, South Korea, India, Australia, the United States, Italy, and the state of Texas in the USA [5]. The authors built 
a COVID-19 infection model based on the SIR model that considered the potential effects of temperature, humidity, 
urban population density, and the rigor of control efforts. They then displayed the graphical results with time series 
for the daily number of fresh victims in six different nations [6]. The authors devised a new mathematical framework 
for COVID-19 and looked into elements including the invariant region, equilibrium state, and number. Additionally, 
a numerical simulation applying the least squares estimation method is provided, which leads to the conclusion that 
an increase in the pandemic will have greater effectiveness [7]. By using various fractional values associated with 
uncertainty, the authors examined fractional-order fuzzy dynamical systems and provided numerical approximations to 
illustrate the suggested strategy [8]. In this study, the model was examined using both fractional and ordinary differential 
equations. They concluded by saying that government officials must exert great effort to guarantee that interaction 
between those who are exposed and those who are susceptible is kept to a minimum [9]. Laplace transform and a few 
decomposition techniques were utilized by Shah et al. [10] to compute series-type solutions under fuzzy concepts. The 
authors of this article developed an algorithm based on the homotopy perturbation method that computes the results 
in series form and is rapidly convergent to the exact solution [11]. The authors investigated fuzzy fractional Volterrra-
Fredholm integro-differential equations under Caputo’s derivative and then displayed 2D and 3D graphs to examine the 
behavior of solutions for numerical instances at different levels of uncertainty [12]. An eight-compartment mathematical 
model was created by Ndaïrou et al. [13]. It differs from previous COVID-19-based models in that it includes the super 
spreaders class. Fanelli and Piazza [14] created a susceptible-infected-recovered-death (SIRD) model by categorizing 
people into classes for susceptibility, infection, recovery, and death. Using actual data, they ran simulations of the model 
for France, Italy, and mainland China. They also predicted the spread of COVID-19 in these three nations [14]. The 
researchers calculated the r0 value for COVID-19 at Hubei, China, and came to the conclusion that if the problem is 
not effectively solved, the disease will last for a very long time [15]. Laplace and decomposition fechniques (LADM) 
have been shown graphically by Din et al. to be a reliable and effective way of dealing with nonlinear problems [16]. An 
analysis of a noninteger-order model for Hepatitis B (HBV) under a singular-type Caputo fractional-order derivative has 
been compared with real data, which gives a better result as compared to an integer-order simulation [17]. Noises play 
a crucial role in controlling the spread of an epidemic, as demonstrated by the simulation [18]. This research will offer 
a solid foundation for researching the behavior and mechanisms of chronic infections. Extremely complex and realistic 
models are created by Tagliazucchi et al. [19], varying from straightforward and homogeneous models that calculate 
local reproduction rates to fully coupled inhomogeneous models that take into account migration predictions from 
mobile phone location data.
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2. Preliminaries 
2.1 Fuzzy set

Let X be a non-empty, crisp set. A fuzzy subset F of X is indicated as  F  and is defined as [20]

                                                                            
 ( ){ }( ) , :F xx x XF µ= ∈

where µF: X → [0,1] is a membership function in view with a fuzzy set  F , which describes the degree of belongingness 
of x with X.

Here, we use the membership function µ(x) to denote the fuzzy subsets S . Also, µ(x) is called a fuzzy number if X 
is the set of real numbers.

2.2 Membership function

Membership function μA(X) is a mapping from the universe X to the interval [0, 1] given as μ: (X) ⟶ [0, 1] [20].

2.3 Triangular fuzzy number

The equation given below is the triangular fuzzy number for three parameters, F(x: a, b, c) 

                                                                   

0, if ,

if ,
( : , , )

if ,

0, if ,
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 >                                                               (1)

2.4 Fuzzy measure

Let φ be a non-empty set, and M(φ) denote the set of all subsets of φ. Then, µ: φ → [0, 1] is a fuzzy measure if [21].
1) µ(ϕ) = 0 and µ(φ) =1
2) for X, Y ∈ M(φ), µ(X) ≤ µ(Y) if X ⸦ Y
Let µ: φ → [0, 1] be a fuzzy variable, i.e., µ is a fuzzy subset and µ a fuzzy measure on φ. Then, the fuzzy expected 

value (FEV) of µ is the real number, defined by the Sugeno measure

                                                         { }sup ,0 1min( , ))( ) (F dEV kµ µ ααµ α== ≤ ≤∫

where k(α) = μ{ω ∈ φ: μ(ω) ≥ α}. 

2.5 Sensitivity index

The normalized forward sensitivity index [22, 23] of R0, which is differentiable with respect to a given parameter, p, 
is defined by

                                                                                    
0 0

0

* .R
p

R pS
p R

∂
=
∂

3. Method
We take the transmission rate, recovery rate, and death due to COVID-19 as fuzzy parameters for the mathematical 
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model in this research. The next-generation matrix approach is used to determine the basic reproduction number. We 
apply the Routh-Hurwitz criteria to determine the disease’s stability. The most sensitive parameter has been calculated 
to reduce the spread using the normalized forward-sensitive index definition. The homotopy perturbation method has 
been used to perform the numerical simulation. We apply the MATLAB program to graphically represent the numerical 
simulation.

3.1 Fuzzy SEIR mathematical model

In this paper, we propose SEIR, a four-compartment model, where S is the number of susceptible population, E 
is the number of exposed population, who are in the state of not knowing if they are infected or not, I is the number 
of infected population, whose body is affected by the virus, R is the number of recovered population, who have been 
recovered from the virus infection, and N is the total number of population. Using non-linear ordinary differential 
equations, the proposed model depicts how all compartments interact with one another [24].

                                                                      

( ( ) )v I SdS
dt

ε σ ε ϑ+ += −

( ) ( )dE v IS E
dt

σ α ε= − +

( )( )i
dl E v I
dt

α α µ ε= − + +

( )     dR v I S R
dt

µ ϑ ε= + −
                                                                   

(2)

where N = S + E + I + R.

Table 1. Description of parameters

Parameters Description

ε Rate of birth/death

σ Transmission rate

α Number of days taken to probably change from E to I

αi Rate of death population due to COVID-19

μ Recovery rate

ϑ Vaccination for susceptible population

v Virus load

3.2 Schematic diagram

The following Figure 1 is the schematic representation of considered SEIR model along with the parameters.
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Figure 1. Schematic representation of the model

3.3 Analysis of fuzzy system

Let σ = σ(v) be the chance of transmission, which is most likely shifting from susceptible to exposed. The 
transmission of the diseases varies depending on the virus load. The fuzzy membership function for the transmission 
parameter can be seen in the following equation. The membership function of transmission rate is depicted in Figure 2 
below.
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Figure 2. Membership function of σ(v)

The equation clearly demonstrates that there is almost no likelihood of virus transmission when the amount of virus 
load is minimal (vm). There must be a certain amount of virus for transmission to occur (v0). The amount of virus for 
each disease is always constrained by vM.

Let αi = αi(v) be the fuzzy membership function for the COVID-19 death rate. When the virus load is minimal, 
there will be no disease transmission, say γ0, and the death rate will grow as the virus load increases. The death rate is 
considered to have a maximum value of (1 – η), when η ≥ 0.
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The lowest death rate is 0 < αi0 < 1.
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The recovery rate is also considered a fuzzy parameter. It is a decreasing function because the longer it takes to 
recover from infection, the higher the virus load. The equation below is the representation of the membership function 
of μ = μ(v) .

                                                                   
0 1 1,  if 0)

)
(

(
M

M

v v vv
v
µ

µ
− + ≤ ≤= 



where μ0 > 1 is the lowest recovery rate.

Figures 3 and 4 represent the membership functions of αi(v) and μ(v), respectively.

                                                          v0

1 – η

αi0

Figure 3. Membership function of αi(v)
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Figure 4. Membership function μ(v)

Additionally, we take into account that various people have different viral loads because virus load is considered a 
linguistic variable. Following is a list of the members of the linguistic variable [9]. From (1),
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The center value and the dispersion of each fuzzy set assumed are denoted by the symbols v  and δ. The linguistic 
variable [25] is categorized as weak, medium, and high. Every categorization can be visualized as a fuzzy number with 
a triangular form. The membership function Γ(v) is depicted diagrammatically in Figure 5.

                                                           

Г(v)

v δ− v v δ+

Figure 5. Membership function Г(v)

3.4 Well-posedness and boundedness

Theorem 1. The solutions of the system are well-posed for all t > 0.
Proof. Let P = {(S, E, I, R)} ∈ ℝ4: 0 ≤ S, E, I, R}.
We need to show that P is a positive invariant, to do so we look at the behavior of the state variables at the 

boundedness of P.
i) On the boundary S = 0,

S' = ε > 0.

The solution cannot exit P by stepping over this limit.
ii) On the boundary E = 0,

E' = σ IS.

Case 1: 
E = 0, S > 0, I > 0, then E' > 0.
Case 2: 
E = 0, S > 0, I = 0, then E' = 0.
Case 3: 
E = 0, S = 0, I > 0, then E' = 0.
Therefore, in all the cases E', the solution cannot exit P by stepping over this limit.

iii) On the boundary I = 0,

I' = αE. 

Case 1:  
I = 0, E > 0, then I' > 0.
Case 2: 
I = 0, E = 0, then I' = 0.
Thus, the solution cannot exit P by stepping over this limit.

iv) On the boundary R = 0,
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R' = μI + ϑS.

Case 1: 
R = 0, S > 0, I > 0, then R' > 0
Case 2:
R = 0, S > 0, I = 0, then R' > 0.
Case 3: 
R = 0, S = 0, I > 0, then R' > 0.
Case 4: 
R = 0, S = 0, I = 0, then R' = 0.
Thus, the solution cannot exit P by stepping over this limit.

Theorem 2. The system’s solution is bounded on [0, b) for some b > 0.
Proof. We know that N = S + E + I + R. Therefore,

                                                                           
,dN dS dE dI dR

dt dt dt dt dt
= + + +

which implies

                                                                              

1 (1 (0))
limsup 1.

t

t

dN N
dt
N N e

N

µ

µ µ

→∞

−

= −

= − −
≤

Hence, S(t), E(t), I(t), and R(t) are all bounded above by 1 on [0, b) for some b > 0. Therefore, we conclude that the 
system’s solution is bounded on [0, b) for some b > 0.

3.5 Existence and uniqueness

Theorem 3. The solutions of the system with non-negative initial conditions exist and are unique.
Proof. Let u(t) = (S(t), E(t), I(t), R(t)) ℝ4.
Let 

V1 = ε – (σI + ε + ϑ) S
V2 = σIS (α + ε)E

V3 = αE – (αi + μ + ε)I
V4 = μI + ϑS – εR

where the system of equation is in the form u' = V(u), Vi, i = 1, 2, 3, 4, represent the components of the vector field. 
This field is composed of algebraic polynomials of state variables. Thus, Vi is a continuous function on ℝ4 and 

, , ,i i i iV V V V
S E I R

∂ ∂ ∂ ∂
∂ ∂ ∂ ∂

 are the partial derivatives, which exist and are continuous. Thus, there exist a unique solution u' = 

V(u) for any initial condition, x(0) ∈ ℝ4 [26] using existence and uniqueness theorem.

3.6 Equilibrium points

There exist two equilibrium points, namely the disease-free equilibrium point and the endemic equilibrium point.
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3.6.1 Disease-free equilibrium point   

                                                                               
,0,0,0dE ε

ε ϑ
 =  + 

3.6.2 Endemic equilibrium point   
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4. Qualitative analysis of the model 
4.1 Basic reproduction number

The average number of secondary infections that a single infected person causes over the course of their whole 
contagious lifetime is known as the basic reproduction number.

Theorem 4. The basic reproduction number is 
( )( )( )0  i

R ασε
α ε α µ ε ε ϑ+ + + +

= .

Proof. Consider the following system of equation (2):

                                                                 

( ) dS I S
dt

ε σ ε ϑ= − + +

( )dE IS E
dt

σ α ε= − +

( )  i
dI E I
dt

α α µ ε= − + +

  dR I S R
dt

µ ϑ ε= + −

00
 

00 i

S α εσ
υ

α δ µα
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= =    + +   


1

0
 

0
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Sσ
α µ ερ υ
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                                                                       ( )( )( ) i

ασερ
α ε α µ ε ε ϑ

=
+ + + +

Thus,

                                                                     ( )( )( )0 .
 i

R ασε
α ε α µ ε ε ϑ+ + + +

=
                                                                 

(3)

4.2 Stability analysis
4.2.1 Disease-free equilibrium

Theorem 5. If R0 <1, then at the disease-free equilibrium point, the system is locally asymptotically stable; 
otherwise. it is unstable.

Proof. The Jacobian matrix at ,0,0,0ε
ε ϑ

 
 

+ 

                                                          

( )

( )

( )

0 0

0 0

0 0
0

i

J

σεε ϑ
ε ϑ
σεα ε
ε ϑ

α α µ ε
ϑ µ ε

− − + + 
 − +=  +
 − + + 
 − 

                                     ( ) ( ) ( )( )4 3 2J I A B C D AB A B CD EC Dλ λ λ λ− = + + + + ++ + + + −

                                                  ( )( ) ( )( ) 0.A B CD E AB C D ABCD ABEλ+ + − + + + − =

Where 

A = ε
B = ε + ϑ
C = α + ε

D = (αi + μ + ε)

E σαε
ε ϑ

=
+

                                                                4 3 2
1 2 3 4 5 0.A A A A Aλ λλ λ+ + + + =

Where 

A1 = 1

2A A B C D= + + +

( )3 ( )( )A AB A B C D CD E= + + + + −

( )( ) ( )4A A B CD E AB C D= + − + +

5 .A ABCD ABE= −

Hence, the system is stable at disease-free equilibrium by Routh-Hurwitz criteria (refer to Appendix).



Contemporary Mathematics 618 | S. Sindu Devi, et al.

4.3 Fuzzy basic reproduction number

The basic reproduction number is 0 ( )( )( )
( )( )

( ) ( )i

vR v
v v
ασ ε

α ε α µ ε ε ϑ+
=

+ + +
, which rises with an increase in virus 

load, cannot be a fuzzy set because it can be larger than 1. Thus, 0 ≤ μ0 R0 (v) ≤ 1 where μ0 R0 (v) is a fuzzy set, hence, 
FEV [μ0 R0 (v)] is well defined. We introduce the fuzzy basic reproduction number in this approach.

The fuzzy basic reproduction number [27] is given by 

                                                                            
( )0 0 0

0

1 ( )fR FEV R vµ
µ

=
                                                                        

(4)

where FEV(μ0 R0(v)) = sup{inf (α, k(α))}, 0 ≤ α ≤ 1, k(α) = { }0 0: ( ) ( ),v R v Xµ µ α µ≥ =  which is a fuzzy measure [21]. 
To get FEV(μ0 R0(v)), we define fuzzy measure μ.

                                         μ(X) = sup Г(v), ∀ σ ∈ X, X ⊂ R, which is a possibility measure.

From FEV(μ0 R0(v)), it is clear that R0(v) is not decreasing with v, where the set, X = [ ], Mv v  and v  are the solutions of 
the equation given below.

                                                               
0

( )
( )( ( ) ( ) )( )i

v
v v
ασ εµ α

α ε α µ ε ε ϑ
=

+ + + +

Thus, k(α) = μ[v', vM] = sup Г(v) with v' ≤ v ≤ vM, here k(0) = 1 and k(1) = Г(vM).
The amount of virus v in the population, which was assumed to have a linguistic meaning is classified into three 

cases, and all of them have fuzzy behavior. They are weak virus load (vM), medium virus load (v0), and strong virus load 
(vM). 

Case 1: Weak virus load (vM) (i.e.) when mv vδ+ < , we have

                                                                    ( )0 0 0 0( ) 0 1fFEV R v Rµ µ= < ⇔ <

Thus, we can conclude that the disease will be extinct.
Case 2: Medium virus load (v0) (i.e.) when mv vδ− <  and 0v vδ+ < . Therefore, 

                                                           

0 0

0 0 0 0

0 0

1, if 0 ( ),
( ) ( '), if ( ) ( ),

0, if ( ) 1

R v
k v R v R v

R v

α µ
α µ α µ δ

µ δ α

< ≤
= Γ < ≤ +
 + < ≤

if δ > 0, k(α) is continuous and decreasing function with k(0) = 1 and k(1) = 0. Hence, FEV(μ0R0(v)) is the fixed point of 
k and

                                                               

( ) ( )
0 0 0 0 0 0(( ) )v FEV R vR v R δµ µ µ≤≤ +

0 0 0( ) ( ).fR v R R v δ≤ ≤ +

As the function 0 ( )R v  is increasing and continuous, then by the intermediate value theorem, there exists v with 
  v v v δ< < +  

                                                                                0 0 0( ) ( ).fR R v R v= >

0
fR  and R0(v) coincide as there exist virus load. Since a medium amount of virus load is present, the average number 

of secondary cases 0
fR  is higher than the number of secondary cases 0 ( )R v .
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Case 3: Strong virus load (vM) (i.e.) 0  and Mv v v vδ δ− > + < , then

                                                           

0 0

0 0 0 0

0 0

1, if 0 ( ),
( ) ( ), if ( ) ( ) ,

0, if ( ) 1

R v
k v R v R v

R v

α µ
α µ α µ δ

µ δ α

< ≤
 ′= Γ < ≤ +
 + < ≤

similar to case 2, we have

                                                               

( ) ( )
0 0 0 0 0 0(( ) )v FEV R vR v R δµ µ µ≤≤ +

0 0 0( ) ( ).fR v R R v δ≤ ≤ +

Thus, 0
fR  > 1, we can conclude that the disease will spread further.

4.4 Sensitivity analysis

Epidemiology may benefit greatly from sensitivity analysis. In sensitivity analysis, a model’s results are examined 
for robustness. Sensitivity analysis is used to examine the elements that contribute to the spread and persistence of the 
disease in the community. We focus on the parameters that cause a greater variance in the value of the basic reproduction 
number. Early disease transmission is directly correlated with reproduction numbers. A sensitive parameter should be 
carefully estimated because even a slight change in this parameter can result in significant quantitative changes.

Table 2. Sensitive index values of the parameters

Parameters Sensitivity index

α 0.00207

σ 1

ε -0.290

αi -0.000106

μ -0.096

ϑ -0.6153

Figure 6 is a graphical illustration of the sensitivity index.
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Figure 6. Sensitivity index
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The sensitivity index has been calculated by considering α = 3 and ϑ = 0.01. The table makes it quite evident that 
as the birth rate rises, so do the rates of secondary infections. And the transmission rate will be at its highest during the 
phase where ϑ = 0.01. The use of vaccinations is crucial in preventing the spread of disease. There will be a drop in the 
reproduction number as ϑ increases.

4.5 Controlling parameters

As was already noted, the main objective of this research is to determine the COVID-19 model’s governing 
parameters in order to assist policymakers in considering various approaches for controlling the pandemic. Controlling 
parameters are those model parameters that have the greatest impact on output uncertainty. As an example, the 
governing parameter is ϑ. Therefore, based on this finding, policymakers could implement measures to regulate and 
prevent the spread of COVID-19.

4.6 Bifurcation point

At the disease-free equilibrium point, when R0(v) < 1, the system is stable, and when it is greater than 1, it is 
unstable. Let v* be the bifurcation value, which is given in the following equation:

                                       

( )( )( )( )( )
( )( ) ( ) ( )( )( )

0 0 0 0

0 0 0 0 0

 

1   1
m M M i m

M M i m

v v v v v v v
v

v v v v v v

εα α ε α ε ε ϑ

εα η α µ α ε ε ϑ

 + + − + + =
 − − − + − − + +

*

where vm ≤ v* ≤ v0.
We can think of v* as a parameter connected to coronavirus control in the sense that it should be observed that v is 

not higher than v* if a coronavirus is transmitted to a certain number of people.
Corollary. The disease-free equilibrium is locally asymptotically stable if v < v*.

4.7 Numerical simulation

The data in Tables 3, 4, and 5 were collected from [24].

Table 3. Initial parameter values for SEIR model

Parameters Estimated value

N(0) 269.6 juta

S(0) 37,538

E(0) 13,923

I(0) 23,191

R(0) 13,213

Table 4. Parameter values for SEIR model

Parameters Estimated value

ε 6.25* 10-3

σ 0.62* 10-8 / person /day

αi 7.344 * 10-7

μ 0.0006667 per day
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Table 5. Assumed parameter values for SEIR model

Parameters Simulation 1 Simulation 2 Simulation 3

ϑ 1% 50% 100%

α 3 days 7 days  14 days

Figures 7, 8, and 9 represent the susceptible population with varying vaccination loads on varying days.
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Figure 7. Susceptible population for ϑ = 0.01, α = 3 days
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Figure 8. Susceptible population for ϑ = 0.5, α = 7 days



Contemporary Mathematics 622 | S. Sindu Devi, et al.

                                                   Time t (Days)

Su
sc

ep
tib

le
 p

op
ul

at
io

n 
S(

t)

× 104

10 1286420 14

3.7538

3.75378

3.75376

3.75374

3.75372

3.7537

3.75368

3.75366

3.75364

3.75362

3.7536

Figure 9. Susceptible population for ϑ = 1, α = 14 days

Similarly, Figures 10, 11, and 12 represent the exposed population, and Figures 13, 14, and 15 represent the 
recovered population with different vaccinations during various time periods.

                                                   Time t (Days)

Ex
po

se
d 

po
pu

la
tio

n 
E(

t)

× 104

2 2.51.510.50 3

1.39248

1.39246

1.39244

1.39242

1.3924

1.39238

1.39236

1.39234

1.39232

1.3923

Figure 10. Exposed population for ϑ = 0.1, α = 3 days
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Figure 11. Exposed population for ϑ = 0.5, α = 7 days

                                                     Time t (Days)

Ex
po

se
d 

po
pu

la
tio

n 
E(

t)

× 104

1.39233

1.39325

1.39232

1.392315

1.39231

1.392305

1.3923
10 128640 142

Figure 12. Exposed population for ϑ = 1, α = 14 days
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Figure 13. Recovered population for ϑ = 0.01, α = 3 days
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Figure 14. Recovered population for ϑ = 0.5, α = 7 days
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Figure 15. Recovered population for ϑ = 1, α = 14 days

5. Results and discussion
The figures make it abundantly evident that vaccination has a significant impact on the disease’s spread and 

management. We could observe that the disease spreads more quickly if vaccination loads are lower. Similar to how the 
rate of vaccination increases the rate of recovery. This provides a clear image for government officials and policymakers 
to use when developing campaigns to educate the public about the benefits of getting vaccinated.

6. Conclusion
Our SEIR model offers a conceptual framework for studying the COVID-19 virus spread. The dynamics of 

COVID-19 in humans have been studied using a fuzzy modeling strategy. A vital role in disease transmission is played 
by the uncertain model parameters, such as the transmission rate, death rate, and recovery rate. COVID-19 cannot 
spread in the population when the virus load is low, and it will be endemic if the virus load is higher. The stability of the 
disease-free equilibrium suggests that COVID-19 can be controlled if R0 < 1. Since vaccination is seen as a controlling 
factor, it can speed healing, while the COVID-19 isolation period can stop the virus transmission. To minimize and stop 
the spread of the disease, strict and sufficient safeguards must be set up. The findings of the research can be used as a 
guide for early disease prevention in any future outbreaks.



Volume 5 Issue 1|2024| 625 Contemporary Mathematics

Conflict of interest
There is no conflict of interest in this study.

References

[1] Mishra BK, Keshri AK, Saini DK, Ayesha S, Mishra BK, Rao YS. Mathematical model, forecast and analysis on 
the spread of COVID-19. Chaos, Solitons & Fractals. 2021; 147: 110995. Available from: https://doi.org/10.1016/
j.chaos.2021.110995.

[2] Zhu W-j, Shen S-f. An improved SIR model describing the epidemic dynamics of the COVID-19 in China. Results 
in Physics. 2021; 25: 104289. Available from: https://doi.org/10.1016/j.rinp.2021.104289.

[3] Tomchin DA, Fradkov AL. Prediction of the COVID-19 spread in Russia based on SIR and SEIR models 
of epidemics. IFAC-PapersOnLine. 2020; 53(5): 833-838. Available from: https://doi.org/10.1016/
j.ifacol.2021.04.209.

[4] ud Din R, Algehyne EA. Mathematical analysis of COVID-19 by using SIR model with convex incidence rate. 
Results in Physics. 2021; 23: 103970. Available from: https://doi.org/10.1016/j.rinp.2021.103970.

[5] Cooper I, Mondal A, Antonopoulos CG. A SIR model assumption for the spread of COVID-19 in different 
communities. Chaos, Solitons & Fractals. 2020; 139: 110057. Available from: https://doi.org/10.1016/
j.chaos.2020.110057.

[6] Huang J, Zhang L, Liu X, Wei Y, Liu C, Lian X, et al. Global prediction system for COVID-19 pandemic. Science 
Bulletin. 2020; 65(22): 1884-1887. Available from: https://doi.org/10.1016/j.scib.2020.08.002.

[7] Peter OJ, Qureshi S, Yusuf A, Al-Shomrani M, Idowu AA. A new mathematical model of COVID-19 using real data 
from Pakistan. Results in Physics. 2021; 24: 104098. Available from: https://doi.org/10.1016/j.rinp.2021.104098.

[8] ur Rahman M, Arfan M, Shah K, Gómez-Aguilar JF. Investigating a nonlinear dynamical model of COVID-19 
disease under fuzzy caputo, random and ABC fractional order derivative. Chaos, Solitons & Fractals. 2020; 140: 
110232. Available from: https://doi.org/10.1016/j.chaos.2020.110232.

[9] Ahmed I, Modu GU, Yusuf A, Kumam P, Yusuf I. A mathematical model of coronavirus disease (COVID-19) 
containing asymptomatic and symptomatic classes. Results in Physics. 2021; 21: 103776. Available from: https://
doi.org/10.1016/j.rinp.2020.103776.

[10] Shah K, Seadawy AR, Arfan M. Evaluation of one dimensional fuzzy fractional partial differential equations. 
Alexandria Engineering Journal. 2020; 59(5): 3347-3353. Available from: https://doi.org/10.1016/
j.aej.2020.05.003.

[11] Arfan M, Shah K, Abdeljawad T, Hammouch Z. An efficient tool for solving two‐dimensional fuzzy fractional‐
ordered heat equation. Numerical Methods for Partial Differential Equations. 2021; 37(2): 1407-1418. Available 
from: https://doi.org/10.1002/num.22587.

[12] Ahmad N, Ullah A, Ullah A, Ahmad S, Shah K, Ahmad I. On analysis of the fuzzy fractional order Volterra-
Fredholm integro-differential equation. Alexandria Engineering Journal. 2021; 60(1): 1827-1838. Available from: 
https://doi.org/10.1016/j.aej.2020.11.031.

[13] Ndaïrou F, Area I, Nieto JJ, Torres DFM. Mathematical modeling of COVID-19 transmission dynamics with a 
case study of Wuhan. Chaos, Solitons & Fractals. 2020; 135: 109846. Available from: https://doi.org/10.1016/
j.chaos.2020.109846.

[14] Fanelli D, Piazza F. Analysis and forecast of COVID-19 spreading in China, Italy and France. Chaos, Solitons & 
Fractals. 2020; 134: 109761. Available from: https://doi.org/10.1016/j.chaos.2020.109761.

[15] Din A, Li Y, Khan T, Zaman G. Mathematical analysis of spread and control of the novel corona virus 
(COVID-19) in China. Chaos, Solitons & Fractals. 2020; 141: 110286. Available from: https://doi.org/10.1016/
j.chaos.2020.110286.

[16] Din A, Li Y, Khan FM, Khan ZU, Liu P. On analysis of fractional order mathematical model of Hepatitis B 
using Atangana-Baleanu Caputo (ABC) derivative. Fractals. 2022; 30(1): 2240017. Available from: https://doi.
org/10.1142/S0218348X22400175.

https://doi.org/10.1016/j.chaos.2021.110995
https://doi.org/10.1016/j.chaos.2021.110995
https://doi.org/10.1016/j.rinp.2021.104289
https://doi.org/10.1016/j.ifacol.2021.04.209
https://doi.org/10.1016/j.ifacol.2021.04.209
https://doi.org/10.1016/j.rinp.2021.103970
https://doi.org/10.1016/j.chaos.2020.110057
https://doi.org/10.1016/j.chaos.2020.110057
https://doi.org/10.1016/j.scib.2020.08.002
https://doi.org/10.1016/j.rinp.2021.104098
https://doi.org/10.1016/j.chaos.2020.110232
https://doi.org/10.1016/j.rinp.2020.103776
https://doi.org/10.1016/j.rinp.2020.103776
https://doi.org/10.1016/j.aej.2020.05.003
https://doi.org/10.1016/j.aej.2020.05.003
https://doi.org/10.1002/num.22587
https://doi.org/10.1016/j.aej.2020.11.031
https://doi.org/10.1016/j.chaos.2020.109846
https://doi.org/10.1016/j.chaos.2020.109846
https://doi.org/10.1016/j.chaos.2020.109761
https://doi.org/10.1016/j.chaos.2020.110286
https://doi.org/10.1016/j.chaos.2020.110286
https://doi.org/10.1142/S0218348X22400175
https://doi.org/10.1142/S0218348X22400175


Contemporary Mathematics 626 | S. Sindu Devi, et al.

[17] Din A, Li Y, Yusuf A, Ali AI. Caputo type fractional operator applied to Hepatitis B system. Fractals. 2022; 30(1): 
2240023. Available from: https://doi.org/10.1142/S0218348X22400230.

[18] Din A. The stochastic bifurcation analysis and stochastic delayed optimal control for epidemic model with general 
incidence function. Chaos: An Interdisciplinary Journal of Nonlinear Science. 2021; 31(12): 123101. Available 
from: https://doi.org/10.1063/5.0063050.

[19] Tagliazucchi E, Balenzuela P, Travizano M, Mindlin GB, Mininni PD. Lessons from being challenged 
by COVID-19. Chaos, Solitons & Fractals. 2020; 137: 109923. Available from: https://doi.org/10.1016/
j.chaos.2020.109923.

[20] Zimmermann H-J. Fuzzy set theory—and its applications. Dordrecht: Springer; 2011. Available from: https://doi.
org/10.1007/978-94-010-0646-0.

[21] Barros LCD, Leite MBF, Bassanezi RC. The SI epidemiological models with a fuzzy transmission parameter. 
Computers & Mathematics with Applications. 2003; 45(10-11): 1619-1628. Available from: https://doi.org/10.1016/
S0898-1221(03)00141-X.

[22] Chitnis N, Hyman JM, Cushing JM. Determining important parameters in the spread of malaria through the 
sensitivity analysis of a mathematical model. Bulletin of Mathematical Biology. 2008; 70: 1272-1296. Available 
from: https://doi.org/10.1007/s11538-008-9299-0.

[23] Rodrigues HS, Monteiro MTT, Torres DFM. Sensitivity analysis in a dengue epidemiological model. Conference 
Papers in Science. 2013; 2013: 721406. Available from: https://doi.org/10.1155/2013/721406.

[24] Annas S, Pratama MI, Rifandi M, Sanusi W, Side S. Stability analysis and numerical simulation of SEIR model for 
pandemic COVID-19 spread in Indonesia. Chaos, Solitons & Fractals. 2020; 139: 110072. Available from: https://
doi.org/10.1016/j.chaos.2020.110072.

[25] Zadeh LA. The concept of a linguistic variable and its application to approximate reasoning. Information Sciences. 
1975; 8(3): 199-249. Available from: https://doi.org/10.1016/0020-0255(75)90036-5.

[26] Wiggins S. Introduction to applied nonlinear dynamical systems and chaos. 2nd ed. New York: Springer; 2003. 
Available from: https://doi.org/10.1007/b97481.

[27] Verma R, Tiwari SP, Upadhyay RK. Dynamical behaviors of fuzzy SIR epidemic model. In: Kacprzyk J, Szmidt 
E, Zadrożny S, Atanassov K, Krawczak M. (eds.) Advances in Fuzzy Logic and Technology 2017. Cham: Springer; 
2018. p.482-492. Available from: https://doi.org/10.1007/978-3-319-66827-7_45.org/10.1063/5.0063050.

https://doi.org/10.1142/S0218348X22400230
https://doi.org/10.1063/5.0063050
https://doi.org/10.1016/j.chaos.2020.109923
https://doi.org/10.1016/j.chaos.2020.109923
https://doi.org/10.1007/978-94-010-0646-0
https://doi.org/10.1007/978-94-010-0646-0
https://doi.org/10.1016/S0898-1221(03)00141-X
https://doi.org/10.1016/S0898-1221(03)00141-X
https://doi.org/10.1007/s11538-008-9299-0
https://doi.org/10.1155/2013/721406
https://doi.org/10.1016/j.chaos.2020.110072
https://doi.org/10.1016/j.chaos.2020.110072
https://doi.org/10.1016/0020-0255(75)90036-5
https://doi.org/10.1007/b97481
https://doi.org/10.1007/978-3-319-66827-7_45.org/10.1063/5.0063050


Volume 5 Issue 1|2024| 627 Contemporary Mathematics

Appendix
We verify the conditions for Routh-Hurwitz criteria

4 3 2
1 2 3 4 5 0A A A A Aλ λ λ λ+ ++ + =

1 1A =

2 3.035667434A A B C D+ + += =

( )3 ( )( ) 0.08869A AB A B C D CD E+ + + + −= =

4 ( )( ) ( ) 0.0007738956A A B CD E AB C D+ − + == +

5 0.0007738956A ABCD ABE= − =

2
2 2 3 1 4 2 3 1 4 4 2 5 5Condition: 0, 0, ) 0, 0A A A A A A A A A A A A A> − > − − > >

2 3.035667434 0A = >

2 3 1 4 0.268459448 0A A A A =− >
2

2 3 1 4 4 2 5) 0.0001882970 0A A A A A A A− − >=

5 0.00000211199 0A = >

Since all the above conditions of the Routh-Hurwitz criteria are satisfied, the system is stable at disease-free equilibrium.


