On r-dynamic Coloring of Ladder Graph and Tadpole Graph Using m-shadow Operation

I. H. Agustin ${ }^{1,2}$, A. Irin Feno ${ }^{3}$, K. Abirami ${ }^{3}$, M. Venkatachalam ${ }^{3}{ }^{(\mathbb{D}}$, Dafik ${ }^{1,4^{*}}$, N. Mohanapriya ${ }^{3}$
${ }^{1}$ PUI-PT Combinatorics and Graph, CGANT University of Jember, Indonesia
${ }^{2}$ Department of Mathematics, University of Jember, Jember, Indonesia
${ }^{3} \mathrm{PG}$ and Research Department of Mathematics, Kongunadu Arts and Science College, Coimbatore-641 029, Tamil Nadu, India
${ }^{4}$ Department of Mathematics Education, University of Jember, Jember, Indonesia
Email: md.dafik@unej.ac.id

Received: 7 March 2023; Revised: 29 May 2023; Accepted: 27 June 2023

Abstract

An r-dynamic coloring is a proper k-coloring of a graph $G=\{V, E\}$ such that the neighbors of every vertex v $\in V(G)$ are colored using $\varsigma: V(G) \rightarrow S(c)$ where $S(c)$ is a set of colors. The coloring is made in such a way that it satisfies the conditions: (i) For any edge $u v \in E(G)$ the color of u and color of v are distinct and (ii) the cardinality of coloring the neighbors of any vertex v should be greater than or equal to $\min \left\{r, d\left(v_{G}\right)\right\}$, where $d\left(v_{G}\right)$ is the degree of the vertex v. In this paper, the lower bounds for the r-dynamic coloring of the m-shadow graph of the ladder graph $D_{m}\left(L_{n}\right)$ and the tadpole graph $D_{m}\left(T_{n, p}\right)$ are attained. Using the lower bounds, the exact solution of the r-dynamic chromatic number of the ladder graph L_{n} and tadpole graph $T_{n, p}$ by the m-shadow operation is obtained.

Keywords: r-dynamic coloring, m-shadow graph, ladder graph, tadpole graph
MSC: 05C15

1. Introduction

The graphs used in this paper are simple and finite. Let G be a simple graph that is connected and undirected. The other typical notations used here are $V(G)$ and (G), which are the vertices and edges of G, respectively. The minimum degree of G is $\delta(G)$, and the maximum degree is $\Delta(G)$. For any $v \in V, N(v)$ denotes the neighborhood vertex of v that is adjacent to v. The concept of dynamic chromatic number was first introduced by Montgomery [1], and the study of r-dynamic coloring is an extension of dynamic coloring, so one of the obvious results that holds is $\chi(G) \leq \chi_{r}(G)$ $\leq \chi_{r+1}(G)$. An r-dynamic coloring of G is a mapping of ς from $V(G)$ to the set of colors $S(c)$ such that the following conditions hold:

1. For any $u v \in E(G), \varsigma(u) \neq \varsigma(v)$.
2. $|\varsigma(N(v))| \geq \min \left\{r, d\left(v_{G}\right)\right\}$, where $d\left(v_{G}\right)$ is the degree of v and r is a positive integer.

When $r=1$, the 1-dynamic chromatic number of G is equal to its chromatic number. When $r=2$, the 2-dynamic chromatic number of G is the result of the dynamic chromatic number. The r values are extended up to the maximum degree $\Delta(G)$. The r-dynamic chromatic number remains the same even after r values exceed $\Delta(G)$. Some of the

[^0]following observations were proposed by Montgomery [1] on r-dynamic chromatic number, and some of the bounds are studied from [2-8]. Nandini et al. [9] have studied the r-dynamic coloring of para-line graph of some standard graphs. In [10], there are five theorems studied, including the graph of a flower graph $C\left(F_{n}\right)$, the line graph of a flower graph $L\left(F_{n}\right)$, the subdivision graph of a flower graph $S\left(F_{n}\right)$, the para-line graph of a flower graph $L\left[S\left(F_{n}\right)\right]$, and the splitting graph of a flower graph $S\left[F_{n}\right]$. In [11], there are six theorems studied, including the central vertex join of path graph P_{m} with cycle graph C_{n}, the central vertex join of cycle graph C_{m} with path graph P_{n}, the central vertex join of cycle graph C_{3} with path graph in P_{n}, the central vertex join of cycle graph C_{m} with complete graph K_{n}, the central vertex join of cycle graph C_{3} with complete graph K_{n}, and the central vertex join of cycle graph C_{m} with cycle graph C_{n}. In this paper, we determined the r-dynamic chromatic number of the ladder graph and the tadpole graph using the m-shadow operation.

2. Preliminaries

In this section, the basic definitions and preliminary lemmas that are used in the next sections are given. A graph G is a pair $(V(G), E(G))$, where $V(G)$ denotes the vertex set and $E(G)$ denotes the edge set. If G has the same end vertices, it is called a loop, and an undirected, loopless graph is said to be a simple graph. A graph G is finite if its order and size are finite. In a graph G, the minimum degree $\delta(G)$ is the minimum number of edges that are incident from any vertex $v \in$ V, and the maximum degree $\Delta(G)$ is the maximum number of edges that are incident from any vertex $v \in V$.

Definition 2.1. The shadow graph $D_{2}(G)$ of a simple connected graph G is obtained by taking two copies of G, i.e., G^{\prime} and $G^{\prime \prime}$, and joining each vertex u^{\prime} in G^{\prime} to the neighbors of the corresponding vertex $u^{\prime \prime}$ in $G^{\prime \prime}$.

Definition 2.2. [12, 13] A m-shadow graph of G denoted by $D_{m}(G)$ is a graph obtained by taking m-copies of G, i.e., $G^{\prime}, G^{\prime \prime}, G^{\prime \prime \prime}, \ldots, G^{(m)}$ and then joining each vertex $u^{i} \in G^{i}, i \in[1, m-1]$ to all the neighbors of the corresponding vertex v^{j} $\in G^{i+1}, G^{i+2}, \ldots, G^{(m)}, i<j \leq m$.

Definition 2.3. The ladder graph is a planar undirected graph that is the Cartesian product of two path graphs and is denoted by $L_{n}=P_{n} \times P_{2}$. In other words, a ladder graph is obtained by taking two copies of a path graph of the same order whose corresponding vertices are connected by an edge.

Definition 2.4. The tadpole graph is a special type of graph consisting of a cycle C_{n} of at least $n \geq 3$ vertices and a path P_{p} with p vertices connected by a bridge. It is denoted by $T_{n, p}$.

Lemma 2.1. Let G be a finite, connected graph, then the following condition holds:

1. $\chi_{r}(G) \leq \chi_{r+1}(G)$
2. $\chi_{r}(G) \geq \min \{r, \Delta(G)\}+1$
3. $\chi_{r}(G)=\chi_{1}(G) \leq \chi_{2}(G) \leq \ldots \leq \chi_{\Delta(G)}(G)$
4. At $r \geq \Delta(G)$, then $\chi_{r}(G)=\chi_{\Delta(G)}(G)$

3. Results

Lemma 3.1. For a ladder graph L_{n}, the lower bound for the r-dynamic chromatic number of the m-shadow graph of the ladder graph $D_{m}\left(L_{n}\right)$ is

$$
\chi_{r}\left(D_{m}\left(L_{n}\right)\right) \geq 2 r, \text { for } 1 \leq r \leq \Delta\left(D_{m}\left(L_{n}\right)\right), \forall m, n
$$

Proof. Let $V\left(D_{m}\left(L_{n}\right)\right)=\left\{v_{j}^{\prime}, v_{j}^{\prime \prime}, \ldots, v_{j}^{m}: 1 \leq j \leq 2 n\right\}$ be the vertex set and $E\left(D_{m}\left(L_{n}\right)\right)=\left\{\left\{v_{2 j-1}^{a} v_{2 j+1}^{x}, v_{2 j}^{a} v_{2 j+2}^{x}: 1 \leq a \leq m ; a\right.\right.$ $\left.\leq x \leq m ; 1 \leq j \leq n-1\} \cup\left\{v_{j}^{a} v_{j+1}^{x}: 1 \leq a \leq m ; a \leq x \leq m ; j=1,3,5, \ldots, 2 n-1\right\}\right\}$ be the edge set whose corresponding cardinalities are $\left|V\left(D_{m}\left(L_{n}\right)\right)\right|=2 m n$ and $\left|E\left(D_{m}\left(L_{n}\right)\right)\right|=m^{2}(3 n-2)$, respectively. The vertex v_{j}^{\prime} is adjacent to $v_{k}^{\prime \prime}, v_{k}^{\prime \prime \prime}, \ldots, v_{k}^{(m)}$ only where $v_{j}^{\prime \prime}, v_{j}^{\prime \prime \prime}, \ldots, v_{j}^{m}$ is adjacent.

$$
\text { The minimum degree is } \delta\left(D_{m}\left(L_{n}\right)\right)= \begin{cases}m n & \text { for } n=1,2 \\ 2 m & \text { for } n \geq 3\end{cases}
$$

and

$$
\text { the maximum degree is } \Delta\left(D_{m}\left(L_{n}\right)\right)= \begin{cases}m n & \text { for } n=1,2 \\ 3 m & \text { for } n \geq 3\end{cases}
$$

For $n=1,2$, the value of r varies from $1 \leq r \leq m n$, and for $n \geq 3$, the value of r varies from $1 \leq r \leq 3 m$, and hence the result remains same. Let L be a simple, connected graph. By the definition of a m-shadow graph, every $v_{j}^{i}(1 \leq j \leq 2 n)$ vertex in the i th copy of L is adjacent to $v_{l}^{i+1}, v_{l}^{i+2}, \cdots, v_{l}^{(m)}$ of all $i+1, i+2, \cdots, m$ th copies of L, wherever v_{j}^{i} are adjacent. In order to prove the lemma, we consider two cases.

Case 1. $1 \leq r \leq m n, \forall n=1,2$.
First, consider $r=1$. Assign the colors 1,2 to all the vertices of m-copies of L_{n}. For instance, assign the color class 1 to $v_{j}^{\prime}, v_{j}^{\prime \prime}, \cdots, v_{j}^{(m)}$ and color class 2 to $v_{j}^{\prime}, v_{j}^{\prime \prime}, \cdots, v_{j}^{(m)}$ for $j=$ even. The 1 -dynamic coloring of $D_{m}\left(L_{n}\right)$ results as the same as the chromatic number of L_{n}.

Next, consider $r=2$. For a vertex v_{j}^{\prime}, where $1 \leq j \leq 2 n$, the maximum degree is four. Assign a color (say, ς_{1}) to v_{j}^{\prime}, so that two adjacent vertices of v_{j}^{\prime}, are colored with ς_{2}, and the other two adjacent vertices are colored with ς_{3}. For instance, if $v_{2 k-1}^{\prime}$ where $1 \leq k \leq n$ are colored with ς_{1}, whose two adjacent vertices $v_{2 k}^{\prime}$ and $v_{2 k}^{\prime \prime}$ are colored with ς_{2} and ς_{3}. Now, to satisfy r-adjacency $v_{2 k-1}^{\prime \prime}$, it requires a new color, ς_{4}. Similarly, when $3 \leq r \leq m n-1$, each odd copy of $D_{m}\left(L_{n}\right)$ receives $r-1$ colors, and each even copy of $D_{m}\left(L_{n}\right)$ receives $r+1$ new colors. Therefore, it shows a total of $2 r$ colors are required.

Finally, when $r=m n$, we assign a new color to each vertex in order to achieve r-adjacency. Since there are $2 m n$ vertices in $D_{m}\left(L_{n}\right)$ and $r=m n$, it is clearly seen that $2 r$ colors are required to satisfy the r-dynamic coloring.

Figure 1. $\left(D_{m}\left(L_{4}\right)\right)$ - m-shadow graph of ladder graph L_{4}

Case 2. $1 \leq r \leq 3 m, \forall n \geq 3$.

In the case of $r=1$, the 1 -dynamic coloring of $D_{m}\left(L_{n}\right)$ is the same as the chromatic number of L_{n}, and thus the proof holds. When $r=2$, odd and even copies of $D_{m}\left(L_{n}\right)$ each receive r new colors, and for $3 \leq r \leq 3 m-1$, each odd copy of $D_{m}\left(L_{n}\right)$ receives $r-1$ colors, and each even copy of $D_{m}\left(L_{n}\right)$ receives $r+1$ new colors. Therefore, it shows a total of $2 r$ colors are required.

Further, consider the maximum degree, $r=3 m$, for which we assign the colors $1,2, \cdots, 3 m$ to the ($2 j-1$)th copies of $D_{m}\left(L_{n}\right), 1 \leq j \leq\left\lceil\frac{m}{2}\right\rceil$ and the colors $3 m+1,3 m+2, \cdots, 6 m$ to the $(2 j)$ th copies of $D_{m}\left(L_{n}\right), 1 \leq j \leq\left\lceil\frac{m}{2}\right\rceil$, showing that $2 r$ colors are required to satisfy r-adjacency.

Theorem 3.1. Let $r, n \geq 1$ and $m \geq 2$ be any positive integers, then the r-dynamic chromatic number of m-shadow graph of ladder graph $D_{m}\left(L_{n}\right)$ is

$$
\chi_{r}\left(D_{m}\left(L_{n}\right)\right)=2 r \text { for } 1 \leq r \leq \Delta\left(D_{m}\left(L_{n}\right)\right)
$$

Proof. To ascertain the r-dynamic chromatic number of $D_{m}\left(L_{n}\right)$, we have to prove that, $\chi_{r}\left(D_{m}\left(L_{n}\right)\right) \geq 2 r$ and $\chi_{r}\left(D_{m}\left(L_{n}\right)\right) \leq 2 r$. In accordance with Lemma 3.1, we have $\chi_{r}\left(D_{m}\left(L_{n}\right)\right) \geq 2 r$. So, it completes the proof of lower bound. Then, we have to prove the upper bound. To prove $\chi r\left(D_{m}\left(L_{n}\right)\right) \leq 2 r$, we divide into some cases and consider a function ς $: V\left(D_{m}\left(L_{n}\right)\right) \rightarrow S(\varsigma)$, where $S(\varsigma)=\{1,2,3, \ldots, 2 r\}$.

1. Consider $m=2$.

When $r=1$ and $\forall n$, the r-dynamic chromatic number is given by,

$$
\varsigma\left(v_{j}^{\prime}\right)=\varsigma\left(v_{j}^{\prime \prime}\right)=\{1,2\}: \forall 1 \leq j \leq 2 n .
$$

Therefore, the minimum number of colors required is 2 . When $r=\Delta\left(D_{2}\left(L_{n}\right)\right)$, the r-dynamic chromatic number is given by, for $n=1, r=\Delta\left(D_{2}\left(L_{1}\right)\right)=2$

$$
\varsigma: V\left(D_{2}\left(L_{1}\right)\right)=\left\{\begin{array}{l}
\{1,2\} \text { for } v_{j}^{\prime}, \forall 1 \leq j \leq 2 n \\
\{3,4\} \text { for } v_{j}^{\prime \prime}, \forall 1 \leq j \leq 2 n
\end{array}\right.
$$

Therefore, the minimum number of colors required is 4 . For $n=2, r=\Delta\left(D_{2}\left(L_{2}\right)\right)=4$

$$
\varsigma: V\left(D_{2}\left(L_{2}\right)\right)= \begin{cases}\{1,2,3,4\} & \text { for } v_{j}^{\prime}, \forall 1 \leq j \leq 2 n \\ \{5,6,7,8\} & \text { for } v_{j}^{\prime \prime}, \forall 1 \leq j \leq 2 n\end{cases}
$$

Therefore, the minimum number of colors required is 8 . For $n \geq 3, r=\Delta\left(D_{2}\left(L_{n}\right)\right)=6$

$$
\varsigma: V\left(D_{2}\left(L_{n}\right)\right)= \begin{cases}\{1,2,3,4,5,6\} & \text { for } v_{j}^{\prime}, \forall 1 \leq j \leq 2 n \\ \{7,8,9,10,11,12\} & \text { for } v_{j}^{\prime \prime}, \forall 1 \leq j \leq 2 n\end{cases}
$$

Therefore, the minimum number of colors required is 12 .
2. Consider $m=3$.

When $r=1$ and $\forall n$, the r-dynamic chromatic number is given by,

$$
\varsigma\left(v_{j}^{\prime}\right)=\varsigma\left(v_{j}^{\prime \prime}\right)=\varsigma\left(v_{j}^{\prime \prime \prime}\right)=\{1,2\}: \forall 1 \leq j \leq 2 n
$$

Therefore, the minimum number of colors required is 2 .
When $r=\Delta\left(D_{3}\left(L_{n}\right)\right)$, the r-dynamic chromatic number is given by, for $n=1, r=\Delta\left(D_{3}\left(L_{1}\right)\right)=3$

$$
\varsigma: V\left(D_{3}\left(L_{1}\right)\right)= \begin{cases}\{1,2\} & \text { for } v_{j}^{\prime}, \forall 1 \leq j \leq 2 n \\ \{3,4\} & \text { for } v_{j}^{\prime \prime}, \forall 1 \leq j \leq 2 n \\ \{5,6\} & \text { for } v_{j}^{\prime \prime \prime}, \forall 1 \leq j \leq 2 n\end{cases}
$$

Therefore, the minimum number of colors required is 6 . For $n=2, r=\Delta\left(D_{3}\left(L_{2}\right)\right)=6$

$$
\varsigma: V\left(D_{3}\left(L_{2}\right)\right)= \begin{cases}\{1,2,3,4\} & \text { for } v_{j}^{\prime}, \forall 1 \leq j \leq 2 n \\ \{5,6,7,8\} & \text { for } v_{j}^{\prime \prime}, \forall 1 \leq j \leq 2 n \\ \{9,10,11,12\} & \text { for } v_{j}^{\prime \prime \prime}, \forall 1 \leq j \leq 2 n\end{cases}
$$

Therefore, the minimum number of colors required is 12 . For $n \geq 3, r=\Delta\left(D_{3}\left(L_{n}\right)\right)=9$

$$
\varsigma: V\left(D_{3}\left(L_{n}\right)\right)= \begin{cases}\{1,2,3,4,5,6\} & \text { for } v_{j}^{\prime}, \forall 1 \leq j \leq 2 n \\ \{7,8,9,10,11,12\} & \text { for } v_{j}^{\prime \prime}, \forall 1 \leq j \leq 2 n \\ \{13,14,15,16,17,18\} & \text { for } v_{j}^{\prime \prime \prime}, \forall 1 \leq j \leq 2 n\end{cases}
$$

Therefore, the minimum number of colors required is 18 .
3. For m-shadow graph, when $r=1$ and $\forall n$, the r-dynamic chromatic number is given by,

$$
\varsigma\left(v_{j}^{\prime}\right)=\varsigma\left(v_{j}^{\prime \prime}\right)=\cdots=\varsigma\left(v_{j}^{(m)}\right)=\{1,2\}: \forall 1 \leq j \leq 2 n .
$$

Therefore, the minimum number of colors required is 2 .
When $r=\Delta\left(D_{m}\left(L_{n}\right)\right)$, the r-dynamic chromatic number is given by, for $n=1, r=\Delta\left(D_{m}\left(L_{1}\right)\right)=m$

$$
\varsigma: V\left(D_{m}\left(L_{n}\right)\right)= \begin{cases}\{1,2\} & \text { for }\left(v_{j}^{\prime}\right), \forall 1 \leq j \leq 2 n \\ \{3,4\} & \text { for }\left(v_{j}^{\prime \prime}\right), \forall 1 \leq j \leq 2 n \\ \vdots & \\ \{2 m-1,2 m\} & \text { for } v_{j}^{(m)}, \forall 1 \leq j \leq 2 n\end{cases}
$$

Since $r=m$, the minimum number of colors required is $2 r$. For $n=2, r=\Delta\left(D_{m}\left(L_{2}\right)\right)=2 m$

$$
\varsigma: V\left(D_{m}\left(L_{2}\right)\right)= \begin{cases}\{1,2,3,4\} & \text { for }\left(v_{j}^{\prime}\right), \forall 1 \leq j \leq 2 n \\ \{5,6,7,8\} & \text { for }\left(v_{j}^{\prime \prime}\right), \forall 1 \leq j \leq 2 n \\ \vdots & \\ \{4 m-3,4 m-2,4 m-1,4 m\} & \text { for } v_{j}^{(m)}, \forall 1 \leq j \leq 2 n\end{cases}
$$

Since $r=2 m$, the minimum number of colors required is $2 r$. For $n \geq 3, r=\Delta\left(D_{m}\left(L_{n}\right)\right)=3 m$

$$
\varsigma: V\left(D_{m}\left(L_{n}\right)\right)= \begin{cases}\{1,2,3,4,5,6\} & \text { for }\left(v_{j}^{\prime}\right), \forall 1 \leq j \leq 2 n \\ \{7,8,9,10,11,12\} & \text { for }\left(v_{j}^{\prime \prime}\right), \forall 1 \leq j \leq 2 n \\ \vdots & \\ \{6 m-5,6 m-4,6 m-3,6 m-2,6 m-1,6 m\} & \text { for } v_{j}^{(m)}, \forall 1 \leq j \leq 2 n\end{cases}
$$

Since $r=3 m$, the minimum number of colors required is $2 r$.
Thus, $\chi_{r}\left(D_{m}\left(L_{n}\right)\right) \leq 2 r$. In accordance with Lemma 3.1, we have $\chi_{r}\left(D_{m}\left(L_{n}\right)\right) \geq 2 r$.
Hence, $\chi_{r}\left(D_{m}\left(L_{n}\right)\right)=2 r$ for $1 \leq r \leq \Delta\left(D_{m}\left(L_{n}\right)\right)$.
Lemma 3.2. For a tadpole graph $T_{n, p}$, the lower bound for the r-dynamic chromatic number of the m-shadow graph of the tadpole graph $D_{m}\left(T_{n, p}\right)$ is

$$
\chi_{r}\left(D_{m}\left(T_{n, p}\right)\right) \geq \min \{r+2, r+m\}
$$

Proof. Let $V\left(D_{m}\left(T_{n, p}\right)\right)=\left\{v_{n j}^{\prime}, v_{n j}^{\prime \prime}, \cdots, v_{n_{j}}^{(m)}, v_{p_{k}}^{\prime}, v_{p_{k}}^{\prime \prime}, \cdots, v_{p_{k}}^{(m)}: 1 \leq j \leq n\right.$ and $\left.1 \leq k \leq p\right\}$ be the vertex set and $E\left(D_{m}\left(T_{n, p}\right)\right)$ $=\left\{\left\{v_{n_{j}}^{a} v_{n_{j+1}}^{x}, v_{p_{k}}^{a} v_{p_{k+1}}^{x}: 1 \leq a \leq m ; a \leq x \leq m ; 1 \leq j \leq n-1 ; 1 \leq k \leq p-1\right\} \cup\left\{v_{n_{1}}^{a} v_{n_{j}}^{x}, v_{n_{1}}^{a} v_{p_{k}}^{x}: 1 \leq a \leq m ; a \leq x \leq m ; j=n ; k=p\right\}\right\}$ be the edge set whose corresponding cardinalities are $\left|V\left(D_{m}\left(T_{n, p}\right)\right)\right|=m(n+p)$ and $\left|E\left(D_{m}\left(T_{n, p}\right)\right)\right|=m^{2}(n+p)$, respectively. The vertex v_{j}^{\prime} are adjacent to $v_{k}^{\prime \prime}, v_{k}^{\prime \prime \prime}, \ldots, v_{k}^{(m)}$ only where $v_{j}^{\prime \prime}, v_{j}^{\prime \prime \prime}, \ldots, v_{j}^{m}$ are adjacent. The minimum degree is $\delta\left(D_{m}\left(T_{n, p}\right)\right)=m$ and the maximum degree is $\Delta\left(D_{m}\left(T_{n, p}\right)\right)=3 m$.

Let T be an undirected simple connected graph. By the definition of m-shadow graph, every $v_{n_{j}}^{i}, v_{p_{k}}^{i}$ (for $1 \leq j \leq n$ and $1 \leq k \leq p$) vertex in the i th copy of T is adjacent to $v_{n_{l}}^{i+1}, v_{n_{l}}^{i+2}, \cdots, v_{n_{l}}^{(m)}, v_{p_{q}}^{i+1}, v_{p_{q}}^{i+2}, \cdots, v_{p_{q}}^{(m)}$ of all $i+1, i+2, \cdots, m$ th copies
of T, wherever $v_{n_{j}}^{i}, v_{p_{k}}^{i}$ are adjacent.
For all m-copies of $T_{n, p}$, when r lies in the range, $1 \leq r \leq m-1$, the minimum number of colors required to satisfy r-adjacency are $r+2$, whereas for $m \leq r \leq \Delta\left(\left(D_{m}\left(T_{n, p}\right)\right)\right)$, minimum of $r+m$ colors are required. Considering the r-dynamic coloring condition, we take $\min \{r+2, r+m\}$ to be the lower bound for $D_{m}\left(T_{n, p}\right)$.

Figure 2. $\left(D_{3}\left(T_{3,2}\right)\right)$ - m-shadow graph of tadpole graph $T_{3,2}$

For example, when $m \geq 2$ and $r=2$, we have $\min \{4,2+m\}$ to be 4 .
(i) When n is odd and for all p, assign the colors (say) $\varsigma_{1}, \varsigma_{2}, \varsigma_{3}$ to the vertices $v_{n j}^{\prime}, v_{n j}^{\prime \prime \prime}, \cdots, v_{n_{j}}^{(m-1)}$ and $v_{p_{k}}^{\prime}, v_{p_{k}}^{\prime \prime \prime}, \cdots, v_{p_{k}}^{(m-1)}$. To achieve 2 -dynamic coloring, a new color, ς_{4}, is required along with the colors ς_{2} and ς_{3}, which are assigned to the vertices $v_{n_{j}}^{\prime \prime}, v_{n_{j}}^{i v}, \cdots, v_{n_{j}}^{(m)}, v_{p_{k}}^{\prime}, v_{p_{k}}^{\prime \prime \prime}, \cdots, v_{p_{k}}^{(m-1)},(1 \leq j \leq n)$ and $(1 \leq k \leq p)$.
(ii) When n is even and for all p, to achieve proper coloring and satisfy 2 -dynamic coloring, assign the colors ς_{1} and ς_{2} to the vertices $v_{n_{j}}^{\prime}, v_{n_{j}}^{\prime \prime \prime} \cdots, v_{n_{j}}^{(m-1)}, v_{p_{k}}^{\prime}, v_{p_{k}}^{\prime \prime \prime}, \cdots, v_{p_{k}}^{(m-1)}$, and colors ς_{3} and ς_{4} to the vertices $v_{n_{j}}^{\prime \prime}, v_{n_{j}}^{i v}, \cdots, v_{n_{j}}^{(m)}$, $v_{p_{k}}^{\prime \prime}, v_{p_{k}}^{i v}, \cdots, v_{p_{k}}^{(m)},(1 \leq j \leq n)$, and $(1 \leq k \leq p)$.
Theorem 3.2. Let $r, m \geq 2, n \geq 3$, and $p \geq 1$ be any positive integers. Then, the r-dynamic chromatic number of the m-shadow graph of the tadpole graph $D_{m}\left(T_{n, p}\right)$ is

Proof. To ascertain the r-dynamic chromatic number of $D_{m}\left(T_{n, p}\right)$, we have to prove the theorem and divide it into some cases.

Case 1. $r=1, n \equiv 1(\bmod 2), \forall p, m$.
To ascertain the r-dynamic chromatic number of $D_{m}\left(T_{n, p}\right)$, we have to prove that $\chi_{r}\left(D_{m}\left(T_{n, p}\right)\right) \geq 3$ and $\chi_{r}\left(D_{m}\left(T_{n, p}\right)\right) \leq$ 3. In accordance with Lemma 3.2, we have $\chi_{r}\left(D_{m}\left(T_{n, p}\right)\right) \geq 3$. So, it completes the proof of lower bound. Then, we have to prove the upper bound. To prove $\chi_{r}\left(D_{m}\left(T_{n, p}\right)\right) \leq 3$, let us define a function $\varsigma: V\left(D_{m}\left(T_{n, p}\right)\right) \rightarrow S(\varsigma)$, where $S(\varsigma)=\{1,2,3\}$.

For this case, we divide into two subcases, namely Subcase 1 and Subcase 2.
Subcase 1. $r=1, n \equiv 1(\bmod 2), p \equiv 1(\bmod 2)$

Subcase 2. $r=1, n \equiv 1(\bmod 2), p \equiv 0(\bmod 2)$

Based on the lower bound and the upper bound, we have $3 \leq\left(D_{m}\left(T_{n, p}\right)\right) \leq 3$. Now, it is easy to establish the r-adjacency, hence $\chi_{r}\left(D_{m}\left(T_{n, p}\right)\right)$ for $r=1, n \equiv 1(\bmod 2), \forall p, m$.

Case 2. For $4 \leq r \leq 5, n \equiv 1(\bmod 3), \forall p, m$.
To ascertain the r-dynamic chromatic number of $\left(D_{m}\left(T_{n, p}\right)\right)$, we have to prove that $\chi_{r}\left(D_{m}\left(T_{n, p}\right)\right) \geq 7$ and $\chi_{r}\left(D_{m}\left(T_{n, p}\right)\right) \leq$ 7. In accordance with Lemma 3.2, we have $\chi_{r}\left(D_{m}\left(T_{n, p}\right)\right) \geq 7$. So, it completes the proof of lower bound. Then, we have to prove the upper bound. To prove $\chi_{r}\left(D_{m}\left(T_{n, p}\right)\right) \leq 7$, let us define a function $\varsigma: V\left(D_{m}\left(T_{n, p}\right)\right) \rightarrow S(\varsigma)$, where $S(\varsigma)=\{1,2,3, \ldots$, $7\}$. For this case, we divide into two subcases, namely Subcase 3 and Subcase 4.

Subcase 3. $r=4, n \equiv 1(\bmod 3), \forall n \geq 7, p, m$.
Consider $m=2$ when $r=4, n=7,10,13, \ldots$ and $\forall p$

$$
\varsigma: V\left(D_{2}\left(T_{n, p}\right)\right)= \begin{cases}\{1,2,3\} & \text { for } v_{n_{j}}^{\prime}, v_{p_{k}}^{\prime}, \forall 1 \leq j \leq n \text { and } 1 \leq k \leq p \\ \{4,5,6,7\} & \text { for } v_{n_{j}}^{\prime \prime}, v_{p_{k}}^{\prime \prime}, \forall 1 \leq j \leq n \text { and } 1 \leq k \leq p\end{cases}
$$

Consider m-shadow graph when $r=4, n=7,10,13, \ldots$ and $\forall p$

$$
\varsigma: V\left(D_{m}\left(T_{n, p}\right)\right)= \begin{cases}\{1,2,3,4\} \quad & \text { for }\left(v_{n_{j}}^{\prime}, v_{p_{k}}^{\prime}\right),\left(v_{n_{j}}^{\prime \prime \prime}, v_{p_{k}}^{\prime \prime \prime}\right), \cdots,\left(v_{n_{j}}^{(m-1)}\right), \forall \leq j \leq n \\ & \text { and } 1 \leq k \leq p \\ \{4,5,6,7\} & \text { for }\left(v_{n_{j}}^{\prime \prime}, v_{p_{k}}^{\prime \prime}\right),\left(v_{n_{j}}^{i v}, v_{p_{k}}^{i v}\right), \cdots,\left(v_{n_{j}}^{(m)}, v_{p_{k}}^{(m)}\right), \forall \leq j \leq n \\ & \text { and } 1 \leq k \leq p .\end{cases}
$$

Subcase 4. $r=5, n \equiv 1(\bmod 3), \forall n \geq 7, p, m$.
Consider $m=2$ when $r=5, n=7,10,13, \ldots$ and $\forall p$

$$
\varsigma: V\left(D_{2}\left(T_{n, p}\right)\right)= \begin{cases}\{1,2,3,4\} & \text { for }\left(v_{n_{j}}^{\prime}, v_{p_{k}}^{\prime}\right), \forall 1 \leq j \leq n \text { and } 1 \leq k \leq p \\ \{4,5,6,7\} & \text { for }\left(v_{n_{j}}^{\prime \prime}, v_{p_{k}}^{\prime \prime}\right), \forall 1 \leq j \leq n \text { and } 1 \leq k \leq p\end{cases}
$$

Consider m-shadow graph when $r=4, n=7,10,13, \ldots$ and $\forall p$

$$
\varsigma: V\left(D_{m}\left(T_{n, p}\right)\right)= \begin{cases}\{1,2,3,4\} & \text { for }\left(v_{n_{j}}^{\prime}, v_{p_{k}}^{\prime}\right),\left(v_{n_{j}}^{\prime \prime \prime}, v_{p_{k}}^{\prime \prime \prime}\right), \cdots,\left(v_{n_{j}}^{(m-1)}\right), \forall \leq j \leq n \\ & \text { and } 1 \leq k \leq p \\ \{4,5,6,7\} & \text { for }\left(v_{n_{j}}^{\prime \prime}, v_{p_{k}}^{\prime \prime}\right),\left(v_{n_{j}}^{i v}, v_{p_{k}}^{i v}\right), \cdots,\left(v_{n_{j}}^{(m)}, v_{p_{k}}^{(m)}\right), \forall \leq j \leq n \\ & \text { and } 1 \leq k \leq p .\end{cases}
$$

Based on Subcases 3 and 4, a minimum of seven colors is required to satisfy r-adjacency, $\chi_{r}\left(D_{m}\left(T_{n, p}\right)\right) \leq 7$. In accordance with the lower bound and the upper bound, we have $7 \leq \chi_{r}\left(D_{m}\left(T_{n, p}\right)\right) \leq 7$. Now, it is easy to establish the r-adjacency, hence $\chi_{r}\left(D_{m}\left(T_{n, p}\right)\right)=7$ for $4 \leq r \leq 5, n \equiv 1(\bmod 3), \forall p, m$.

Case 3. $r=\Delta\left(D_{m}\left(T_{n, p}\right)\right), n \equiv 1(\bmod 3), \forall p, m=2$ and $r=\Delta\left(D_{m}\left(T_{n, p}\right)\right), n \equiv 2(\bmod 3), \forall n \geq 8, \forall p, m=2$.
In accordance with Lemma 3.2, we have $\chi_{r}\left(D_{m}\left(T_{n, p}\right)\right) \geq 8$. So, it completes the proof of lower bound. Then, we have to prove the upper bound. To prove $\chi_{r}\left(D_{m}\left(T_{n, p}\right)\right) \leq 8$, let us define a function $\varsigma: V\left(D_{m}\left(T_{n, p}\right)\right) \rightarrow S(\varsigma)$, where $S(\varsigma)=\{1,2,3$, $\ldots, 8\}$. For this case, we divide into two subcases, namely Subcase 5 and Subcase 6.

Subcase 5. $m=2, r=\Delta\left(D_{m}\left(T_{n, p}\right)\right), n \equiv 1(\bmod 3), \forall p$.
When $m=2, r=6, n=4,7,10, \ldots$, and $\forall p$.

$$
\varsigma: V\left(D_{2}\left(T_{n, p}\right)\right)= \begin{cases}\{1,2,3,4\} & \text { for }\left(v_{n_{j}}^{\prime}, v_{p_{k}}^{\prime}\right), \forall 1 \leq j \leq n \text { and } 1 \leq k \leq p \\ \{5,6,7,8\} & \text { for }\left(v_{n_{j}}^{\prime \prime}, v_{p_{k}}^{\prime \prime}\right), \forall 1 \leq j \leq n \text { and } 1 \leq k \leq p\end{cases}
$$

Subcase 6. $m=2, r=\Delta\left(D_{2}\left(T_{n, p}\right)\right), n \equiv 2(\bmod 3), \forall n \geq 8, p$.
When $m=2, r=6, n=8,11,14, \ldots$ and $\forall p$.

$$
\varsigma: V\left(D_{2}\left(T_{n, p}\right)\right)= \begin{cases}\{1,2,3,4\} & \text { for }\left(v_{n_{j}}^{\prime}, v_{p_{k}}^{\prime}\right), \forall 1 \leq j \leq n \text { and } 1 \leq k \leq p \\ \{5,6,7,8\} & \text { for }\left(v_{n_{j}}^{\prime \prime}, v_{p_{k}}^{\prime \prime}\right), \forall 1 \leq j \leq n \text { and } 1 \leq k \leq p\end{cases}
$$

Based on Subcases 5 and 6 , a minimum of eight colors is required to satisfy r-adjacency, $\chi_{r}\left(D_{m}\left(T_{n, p}\right)\right) \leq 8$. In accordance with the lower bound and the upper bound, we have $8 \leq \chi_{r}\left(D_{m}\left(T_{n, p}\right)\right) \leq 8$. Now, it is easy to establish the r-adjacency, hence $\chi_{r}\left(D_{m}\left(T_{n, p}\right)\right)=8$ for $r=\Delta\left(D_{m}\left(T_{n, p}\right)\right), n \equiv 1(\bmod 3), \forall p, m=2$ and $r=\Delta\left(D_{m}\left(T_{n, p}\right)\right), n \equiv 2(\bmod 3), \forall n \geq 8$ $\forall p, m=2$.

Case 4. $m=2, r=\Delta\left(D_{2}\left(T_{5, p}\right)\right), n=5, \forall p$.
In accordance with Lemma 3.2, we have $\chi_{r}\left(D_{m}\left(T_{n, p}\right)\right) \geq 10$. So, it completes the proof of lower bound. Then, we have to prove the upper bound. To prove $\chi_{r}\left(D_{m}\left(T_{n, p}\right)\right) \leq 10$, let us define a function $\varsigma: V\left(D_{m}\left(T_{n, p}\right)\right) \rightarrow S(\varsigma)$ where $(\varsigma)=\{1,2$, $3, \ldots, 10\}$.

$$
\varsigma: V\left(D_{2}\left(T_{n, p}\right)\right)= \begin{cases}\{1,2,3,4,5\} & \text { for }\left(v_{n_{j}}^{\prime}, v_{p_{k}}^{\prime}\right), \forall 1 \leq j \leq n \text { and } 1 \leq k \leq p \\ \{5,6,7,8,9,10\} & \text { for }\left(v_{n_{j}}^{\prime \prime}, v_{p_{k}}^{\prime \prime}\right), \forall 1 \leq j \leq n \text { and } 1 \leq k \leq p\end{cases}
$$

Thus, a minimum of 10 colors is required to satisfy r-adjacency, $\chi_{r}\left(D_{m}\left(T_{n, p}\right)\right) \leq 10$. Based on the lower bound and the upper bound, we have $10 \leq \chi_{r}\left(D_{m}\left(T_{n, p}\right)\right) \leq 10$. So, we can conclude that $\chi_{r}\left(D_{m}\left(T_{n, p}\right)\right)=10$ for $m=2, r=\Delta\left(D_{2}\left(T_{5, p}\right)\right), n=5$, $\forall p$.

Case 5. $r=1, n \equiv 0(\bmod 2), \forall p, m$.
To ascertain the r-dynamic chromatic number of $D_{m}\left(T_{n, p}\right)$, we have to prove that $\chi_{r}\left(D_{m}\left(T_{n, p}\right)\right) \leq 2 r$ and $\chi_{r}\left(D_{m}\left(T_{n, p}\right)\right)$ $\geq 2 r$. In accordance with Lemma 3.2, we have $\chi_{r}\left(D_{m}\left(T_{n, p}\right)\right) \geq 2 r$. To prove $\chi_{r}\left(D_{m}\left(T_{n, p}\right)\right) \leq 2 r$, let us define a function $\varsigma: V$ $\left(D_{m}\left(T_{n, p}\right)\right) \rightarrow S(\varsigma)$ where $(\varsigma)=\{1,2,3, \ldots, 2 r\}$.

Subcase 7. $r=1, n \equiv 0(\bmod 2), p \equiv 1(\bmod 2)$.

Subcase 8. $r=1, n \equiv 1(\bmod 2), p \equiv 0(\bmod 2)$.

Subcase 9. $r=2, \forall n, p, m$.

1. Consider $m=2$.

When $r=2, n \equiv 0(\bmod 2), \forall p$.

$$
\varsigma: V\left(D_{2}\left(T_{n, p}\right)\right)= \begin{cases}\{1,2\} & \text { for }\left(v_{n_{j}}^{\prime}, v_{p_{k}}^{\prime}\right), \forall 1 \leq j \leq n \text { and } 1 \leq k \leq p \\ \{3,4\} & \text { for }\left(v_{n_{j}}^{\prime \prime}, v_{p_{k}}^{\prime \prime}\right), \forall 1 \leq j \leq n \text { and } 1 \leq k \leq p\end{cases}
$$

When $r=2, n \equiv 1(\bmod 2), \forall p$

$$
\varsigma: V\left(D_{2}\left(T_{n, p}\right)\right)= \begin{cases}\{1,2,3\} & \text { for }\left(v_{n_{j}}^{\prime}, v_{p_{k}}^{\prime}\right), \forall 1 \leq j \leq n \text { and } 1 \leq k \leq p \\ \{2,3,4\} & \text { for }\left(v_{n_{j}}^{\prime \prime}, v_{p_{k}}^{\prime \prime}\right), \forall 1 \leq j \leq n \text { and } 1 \leq k \leq p\end{cases}
$$

2. Consider m-shadow graph.

When $r=2, n \equiv 0(\bmod 2), \forall p$

$$
\varsigma: V\left(D_{m}\left(T_{n, p}\right)\right)= \begin{cases}\{1,2\} & \text { for } v_{n_{j}}^{\prime}, v_{p_{k}}^{\prime}=v_{n_{j}}^{\prime \prime \prime}, v_{p_{k}}^{\prime \prime \prime}=\cdots=v_{n_{j}}^{(m-1)}, v_{p_{k}}^{(m-1)}, \forall \leq j \leq n \text { and } 1 \leq k \leq p \\ \{3,4\} & \text { for } v_{n_{j}}^{\prime \prime}, v_{p_{k}}^{\prime \prime}, v_{n_{j}}^{i v}, v_{p_{k}}^{i v}=\cdots=v_{n_{j}}^{(m)}, v_{p_{k}}^{(m)}, \forall 1 \leq j \leq n \text { and } 1 \leq k \leq p\end{cases}
$$

When $r=2, n \equiv 1(\bmod 2), \forall p$

$$
\varsigma: V\left(D_{m}\left(T_{n, p}\right)\right)= \begin{cases}\{1,2,3\} & \text { for } v_{n_{n}}^{\prime}, v_{p_{k}}^{\prime}=v_{n_{n}}^{\prime \prime \prime}, v_{p_{k}}^{\prime \prime \prime}=\cdots=v_{n_{j}}^{(m-1)}, v_{p_{k}}^{(m-1)} \forall \leq j \leq n \text { and } 1 \leq k \leq p \\ \{2,3,4\} & \text { for } v_{n_{j}}^{\prime \prime}, v_{p_{k}}^{\prime \prime}, v_{n_{j}}^{i v}, v_{p_{k}}^{i v}=\cdots=v_{n_{j}}^{(m)}, v_{p_{k}}^{(m)}, \forall 1 \leq j \leq n \text { and } 1 \leq k \leq p\end{cases}
$$

Subcase 10. $r=4, n=4$ and $n \equiv 2(\bmod 3), \forall p, m$.
Consider $m=2$, when $r=4, n=4, \forall p$

$$
\varsigma: V\left(D_{2}\left(T_{n, p}\right)\right)= \begin{cases}\{1,2,3,4\} & \text { for } v_{n_{j}}^{\prime}, v_{p_{k}}^{\prime}, \forall 1 \leq j \leq n \text { and } 1 \leq k \leq p \\ \{5,6,7,8\} & \text { for } v_{n_{j}}^{\prime \prime}, v_{p_{k}}^{\prime \prime}, \forall 1 \leq j \leq n \text { and } 1 \leq k \leq p\end{cases}
$$

Consider m-shadow graph, when $r=4, n=4, \forall p$

$$
\varsigma: V\left(D_{m}\left(T_{n, p}\right)\right)= \begin{cases}\{1,2,3,4\} & \text { for } v_{n_{j}}^{\prime}, v_{p_{k}}^{\prime}=v_{n_{j}}^{\prime \prime \prime}, v_{p_{k}}^{\prime \prime \prime}=\cdots=v_{n_{j}}^{(m-1)}, v_{p_{k}}^{(m-1)} \forall \leq j \leq n \text { and } 1 \leq k \leq p \\ \{5,6,7,8\} & \text { for } v_{n_{j}}^{\prime \prime}, v_{p_{k}}^{\prime \prime}, v_{n_{j}}^{i v}, v_{p_{k}}^{i v}=\cdots=v_{n_{j}}^{(m)}, v_{p_{k}}^{(m)}, \forall 1 \leq j \leq n \text { and } 1 \leq k \leq p\end{cases}
$$

Consider $m=2$, when $r=4, n=5,8,11, \ldots, \forall p$

$$
\varsigma: V\left(D_{2}\left(T_{n, p}\right)\right)= \begin{cases}\{1,2,3,4\} & \text { for } v_{n_{j}}^{\prime}, v_{p_{k}}^{\prime}, \forall 1 \leq j \leq n \text { and } 1 \leq k \leq p \\ \{5,6,7,8\} & \text { for } v_{n_{j}}^{\prime \prime}, v_{p_{k}}^{\prime \prime}, \forall 1 \leq j \leq n \text { and } 1 \leq k \leq p\end{cases}
$$

Consider m-shadow graph, when $r=4, n=5,8,11, \ldots, \forall p$

$$
\varsigma: V\left(D_{3}\left(T_{n, p}\right)\right)= \begin{cases}\{1,2,3\} & \text { for }\left(v_{n_{j}}^{\prime}, v_{p_{k}}^{\prime}\right), \forall 1 \leq j \leq n \text { and } 1 \leq k \leq p \\ \{3,4,5\} & \text { for }\left(v_{n_{j}}^{\prime \prime}, v_{p_{k}}^{\prime \prime}\right), \forall 1 \leq j \leq n \text { and } 1 \leq k \leq p \\ \{4,5,6\} & \text { for }\left(v_{n_{j}}^{\prime \prime \prime}, v_{p_{k}}^{\prime \prime \prime}\right), \forall 1 \leq j \leq n \text { and } 1 \leq k \leq p\end{cases}
$$

Thus, a minimum of $2 r$ colors is required to satisfy r-adjacency, $\chi_{r}\left(D_{m}\left(T_{n, p}\right)\right) \leq 2$. In accordance with the lower bound and the upper bound, we have $2 \leq \chi_{r}\left(D_{m}\left(T_{n, p}\right)\right) \leq 2$, hence $\chi_{r}\left(D_{m}\left(T_{n, p}\right)\right)=2$ for $r=4, n=4$ and $n \equiv 2(\bmod 3), \forall p, m$.

Case 6. $r=3, n \equiv 1(\bmod 3), \forall m, n \geq 7$ and $p=1,2$ and $p \equiv 1,2(\bmod 3) ; r=3, n \equiv 2(\bmod 3) \forall p, m ; 3 \leq r \leq$ $\Delta\left(D_{m}\left(T_{n, p}\right)\right), n \equiv 0(\bmod 3), \forall p, m=2 ; 3 \leq r \leq \Delta\left(\left(D_{m}\left(T_{n, p}\right)\right)-4, n \equiv 0(\bmod 3), \forall p, m \geq 3 ; \Delta\left(D_{m}\left(T_{n, p}\right)\right)-3 \leq r \leq \Delta\left(D_{m}\left(T_{n, p}\right)\right)\right.$, $n=3, \forall p, m \geq 3$.

To ascertain the r-dynamic chromatic number of $D_{m}\left(T_{n, p}\right)$, we have to prove that, $\chi_{r}\left(D_{m}\left(T_{n, p}\right)\right) \leq r+m$ and $\chi_{r}\left(D_{m}\left(T_{n, p}\right)\right)$ $\geq r+m$. In accordance with Lemma 3.2, we have, $\chi_{r}\left(D_{m}\left(T_{n, p}\right)\right) \geq r+m$. It completes the proof of lower bound. Then, we
have to prove the upper bound. To prove, $\chi_{r}\left(D_{m}\left(T_{n, p}\right)\right) \leq r+m$, let us define a function, $\varsigma: V\left(D_{m}\left(T_{n, p}\right)\right) \rightarrow S(\varsigma)$, where $S(\varsigma)$ $=\{1,2,3, \ldots, r+m\}$. For this case, we divide into five subcases.

Subcase 11. $r=3, n \equiv 1(\bmod 3), \forall m, n \geq 7, p=1,2$ and $p \equiv 1,2(\bmod 3)$.
Consider $m=2$, when $r=3, n=7,10,13, \ldots$ and $p=1,2,4,5,7,8, \ldots$

$$
\varsigma: V\left(D_{2}\left(T_{n, p}\right)\right)= \begin{cases}\{1,2,3\} & \text { for }\left(v_{n_{j}}^{\prime}, v_{p_{k}}^{\prime}\right), \forall 1 \leq j \leq n \text { and } 1 \leq k \leq p \\ \{3,4,5\} & \text { for }\left(v_{n_{j}}^{\prime \prime}, v_{p_{k}}^{\prime \prime}\right), \forall 1 \leq j \leq n \text { and } 1 \leq k \leq p\end{cases}
$$

Consider $m=3$, when $r=3, n=7,10,13, \ldots$ and $p=1,2,4,5,7,8, \ldots$

$$
\varsigma: V\left(D_{3}\left(T_{n, p}\right)\right)= \begin{cases}\{1,2,3\} & \text { for }\left(v_{n_{j}}^{\prime}, v_{p_{k}}^{\prime}\right), \forall 1 \leq j \leq n \text { and } 1 \leq k \leq p \\ \{3,4,5\} & \text { for }\left(v_{n_{j}}^{\prime \prime}, v_{p_{k}}^{\prime \prime}\right), \forall 1 \leq j \leq n \text { and } 1 \leq k \leq p \\ \{4,5,6\} & \text { for }\left(v_{n_{j}}^{\prime \prime \prime}, v_{p_{k}}^{\prime \prime \prime}\right), \forall 1 \leq j \leq n \text { and } 1 \leq k \leq p\end{cases}
$$

Consider m-shadow graph, when $r=3, n=7,10,13, \ldots$ and $p=1,2,4,5,7,8, \ldots$

$$
\varsigma: V\left(D_{m}\left(T_{n, p}\right)\right)= \begin{cases}\{1,2,3\} & \text { for }\left(v_{n_{j}}^{\prime}, v_{p_{k}}^{\prime}\right), \forall 1 \leq j \leq n \text { and } 1 \leq k \leq p \\ \{3,4,5\} & \text { for }\left(v_{n_{j}}^{\prime \prime}, v_{p_{k}}^{\prime \prime}\right), \forall 1 \leq j \leq n \text { and } 1 \leq k \leq p \\ \vdots & \\ \{r+m-2, r+m-1, r+m\} & \text { for }\left(v_{n_{j}}^{(m)}, v_{p_{k}}^{(m)}\right), \forall 1 \leq j \leq n \text { and } 1 \leq k \leq p\end{cases}
$$

Subcase 12. $r=3, n \equiv 2(\bmod 3), \forall p, m$.
Consider $m=2$, when $r=3, n=5,8,11, \ldots$ and $\forall p$

$$
\varsigma: V\left(D_{2}\left(T_{n, p}\right)\right)= \begin{cases}\{1,2,3\} & \text { for }\left(v_{n_{j}}^{\prime}, v_{p_{k}}^{\prime}\right), \forall 1 \leq j \leq n \text { and } 1 \leq k \leq p \\ \{3,4,5\} & \text { for }\left(v_{n_{j}}^{\prime \prime}, v_{p_{k}}^{\prime \prime}\right), \forall 1 \leq j \leq n \text { and } 1 \leq k \leq p\end{cases}
$$

Consider m-shadow graph, when $r=3, n=5,8,11, \ldots$ and $\forall p$

$$
\varsigma: V\left(D_{m}\left(T_{n, p}\right)\right)= \begin{cases}\{1,2,3\} & \text { for }\left(v_{n_{j}}^{\prime}, v_{p_{k}}^{\prime}\right), \forall 1 \leq j \leq n \text { and } 1 \leq k \leq p \\ \{3,4,5\} & \text { for }\left(v_{n_{j}}^{\prime \prime}, v_{p_{k}}^{\prime \prime}\right), \forall 1 \leq j \leq n \text { and } 1 \leq k \leq p \\ \vdots & \\ \{r+m-2, r+m-1, r+m\} & \text { for }\left(v_{n_{j}}^{(m)}, v_{p_{k}}^{(m)}\right), \forall 1 \leq j \leq n \text { and } 1 \leq k \leq p\end{cases}
$$

Subcase 13. $m=2,3 \leq r \leq \Delta\left(D_{2}\left(T_{n, p}\right)\right), n \equiv 0(\bmod 3), \forall p$.
When $r=3, n=3,6,9, \ldots$ and $\forall p$

$$
\varsigma: V\left(D_{2}\left(T_{n, p}\right)\right)= \begin{cases}\{1,2,3\} & \text { for }\left(v_{n_{j}}^{\prime}, v_{p_{k}}^{\prime}\right), \forall 1 \leq j \leq n \text { and } 1 \leq k \leq p \\ \{3,4,5\} & \text { for }\left(v_{n_{j}}^{\prime \prime}, v_{p_{k}}^{\prime \prime}\right), \forall 1 \leq j \leq n \text { and } 1 \leq k \leq p\end{cases}
$$

When $r=\Delta\left(D_{2}\left(T_{n, p}\right)\right)=6, n=3,6,9, \ldots$ and $\forall p$

$$
\varsigma: V\left(D_{2}\left(T_{n, p}\right)\right)= \begin{cases}\{1,2,3,4\} & \text { for }\left(v_{n_{j}}^{\prime}, v_{p_{k}}^{\prime}\right), \forall 1 \leq j \leq n \text { and } 1 \leq k \leq p \\ \{5,6,7,8\} & \text { for }\left(v_{n_{j}}^{\prime \prime}, v_{p_{k}}^{\prime \prime}\right), \forall 1 \leq j \leq n \text { and } 1 \leq k \leq p\end{cases}
$$

Subcase 14. $m \geq 3,3 \leq r \leq \Delta\left(D_{m}\left(T_{n, p}\right)\right)-4, n \equiv 0(\bmod 3), \forall p$.
Consider $m=3$, when $r=3, n=3,6,9, \ldots$ and $\forall p$

$$
\varsigma: V\left(D_{3}\left(T_{n, p}\right)\right)= \begin{cases}\{1,2,3\} & \text { for }\left(v_{n_{j}}^{\prime}, v_{p_{k}}^{\prime}\right), \forall 1 \leq j \leq n \text { and } 1 \leq k \leq p \\ \{2,3,4\} & \text { for }\left(v_{n_{j}}^{\prime \prime}, v_{p_{k}}^{\prime \prime}\right), \forall 1 \leq j \leq n \text { and } 1 \leq k \leq p \\ \{4,5,6\} & \text { for }\left(v_{n_{j}}^{\prime \prime \prime}, v_{p_{k}}^{\prime \prime \prime}\right), \forall 1 \leq j \leq n \text { and } 1 \leq k \leq p\end{cases}
$$

Consider $m=3$, when $r=\Delta\left(D_{3}\left(T_{n, p}\right)\right)-4=5, n=3,6,9, \ldots$ and $\forall p$

$$
\varsigma: V\left(D_{3}\left(T_{n, p}\right)\right)= \begin{cases}\{1,2,3,4\} & \text { for }\left(v_{n_{j}}^{\prime}, v_{p_{k}}^{\prime}\right), \forall 1 \leq j \leq n \text { and } 1 \leq k \leq p \\ \{3,4,5,6\} & \text { for }\left(v_{n_{j}}^{\prime \prime}, v_{p_{k}}^{\prime \prime}\right), \forall 1 \leq j \leq n \text { and } 1 \leq k \leq p \\ \{5,6,7,8\} & \text { for }\left(v_{n_{j}}^{\prime \prime \prime}, v_{p_{k}}^{\prime \prime \prime}\right), \forall 1 \leq j \leq n \text { and } 1 \leq k \leq p\end{cases}
$$

Consider m-shadow graph, when $r=3, n=3,6,9, \ldots$ and $\forall p$

$$
\varsigma: V\left(D_{m}\left(T_{n, p}\right)\right)= \begin{cases}\{1,2,3\} & \text { for }\left(v_{n_{j}}^{\prime}, v_{p_{k}}^{\prime}\right), \forall 1 \leq j \leq n \text { and } 1 \leq k \leq p \\ \{2,3,4\} & \text { for }\left(v_{n_{j}}^{\prime \prime}, v_{p_{k}}^{\prime \prime}\right), \forall 1 \leq j \leq n \text { and } 1 \leq k \leq p \\ \vdots & \\ \{r+m-2, r+m-1, r+m\} & \text { for }\left(v_{n_{j}}^{(m)}, v_{p_{k}}^{(m)}\right), \forall 1 \leq j \leq n \text { and } 1 \leq k \leq p\end{cases}
$$

Consider m-shadow graph, when $r=\Delta\left(D_{m}\left(T_{n, p}\right)\right)-4, n=3,6,9, \ldots$ and $\forall p$

$$
\varsigma: V\left(D_{m}\left(T_{n, p}\right)\right)= \begin{cases}\{1,2,3,4\} & \text { for }\left(v_{n_{j}}^{\prime}, v_{p_{k}}^{\prime}\right), \forall 1 \leq j \leq n \text { and } 1 \leq k \leq p \\ \{3,4,5,6\} & \text { for }\left(v_{n_{j}}^{\prime \prime}, v_{p_{k}}^{\prime \prime}\right), \forall 1 \leq j \leq n \text { and } 1 \leq k \leq p \\ \vdots & \\ \{r+m-3, r+m-2, r+m-1, r+m\} & \text { for }\left(v_{n_{j}}^{(m)}, v_{p_{k}}^{(m)}\right), \forall 1 \leq j \leq n \text { and } 1 \leq k \leq p\end{cases}
$$

Subcase 15. $m \geq 3, \Delta\left(D_{m}\left(T_{n, p}\right)\right)-3 \leq r \leq \Delta\left(D_{m}\left(T_{n, p}\right)\right), n=3, \forall p$.
Consider $m=3$, when $r=\Delta\left(D_{3}\left(T_{n, p}\right)\right)-3=6, n=3$ and $\forall p$

$$
\varsigma: V\left(D_{3}\left(T_{n, p}\right)\right)= \begin{cases}\{1,2,3,4\} & \text { for }\left(v_{n_{j}}^{\prime}, v_{p_{k}}^{\prime}\right), \forall 1 \leq j \leq n \text { and } 1 \leq k \leq p \\ \{4,5,6,7\} & \text { for }\left(v_{n_{j}}^{\prime \prime}, v_{p_{k}}^{\prime \prime}\right), \forall 1 \leq j \leq n \text { and } 1 \leq k \leq p \\ \{7,8,9\} & \text { for }\left(v_{n_{j}}^{\prime \prime \prime}, v_{p_{k}}^{\prime \prime \prime}\right), \forall 1 \leq j \leq n \text { and } 1 \leq k \leq p\end{cases}
$$

Consider $m=3$, when $r=\Delta\left(D_{3}\left(T_{n, p}\right)\right)=9, n=3$ and $\forall p$

$$
\varsigma: V\left(D_{3}\left(T_{n, p}\right)\right)= \begin{cases}\{1,2,3,4\} & \text { for }\left(v_{n_{j}}^{\prime}, v_{p_{k}}^{\prime}\right), \forall 1 \leq j \leq n \text { and } 1 \leq k \leq p \\ \{5,6,7,8\} & \text { for }\left(v_{n_{j}}^{\prime \prime}, v_{p_{k}}^{\prime \prime}\right), \forall 1 \leq j \leq n \text { and } 1 \leq k \leq p \\ \{9,10,11,12\} & \text { for }\left(v_{n_{j}}^{\prime \prime \prime}, v_{p_{k}}^{\prime \prime \prime}\right), \forall 1 \leq j \leq n \text { and } 1 \leq k \leq p\end{cases}
$$

Consider m-shadow graph, when $r=\Delta\left(D_{m}\left(T_{n, p}\right)\right)-3, n=3$ and $\forall p$

$$
\varsigma: V\left(D_{m}\left(T_{n, p}\right)\right)= \begin{cases}\{1,2,3,4\} & \text { for }\left(v_{n_{j}}^{\prime}, v_{p_{k}}^{\prime}\right), \forall 1 \leq j \leq n \text { and } 1 \leq k \leq p \\ \{4,5,6,7\} & \text { for }\left(v_{n_{3}}^{\prime \prime}, v_{p_{k}}^{\prime \prime}\right), \forall 1 \leq j \leq n \text { and } 1 \leq k \leq p \\ \{7,8,9,10\} & \text { for }\left(v_{n_{j}}^{\prime \prime \prime}, v_{p_{k}}^{\prime \prime \prime}\right), \forall 1 \leq j \leq n \text { and } 1 \leq k \leq p \\ \vdots & \\ \{r+m-2, r+m-1, r+m\} & \text { for }\left(v_{n_{j}}^{(m)}, v_{p_{k}}^{(m)}\right), \forall 1 \leq j \leq n \text { and } 1 \leq k \leq p\end{cases}
$$

Consider m-shadow graph, when $r=\Delta\left(D_{m}\left(T_{n, p}\right)\right), n=3$ and $\forall p$

$$
\varsigma: V\left(D_{m}\left(T_{n, p}\right)\right)= \begin{cases}\{1,2,3,4\} & \text { for }\left(v_{n_{j}}^{\prime}, v_{p_{k}}^{\prime}\right), \forall 1 \leq j \leq n \text { and } 1 \leq k \leq p \\ \{5,6,7,8\} & \text { for }\left(v_{n_{j}}^{\prime \prime}, v_{p_{k}}^{\prime \prime}\right), \forall 1 \leq j \leq n \text { and } 1 \leq k \leq p \\ \vdots & \\ \{r+m-3, r+m-2, r+m-1, r+m\} & \text { for }\left(v_{n_{j}}^{(m)}, v_{p_{k}}^{(m)}\right), \forall 1 \leq j \leq n \text { and } 1 \leq k \leq p\end{cases}
$$

Based on Subcase 11 until Subcase 15, a minimum of $r+m$ colors is required to satisfy r-adjacency, $\chi_{r}\left(D_{m}\left(T_{n, p}\right)\right) \leq$ $r+m$. In accordance with the lower bound and the upper bound, we have $r+m \chi_{r}\left(D_{m}\left(T_{n, p}\right)\right) \leq r+m$, hence $\chi_{r}\left(D_{m}\left(T_{n, p}\right)\right)=$ $r+m$ for $m \geq 3 \Delta\left(D_{m}\left(T_{n, p}\right)\right)-3 \leq r \leq \Delta\left(D_{m}\left(T_{n, p}\right)\right), n=3$ and $\forall p$.

Case 7. For $r=3, n=4, \forall p$ and for $r=3, n \equiv 1(\bmod 3), \forall n \geq 7, p \equiv 0(\bmod 3)$.
To ascertain the r-dynamic chromatic number of $D_{m}\left(T_{n, p}\right)$, we have to prove that $\chi_{r}\left(D_{m}\left(T_{n, p}\right)\right) \geq r+m+1$ and $\chi_{r}\left(D_{m}\left(T_{n, p}\right)\right) \leq r+m+1$. In accordance with Lemma 3.2, we have $\chi_{r}\left(D_{m}\left(T_{n, p}\right)\right) \geq r+m+1$. It completes the proof of lower bound. Then, we have to prove the upper bound. To prove $\chi_{r}\left(D_{m}\left(T_{n, p}\right)\right) \leq r+m+1$, let us define a function $\varsigma: V\left(D_{m}\left(T_{n, p}\right)\right)$ $\rightarrow S(\varsigma)$, where $S(\varsigma)=\{1,2,3, \ldots, r+m+1\}$.

Subcase 16. $r=3, n=4, \forall p$.
Consider $m=2$, when $r=3, n=4$ and $\forall p, m$

$$
\varsigma: V\left(D_{2}\left(T_{n, p}\right)\right)= \begin{cases}\{1,2,3\} & \text { for }\left(v_{n_{j}}^{\prime}, v_{p_{k}}^{\prime}\right), \forall 1 \leq j \leq n \text { and } 1 \leq k \leq p \\ \{4,5,6\} & \text { for }\left(v_{n_{j}}^{\prime \prime}, v_{p_{k}}^{\prime \prime}\right), \forall 1 \leq j \leq n \text { and } 1 \leq k \leq p\end{cases}
$$

Consider m-shadow graph, when $r=3, n=4$ and $\forall p$

$$
\varsigma: V\left(D_{m}\left(T_{n, p}\right)\right)= \begin{cases}\{1,2,3\}\} & \text { for }\left(v_{n_{j}}^{\prime}, v_{p_{k}}^{\prime}\right), \forall 1 \leq j \leq n \text { and } 1 \leq k \leq p \\ \{4,5,6\} & \text { for }\left(v_{n_{j}}^{\prime \prime}, v_{p_{k}}^{\prime \prime}\right), \forall 1 \leq j \leq n \text { and } 1 \leq k \leq p \\ \vdots & \\ \{r+m-1, r+m, r+m+1\} & \text { for }\left(v_{n_{j}}^{(m)}, v_{p_{k}}^{(m)}\right), \forall 1 \leq j \leq n \text { and } 1 \leq k \leq p\end{cases}
$$

Subcase 17. $r=3, n \equiv 1(\bmod 3), \forall n \geq 7, p \equiv 0(\bmod 3)$.
Consider $m=2$, when $r=3, n=7,10,13, \ldots$ and $p=3,6,9, \ldots$

$$
\varsigma: V\left(D_{2}\left(T_{n, p}\right)\right)= \begin{cases}\{1,2,3\} & \text { for }\left(v_{n_{j}}^{\prime}, v_{p_{k}}^{\prime}\right), \forall 1 \leq j \leq n \text { and } 1 \leq k \leq p \\ \{4,5,6\} & \text { for }\left(v_{n_{j}}^{\prime \prime}, v_{p_{k}}^{\prime \prime}\right), \forall 1 \leq j \leq n \text { and } 1 \leq k \leq p\end{cases}
$$

Consider m-shadow graph, when $r=3, n=7,10,13, \ldots$ and $p=3,6,9, \ldots$

$$
\varsigma: V\left(D_{m}\left(T_{n, p}\right)\right)= \begin{cases}\{1,2,3\} & \text { for }\left(v_{n_{j}}^{\prime}, v_{p_{k}}^{\prime}\right), \forall 1 \leq j \leq n \text { and } 1 \leq k \leq p \\ \{4,5,6\} & \text { for }\left(v_{n_{j}}^{\prime \prime}, v_{p_{k}}^{\prime \prime}\right), \forall 1 \leq j \leq n \text { and } 1 \leq k \leq p \\ \vdots & \\ \{r+m-1, r+m, r+m+1\} & \text { for }\left(v_{n_{j}}^{(m)}, v_{p_{k}}^{(m)}\right), \forall 1 \leq j \leq n \text { and } 1 \leq k \leq p\end{cases}
$$

Based on Subcases 16 and 17, a minimum of $r+m+1$ colors is required to satisfy r-adjacency, $\chi_{r}\left(D_{m}\left(T_{n, p}\right)\right) \leq r+$ $m+1$. In accordance with the upper bound and the lower bound, we have $r+m+1 \leq \chi_{r}\left(D_{m}\left(T_{n, p}\right)\right) \leq r+m+1$, hence $\chi_{r}\left(D_{m}\left(T_{n, p}\right)\right)=r+m+1$ for $r=3, n \equiv 1(\bmod 3), \forall n \geq 7, p \equiv 0(\bmod 3)$.

Case 8. $r=5, n=5, \forall p, m$.
To ascertain the r-dynamic chromatic number of $D_{m}\left(T_{n, p}\right)$, we have to prove that $\chi_{r}\left(D_{m}\left(T_{n, p}\right)\right) \geq r+m+2$ and $\chi_{r}\left(D_{m}\left(T_{n, p}\right)\right) \leq r+m+2$. In accordance with Lemma 3.2, we have $\chi_{r}\left(D_{m}\left(T_{n, p}\right)\right) \geq r+m+2$. It completes the proof of lower bound. Then, we have to prove the upper bound. To prove $\chi_{r}\left(D_{m}\left(T_{n, p}\right)\right) \leq r+m+2$, let us define a function $\varsigma: V\left(D_{m}\left(T_{n, p}\right)\right)$ $\rightarrow S(\varsigma)$, where $S(\varsigma)=\{1,2,3, \ldots, r+m+2\}$.

Consider $m=2$, when $r=5, n=5$ and $\forall p$

$$
\varsigma: V\left(D_{2}\left(T_{n, p}\right)\right)= \begin{cases}\{1,2,3,4,5\} & \text { for }\left(v_{n_{j}}^{\prime}, v_{p_{k}}^{\prime}\right), \forall 1 \leq j \leq n \text { and } 1 \leq k \leq p \\ \{6,7,8,9\} & \text { for }\left(v_{n_{j}}^{\prime \prime}, v_{p_{k}}^{\prime \prime}\right), \forall 1 \leq j \leq n \text { and } 1 \leq k \leq p\end{cases}
$$

Consider m-shadow graph, when $r=5, n=5$ and $\forall p$

$$
\varsigma: V\left(D_{m}\left(T_{n, p}\right)\right)= \begin{cases}\{1,2,3,4,5\} & \text { for }\left(v_{n_{j}}^{\prime}, v_{p_{k}}^{\prime}\right), \forall 1 \leq j \leq n \text { and } 1 \leq k \leq p \\ \{2,3,4,5,6\} & \text { for }\left(v_{n_{j}}^{\prime \prime}, v_{p_{k}}^{\prime \prime}\right), \forall 1 \leq j \leq n \text { and } 1 \leq k \leq p \\ \{3,4,5,6,7\} & \text { for }\left(v_{n_{j}}^{\prime \prime \prime}, v_{p_{k}}^{\prime \prime \prime}\right), \forall 1 \leq j \leq n \text { and } 1 \leq k \leq p \\ \vdots & \\ \{r+m-1, r+m, r+m+1, r+m+2\} & \text { for }\left(v_{n_{j}}^{(m)}, v_{p_{k}}^{(m)}\right), \forall 1 \leq j \leq n \text { and } 1 \leq k \leq p\end{cases}
$$

Thus, a minimum of $r+m+2$ colors is required to satisfy r-adjacency, $\chi_{r}\left(D_{m}\left(T_{n, p}\right)\right) \leq r+m+2$. In accordance with the upper bound and the lower bound, we have $r+m+2 \leq \chi_{r}\left(D_{m}\left(T_{n, p}\right)\right) \leq r+m+2$, hence $\chi_{r}\left(D_{m}\left(T_{n, p}\right)\right)=r+m+2$ for $r=$ $5, n=5, \forall p, m$.

Case 9. $m \geq 3, \Delta\left(D_{m}\left(T_{n, p}\right)\right)-3 \leq r \leq \Delta\left(D_{m}\left(T_{n, p}\right)\right), \forall n>3, p$.
To ascertain the r-dynamic chromatic number of $D_{m}\left(T_{n, p}\right)$, we have to prove that $\chi_{r}\left(D_{m}\left(T_{n, p}\right)\right) \geq 4 m$ and $\chi_{r}\left(D_{m}\left(T_{n, p}\right)\right) \leq$ $4 m$. In accordance with Lemma 3.2, we have $\chi_{r}\left(D_{m}\left(T_{n, p}\right)\right) \geq 4 m$. It completes the proof of lower bound. Then, we have to prove the upper bound. To prove $\chi_{r}\left(D_{m}\left(T_{n, p}\right)\right) \leq 4 m$, let us define a function $\varsigma: V\left(D_{m}\left(T_{n, p}\right)\right) \rightarrow S(\varsigma)$, where $S(\varsigma)=\{1,2,3$, $\ldots, 4 m\}$.

Consider $m=3$, when $r=\Delta\left(D_{m}\left(T_{n, p}\right)\right)-3=6, n=4,5,6, \ldots$ and $\forall p$

$$
\varsigma: V\left(D_{3}\left(T_{n, p}\right)\right)= \begin{cases}\{1,2,3,4,5\} & \text { for }\left(v_{n_{j}}^{\prime}, v_{p_{k}}^{\prime}\right), \forall 1 \leq j \leq n \text { and } 1 \leq k \leq p \\ \{5,6,7,8,9\} & \text { for }\left(v_{n_{j}}^{\prime \prime}, v_{p_{k}}^{\prime \prime}\right), \forall 1 \leq j \leq n \text { and } 1 \leq k \leq p \\ \{9,10,11,12\} & \text { for }\left(v_{n_{j}}^{\prime \prime \prime}, v_{p_{k}}^{\prime \prime \prime}\right), \forall 1 \leq j \leq n \text { and } 1 \leq k \leq p\end{cases}
$$

Consider $m=3$, when $r=\Delta\left(D_{m}\left(T_{n, p}\right)\right)=9, n=4,5,6, \cdots$ and $\forall p$

$$
\varsigma: V\left(D_{3}\left(T_{n, p}\right)\right)= \begin{cases}\{1,2,3,4,\} & \text { for }\left(v_{n_{j}}^{\prime}, v_{p_{k}}^{\prime}\right), \forall 1 \leq j \leq n \text { and } 1 \leq k \leq p \\ \{5,6,7,8,\} & \text { for }\left(v_{n_{j}}^{\prime \prime}, v_{p_{k}}^{\prime \prime}\right), \forall 1 \leq j \leq n \text { and } 1 \leq k \leq p \\ \{9,10,11,12\} & \text { for }\left(v_{n_{j}}^{\prime \prime \prime}, v_{p_{k}}^{\prime \prime \prime}\right), \forall 1 \leq j \leq n \text { and } 1 \leq k \leq p\end{cases}
$$

Consider m-shadow graph, when $r=\Delta\left(D_{m}\left(T_{n, p}\right)\right)-3, n=4,5,6, \ldots$ and $\forall p$

$$
\varsigma: V\left(D_{m}\left(T_{n, p}\right)\right)= \begin{cases}\{1,2,3,4,5\} & \text { for }\left(v_{n_{j}}^{\prime}, v_{p_{k}}^{\prime}\right), \forall 1 \leq j \leq n \text { and } 1 \leq k \leq p \\ \{5,6,7,8,9\} & \text { for }\left(v_{n_{j}}^{\prime \prime}, v_{p_{k}}^{\prime \prime}\right), \forall 1 \leq j \leq n \text { and } 1 \leq k \leq p \\ \{9,10,11,12,13\} & \text { for }\left(v_{n_{j}}^{\prime \prime \prime}, v_{p_{k}}^{\prime \prime \prime}\right), \forall 1 \leq j \leq n \text { and } 1 \leq k \leq p \\ \vdots & \\ \{4 m-3,4 m-2,4 m-1,4 m\} & \text { for }\left(v_{n_{j}}^{(m)}, v_{p_{k}}^{(m)}\right), \forall 1 \leq j \leq n \text { and } 1 \leq k \leq p\end{cases}
$$

Consider m-shadow graph, when $r=\Delta\left(D_{m}\left(T_{n, p}\right)\right), n=4,5,6, \ldots$ and $\forall p$

$$
\varsigma: V\left(D_{m}\left(T_{n, p}\right)\right)= \begin{cases}\{1,2,3,4\} & \text { for }\left(v_{n_{j}}^{\prime}, v_{p_{k}}^{\prime}\right), \forall 1 \leq j \leq n \text { and } 1 \leq k \leq p \\ \{5,6,7,8\} & \text { for }\left(v_{n_{j}}^{\prime \prime}, v_{p_{k}}^{\prime \prime}\right), \forall 1 \leq j \leq n \text { and } 1 \leq k \leq p \\ \{9,10,11,12\} & \text { for }\left(v_{n_{j}}^{\prime \prime \prime}, v_{p_{k}}^{\prime \prime \prime}\right), \forall 1 \leq j \leq n \text { and } 1 \leq k \leq p \\ \vdots & \\ \{4 m-3,4 m-2,4 m-1,4 m\} & \text { for }\left(v_{n_{j}}^{(m)}, v_{p_{k}}^{(m)}\right), \forall 1 \leq j \leq n \text { and } 1 \leq k \leq p\end{cases}
$$

Thus, a minimum of $4 m$ colors is required to satisfy r-adjacency, $\chi_{r}\left(D_{m}\left(T_{n, p}\right)\right) \leq 4 m$. In accordance with Lemma 3.2, we have $\chi_{r}\left(D_{m}\left(T_{n, p}\right)\right) \geq 4 m$, hence $\chi_{r}\left(D_{m}\left(T_{n, p}\right)\right)=4 m$ for $m \geq 3, \Delta\left(D_{m}\left(T_{n, p}\right)\right)-3 \leq r \leq \Delta\left(D_{m}\left(T_{n, p}\right)\right)$, $\forall n>3, p$.

Case 10. $m \geq 3, r=5, n \equiv 1(\bmod 3), \forall n \geq 7, p$.
To ascertain the r-dynamic chromatic number of $D_{m}\left(T_{n, p}\right)$, we have to prove that $\chi_{r}\left(D_{m}\left(T_{n, p}\right)\right) \geq 2 m+2$ and $\chi_{r}\left(D_{m}\left(T_{n, p}\right)\right) \leq 2 m+2$. To prove $\chi_{r}\left(D_{m}\left(T_{n, p}\right)\right) \leq 2 m+2$, let us define a function $\varsigma: V\left(D_{m}\left(T_{n, p}\right)\right) \rightarrow S(\varsigma)$, where $S(\varsigma)=\{1,2,3$, $\ldots, r+2 m+2\}$.

1. Consider $m=3$, when $r=5, n=7,10,13, \ldots$ and $\forall p$

$$
\varsigma: V\left(D_{3}\left(T_{n, p}\right)\right)= \begin{cases}\{1,2,3,4\}\} & \text { for }\left(v_{n_{j}}^{\prime}, v_{p_{k}}^{\prime}\right), \forall 1 \leq j \leq n \text { and } 1 \leq k \leq p \\ \{3,4,5,6\} & \text { for }\left(v_{n_{j}}^{\prime \prime}, v_{p_{k}}^{\prime \prime}\right), \forall 1 \leq j \leq n \text { and } 1 \leq k \leq p \\ \{5,6,7,8\} & \text { for }\left(v_{n_{j}}^{\prime \prime \prime}, v_{p_{k}}^{\prime \prime \prime}\right), \forall 1 \leq j \leq n \text { and } 1 \leq k \leq p\end{cases}
$$

2. Consider m-shadow graph, when $r=5, n=7,10,13, \ldots$ and $\forall p$

$$
\varsigma: V\left(D_{m}\left(T_{n, p}\right)\right)= \begin{cases}\{1,2,3,4\} & \text { for }\left(v_{n_{j}}^{\prime}, v_{p_{k}}^{\prime}\right), \forall 1 \leq j \leq n \text { and } 1 \leq k \leq p \\ \{3,4,5,6\} & \text { for }\left(v_{n_{j}}^{\prime \prime}, v_{p_{k}}^{\prime \prime}\right), \forall 1 \leq j \leq n \text { and } 1 \leq k \leq p \\ \vdots & \\ \{2 m-1,2 m, 2 m+1,2 m+2\} & \text { for }\left(v_{n_{j}}^{(m)}, v_{p_{k}}^{(m)}\right), \forall 1 \leq j \leq n \text { and } 1 \leq k \leq p\end{cases}
$$

Thus, a minimum of $2 m+2$ colors is required to satisfy r-adjacency, $\chi_{r}\left(D_{m}\left(T_{n, p}\right)\right) \leq 2 m+2$. In accordance with Lemma 3.2, we have $\chi_{r}\left(D_{m}\left(T_{n, p}\right)\right) \geq 2 m+2$, hence $\chi_{r}\left(D_{m}\left(T_{n, p}\right)\right)=2 m+2$ for $m \geq 3, r=5, n \equiv 1(\bmod 3), \forall n \geq 7, p$.

Case 11. $r=4, n=5, \forall p, m$.
To ascertain the r-dynamic chromatic number of $D_{m}\left(T_{n, p}\right)$, we have to prove that $\chi_{r}\left(D_{m}\left(T_{n, p}\right)\right) \geq\left\lceil\frac{8(m+3)}{5}\right\rceil$ and $\chi_{r}\left(D_{m}\left(T_{n, p}\right)\right) \leq\left\lceil\frac{8(m+3)}{5}\right\rceil$. To prove $\chi_{r}\left(D_{m}\left(T_{n, p}\right)\right) \leq\left\lceil\frac{8(m+3)}{5}\right\rceil$, let us define a function $\varsigma: V\left(D_{m}\left(T_{n, p}\right)\right) \rightarrow S(\varsigma)$, where $S(\varsigma)=\left\{1,2,3, \ldots,\left\lceil\frac{8(m+3)}{5}\right\rceil\right\}$.

1. Consider $m=2$, when $r=4, n=5, \forall p$

$$
\varsigma: V\left(D_{2}\left(T_{n, p}\right)\right)= \begin{cases}\{1,2,3,4\} & \text { for }\left(v_{n_{j}}^{\prime}, v_{p_{k}}^{\prime}\right), \forall 1 \leq j \leq n \text { and } 1 \leq k \leq p \\ \{5,6,7,8\} & \text { for }\left(v_{n_{j}}^{\prime \prime}, v_{p_{k}}^{\prime \prime}\right), \forall 1 \leq j \leq n \text { and } 1 \leq k \leq p\end{cases}
$$

2. Consider m-shadow graph, when $r=4, n=5, \forall p$

$$
\varsigma: V\left(D_{m}\left(T_{n, p}\right)\right)= \begin{cases}\{1,2,3,4\} & \text { for }\left(v_{n_{j}}^{\prime}, v_{p_{k}}^{\prime}\right), \forall 1 \leq j \leq n \text { and } 1 \leq k \leq p \\ \{5,6,7,8\} & \text { for }\left(v_{n_{j}}^{\prime \prime}, v_{p_{k}}^{\prime \prime}\right), \forall 1 \leq j \leq n \text { and } 1 \leq k \leq p \\ \vdots & \\ \left\{\frac{8 m+9}{5}, \frac{8 m+14}{5}, \frac{8 m+19}{5}, \frac{8 m+24}{5}\right\} & \text { for }\left(v_{n_{j}}^{(m)}, v_{p_{k}}^{(m)}\right), \forall 1 \leq j \leq n \text { and } 1 \leq k \leq p\end{cases}
$$

Thus, on generalizing, a minimum of $\left\lceil\frac{8(m+3)}{5}\right\rceil$ colors is required to satisfy r-adjacency, $\chi_{r}\left(D_{m}\left(T_{n, p}\right)\right) \leq\left\lceil\frac{8(m+3)}{5}\right\rceil$. In accordance with Lemma 3.2, we have $\chi_{r}\left(D_{m}\left(T_{n, p}\right)\right) \geq\left\lceil\frac{8(m+3)}{5}\right\rceil$, hence $\chi_{r}\left(D_{m}\left(T_{n, p}\right)\right)=\left\lceil\frac{8(m+3)}{5}\right\rceil$ for $r=4, n=5$, $\forall p, m$.

4. Concluding remarks

We have studied the r-dynamic chromatic number of the ladder graph and the tadpole graph using the m-shadow operation of graphs. Further, we are working on the r-dynamic coloring of various graphs in the ladder graph family using the block circulant matrix approach. Since obtaining the exact value of the r-dynamic chromatic number is considered a nondeterministic polynomial time-complete problem, solving this problem is still widely open. Therefore, we propose the following open problem:

- Determine the r-dynamic chromatic number of other special graph operations.
- Characterize the existence of r-dynamic coloring of any graph.

Acknowledgments

We would like to express our special thanks and gratitude for the sincere efforts and valuable guidance given by the research teams of PUI-PT Combinatorics and Graph, CGANT, University of Jember, Indonesia.

Conflict of interest

There is no conflict of interest in this study.

References

[1] Montgomery B. Dynamic coloring of graphs. PhD thesis. West Virginia University; 2001. Available from: https:// researchrepository.wvu.edu/cgi/viewcontent.cgi?article=2400\&context=etd.
[2] Aparna V, Mohanapriya N. r-dynamic chromatic number of extended neighborhood corona of complete graph with some graphs. In: International Conference on Mathematical Modelling and Computational Intelligence Techniques. Singapore: Springer; 2021. p.235-254. Available from: https://doi.org/10.1007/978-981-16-6018-4_15.
[3] Dafik, Meganingtyas DEW, Purnomo KD, Tarmidzi MD, Agustin IH. Several classes of graphs and their r-dynamic chromatic numbers. Journal of Physics: Conference Series. 2017; 855: 012011. Available from: https://doi. org/10.1088/1742-6596/855/1/012011.
[4] Jahanbekam S, Kim J, Suil O, West DB. On r-dynamic coloring of graphs. Discrete Applied Mathematics. 2016; 206: 65-72. Available from: https://doi.org/10.1016/j.dam.2016.01.016.
[5] Kristiana AI, Nandini G, Venkatachalam M, Utoyo MI, Gowri S. On r-dynamic coloring of the family of tadpole graphs. Ars Combinatoria. 2020; 148: 109-122.
[6] Lai HJ, Montgomery B, Poon H. Upper bounds of dynamic chromatic number. ARS Combinatoria. 2003; 68: 193201.
[7] Kristiana AI, Utoyo MI, Dafik, Alfarisi R, Waluyo E. On the r-dynamic chromatic number of corona product of star graph. Thai Journal of Mathematics. 2022; 20: 1389-1397.
[8] Riba'Ah RZ, Dafik, Kristiana AI, Maylisa IN, Slamin. On the r-dynamic chromatic number of subdivision of wheel graph. Journal of Physics: Conference Series. 2022; 2157: 012016. Available from: https://doi.org/10.1088/17426596/2157/1/012016.
[9] Nandini G, Venkatachalam M, Dafik. On r-dynamic coloring of para-line graph of some standard graphs. Palestine Journal of Mathematics. 2021; 10: 12-22.
[10] Gomathi CS, Mohanapriya N, Kristina AI, Dafik. On r-dynamic vertex coloring of some flower graph families. Discrete Mathematics, Algorithms and Applications. 2022; 14(1): 2150097. Available from: https://doi.org/10.1142/ S179383092150097X.
[11] Mohanapriya N, Kalaiselvi K, Aparna V, Dafik, Agustin IH. On r-dynamic coloring of central vertex join of path, cycle with certain graphs. Journal of Physics: Conference Series. 2022; 2157: 012007. Available from: https://doi. org/10.1088/1742-6596/2157/1/012007.
[12] Manjula T, Rajeswari R. Dominator chromatic number of m-splitting graph and m-shadow graph of path graph. International Journal of Biomedical Engineering and Technology. 2018; 27(1-2): 100-113. Available from: https:// doi.org/10.1504/IJBET.2018.093089.
[13] Vaidya SK, Popat KM. Energy of m-splitting and m-shadow graphs. Far East Journal of Mathematical Sciences. 2017; 102(8): 1571-1578. Available from: http://dx.doi.org/10.17654/MS102081571.

[^0]: Copyright ©2024 Dafik, et al.
 DOI: https://doi.org/10.37256/cm. 5120242624
 This is an open-access article distributed under a CC BY license
 (Creative Commons Attribution 4.0 International License)
 https://creativecommons.org/licenses/by/4.0/

