Research Article

On *r*-dynamic Coloring of Ladder Graph and Tadpole Graph Using *m*-shadow Operation

I. H. Agustin^{1,2}, A. Irin Feno³, K. Abirami³, M. Venkatachalam³, Dafik^{1,4*}, N. Mohanapriya³

¹PUI-PT Combinatorics and Graph, CGANT University of Jember, Indonesia

²Department of Mathematics, University of Jember, Jember, Indonesia

³PG and Research Department of Mathematics, Kongunadu Arts and Science College, Coimbatore-641 029, Tamil Nadu, India ⁴Department of Mathematics Education, University of Jember, Jember, Indonesia

Email: md.dafik@unej.ac.id

Received: 7 March 2023; Revised: 29 May 2023; Accepted: 27 June 2023

Abstract: An *r*-dynamic coloring is a proper *k*-coloring of a graph $G = \{V, E\}$ such that the neighbors of every vertex $v \in V(G)$ are colored using $\varsigma: V(G) \to S(c)$ where S(c) is a set of colors. The coloring is made in such a way that it satisfies the conditions: (i) For any edge $uv \in E(G)$ the color of *u* and color of *v* are distinct and (ii) the cardinality of coloring the neighbors of any vertex *v* should be greater than or equal to min $\{r, d(v_G)\}$, where $d(v_G)$ is the degree of the vertex *v*. In this paper, the lower bounds for the *r*-dynamic coloring of the *m*-shadow graph of the ladder graph $D_m(L_n)$ and the tadpole graph $D_m(T_{n,p})$ are attained. Using the lower bounds, the exact solution of the *r*-dynamic chromatic number of the ladder graph L_n and tadpole graph $T_{n,p}$ by the *m*-shadow operation is obtained.

Keywords: r-dynamic coloring, *m*-shadow graph, ladder graph, tadpole graph

MSC: 05C15

1. Introduction

The graphs used in this paper are simple and finite. Let *G* be a simple graph that is connected and undirected. The other typical notations used here are V(G) and (G), which are the vertices and edges of *G*, respectively. The minimum degree of *G* is $\delta(G)$, and the maximum degree is $\Delta(G)$. For any $v \in V$, N(v) denotes the neighborhood vertex of *v* that is adjacent to *v*. The concept of dynamic chromatic number was first introduced by Montgomery [1], and the study of *r*-dynamic coloring is an extension of dynamic coloring, so one of the obvious results that holds is $\chi(G) \leq \chi_r(G) \leq \chi_{r+1}(G)$. An *r*-dynamic coloring of *G* is a mapping of ς from V(G) to the set of colors S(c) such that the following conditions hold:

- 1. For any $uv \in E(G), \zeta(u) \neq \zeta(v)$.
- 2. $|\varsigma(N(v))| \ge \min\{r, d(v_G)\}\)$, where $d(v_G)$ is the degree of v and r is a positive integer.

When r = 1, the 1-dynamic chromatic number of G is equal to its chromatic number. When r = 2, the 2-dynamic chromatic number of G is the result of the dynamic chromatic number. The r values are extended up to the maximum degree $\Delta(G)$. The r-dynamic chromatic number remains the same even after r values exceed $\Delta(G)$. Some of the

Copyright ©2024 Dafik, et al.

DOI: https://doi.org/10.37256/cm.5120242624

This is an open-access article distributed under a CC BY license (Creative Commons Attribution 4.0 International License)

https://creativecommons.org/licenses/by/4.0/

following observations were proposed by Montgomery [1] on *r*-dynamic chromatic number, and some of the bounds are studied from [2-8]. Nandini et al. [9] have studied the r-dynamic coloring of para-line graph of some standard graphs. In [10], there are five theorems studied, including the graph of a flower graph $C(F_n)$, the line graph of a flower graph $L(F_n)$, the subdivision graph of a flower graph $S(F_n)$, the para-line graph of a flower graph $L[S(F_n)]$, and the splitting graph of a flower graph $S[F_n]$. In [11], there are six theorems studied, including the central vertex join of path graph P_m with cycle graph C_n , the central vertex join of cycle graph C_m with path graph P_n , the central vertex join of cycle graph C_3 with path graph in P_n , the central vertex join of cycle graph C_m with complete graph K_n , the central vertex join of cycle graph C_3 with complete graph K_n , and the central vertex join of cycle graph C_m with cycle graph C_m with cycle graph C_n . In this paper, we determined the *r*-dynamic chromatic number of the ladder graph and the tadpole graph using the *m*-shadow operation.

2. Preliminaries

In this section, the basic definitions and preliminary lemmas that are used in the next sections are given. A graph G is a pair (V(G), E(G)), where V(G) denotes the vertex set and E(G) denotes the edge set. If G has the same end vertices, it is called a loop, and an undirected, loopless graph is said to be a simple graph. A graph G is finite if its order and size are finite. In a graph G, the minimum degree $\delta(G)$ is the minimum number of edges that are incident from any vertex $v \in V$, and the maximum degree $\Delta(G)$ is the maximum number of edges that are incident from any vertex $v \in V$.

Definition 2.1. The shadow graph $D_2(G)$ of a simple connected graph G is obtained by taking two copies of G, i.e., G' and G'', and joining each vertex u' in G' to the neighbors of the corresponding vertex u'' in G''.

Definition 2.2. [12, 13] A *m*-shadow graph of *G* denoted by $D_m(G)$ is a graph obtained by taking *m*-copies of *G*, i.e., *G'*, *G''*, *G'''*, ..., *G*^(m) and then joining each vertex $u^i \in G^i$, $i \in [1, m-1]$ to all the neighbors of the corresponding vertex $v^i \in G^{i+1}$, G^{i+2} , ..., $G^{(m)}$, $i < j \le m$.

Definition 2.3. The ladder graph is a planar undirected graph that is the Cartesian product of two path graphs and is denoted by $L_n = P_n \times P_2$. In other words, a ladder graph is obtained by taking two copies of a path graph of the same order whose corresponding vertices are connected by an edge.

Definition 2.4. The tadpole graph is a special type of graph consisting of a cycle C_n of at least $n \ge 3$ vertices and a path P_p with p vertices connected by a bridge. It is denoted by $T_{n,p}$.

Lemma 2.1. Let G be a finite, connected graph, then the following condition holds:

- 1. $\chi_r(G) \leq \chi_{r+1}(G)$
- 2. $\chi_r(G) \ge \min\{r, \Delta(G)\} + 1$
- 3. $\chi_r(G) = \chi_1(G) \le \chi_2(G) \le \ldots \le \chi_{\Delta(G)}(G)$
- 4. At $r \ge \Delta(G)$, then $\chi_r(G) = \chi_{\Delta(G)}(G)$

3. Results

Lemma 3.1. For a ladder graph L_n , the lower bound for the *r*-dynamic chromatic number of the *m*-shadow graph of the ladder graph $D_m(L_n)$ is

$$\chi_r(D_m(L_n)) \ge 2r$$
, for $1 \le r \le \Delta(D_m(L_n)), \forall m, n$.

Proof. Let $V(D_m(L_n)) = \{v'_j, v''_j, ..., v^m_j : 1 \le j \le 2n\}$ be the vertex set and $E(D_m(L_n)) = \{\{v^a_{2j-1}v^x_{2j+1}, v^a_{2j}v^x_{2j+2} : 1 \le a \le m; a \le x \le m; 1 \le j \le n-1\} \cup \{v^a_j v^x_{j+1} : 1 \le a \le m; a \le x \le m; j = 1,3,5,...,2n-1\}\}$ be the edge set whose corresponding cardinalities are $|V(D_m(L_n))| = 2mn$ and $|E(D_m(L_n))| = m^2(3n-2)$, respectively. The vertex v'_j is adjacent to $v^w_k, v^w_k, ..., v^w_k$ only where $v''_j, v^w_j, ..., v^m_j$ is adjacent.

The minimum degree is
$$\delta(D_m(L_n)) = \begin{cases} mn & \text{for } n = 1,2\\ 2m & \text{for } n \ge 3 \end{cases}$$

Volume 5 Issue 1|2024| 827

the maximum degree is
$$\Delta(D_m(L_n)) = \begin{cases} mn & \text{for } n = 1,2\\ 3m & \text{for } n \ge 3. \end{cases}$$

For n = 1, 2, the value of *r* varies from $1 \le r \le mn$, and for $n \ge 3$, the value of *r* varies from $1 \le r \le 3m$, and hence the result remains same. Let *L* be a simple, connected graph. By the definition of a *m*-shadow graph, every $v_j^i (1 \le j \le 2n)$ vertex in the *i*th copy of *L* is adjacent to $v_l^{i+1}, v_l^{i+2}, \dots, v_l^{(m)}$ of all $i + 1, i + 2, \dots, m$ th copies of *L*, wherever v_j^i are adjacent. In order to prove the lemma, we consider two cases.

Case 1. $1 \le r \le mn, \forall n = 1, 2.$

First, consider r = 1. Assign the colors 1, 2 to all the vertices of *m*-copies of L_n . For instance, assign the color class 1 to $v'_j, v''_j, \dots, v^{(m)}_j$ and color class 2 to $v'_j, v''_j, \dots, v^{(m)}_j$ for j = even. The 1-dynamic coloring of $D_m(L_n)$ results as the same as the chromatic number of L_n .

Next, consider r = 2. For a vertex v'_j , where $1 \le j \le 2n$, the maximum degree is four. Assign a color (say, ς_1) to v'_j , so that two adjacent vertices of v'_j , are colored with ς_2 , and the other two adjacent vertices are colored with ς_3 . For instance, if v'_{2k-1} where $1 \le k \le n$ are colored with ς_1 , whose two adjacent vertices v'_{2k} and v''_{2k} are colored with ς_2 and ς_3 . Now, to satisfy *r*-adjacency v''_{2k-1} , it requires a new color, ς_4 . Similarly, when $3 \le r \le mn - 1$, each odd copy of $D_m(L_n)$ receives r - 1 colors, and each even copy of $D_m(L_n)$ receives r + 1 new colors. Therefore, it shows a total of 2r colors are required.

Finally, when r = mn, we assign a new color to each vertex in order to achieve *r*-adjacency. Since there are 2mn vertices in $D_m(L_n)$ and r = mn, it is clearly seen that 2r colors are required to satisfy the *r*-dynamic coloring.

Figure 1. $(D_m(L_4))$ -*m*-shadow graph of ladder graph L_4

Case 2. $1 \le r \le 3m, \forall n \ge 3$.

In the case of r = 1, the 1-dynamic coloring of $D_m(L_n)$ is the same as the chromatic number of L_n , and thus the proof holds. When r = 2, odd and even copies of $D_m(L_n)$ each receive r new colors, and for $3 \le r \le 3m - 1$, each odd copy of $D_m(L_n)$ receives r - 1 colors, and each even copy of $D_m(L_n)$ receives r + 1 new colors. Therefore, it shows a total of 2r colors are required.

Further, consider the maximum degree, r = 3m, for which we assign the colors 1, 2, …, 3m to the (2j - 1)th copies of $D_m(L_n), 1 \le j \le \left\lceil \frac{m}{2} \right\rceil$ and the colors $3m + 1, 3m + 2, \dots, 6m$ to the (2*j*)th copies of $D_m(L_n), 1 \le j \le \left\lceil \frac{m}{2} \right\rceil$, showing that 2r colors are required to satisfy *r*-adjacency.

Theorem 3.1. Let $r, n \ge 1$ and $m \ge 2$ be any positive integers, then the *r*-dynamic chromatic number of *m*-shadow graph of ladder graph $D_m(L_n)$ is

Contemporary Mathematics

and

$$\chi_r(D_m(L_n)) = 2r$$
 for $1 \le r \le \Delta(D_m(L_n))$.

Proof. To ascertain the *r*-dynamic chromatic number of $D_m(L_n)$, we have to prove that, $\chi_r(D_m(L_n)) \ge 2r$ and $\chi_r(D_m(L_n)) \le 2r$. In accordance with Lemma 3.1, we have $\chi_r(D_m(L_n)) \ge 2r$. So, it completes the proof of lower bound. Then, we have to prove the upper bound. To prove $\chi r(D_m(L_n)) \le 2r$, we divide into some cases and consider a function $\varsigma : V(D_m(L_n)) \to S(\varsigma)$, where $S(\varsigma) = \{1, 2, 3, ..., 2r\}$.

1. Consider m = 2.

When r = 1 and $\forall n$, the *r*-dynamic chromatic number is given by,

$$\varsigma(v'_j) = \varsigma(v''_j) = \{1, 2\} : \forall 1 \le j \le 2n.$$

Therefore, the minimum number of colors required is 2. When $r = \Delta(D_2(L_n))$, the *r*-dynamic chromatic number is given by, for n = 1, $r = \Delta(D_2(L_1)) = 2$

$$\varsigma: V(D_2(L_1)) = \begin{cases} \{1,2\} & \text{for } v'_j, \forall 1 \le j \le 2n \\ \{3,4\} & \text{for } v''_j, \forall 1 \le j \le 2n \end{cases}$$

Therefore, the minimum number of colors required is 4. For n = 2, $r = \Delta(D_2(L_2)) = 4$

$$\varsigma: V(D_2(L_2)) = \begin{cases} \{1, 2, 3, 4\} & \text{for } v'_j, \forall 1 \le j \le 2n \\ \{5, 6, 7, 8\} & \text{for } v''_j, \forall 1 \le j \le 2n \end{cases}$$

Therefore, the minimum number of colors required is 8. For $n \ge 3$, $r = \Delta(D_2(L_n)) = 6$

$$\varsigma: V(D_2(L_n)) = \begin{cases} \{1, 2, 3, 4, 5, 6\} & \text{for } v'_j, \forall 1 \le j \le 2n \\ \{7, 8, 9, 10, 11, 12\} & \text{for } v''_j, \forall 1 \le j \le 2n \end{cases}$$

Therefore, the minimum number of colors required is 12.

2. Consider m = 3.

When r = 1 and $\forall n$, the *r*-dynamic chromatic number is given by,

$$\zeta(v'_j) = \zeta(v''_j) = \zeta(v'''_j) = \{1,2\}: \forall \ 1 \le j \le 2n$$

Therefore, the minimum number of colors required is 2. When $r = \Delta(D_3(L_n))$, the *r*-dynamic chromatic number is given by, for n = 1, $r = \Delta(D_3(L_1)) = 3$

$$\boldsymbol{\varsigma}: \boldsymbol{V}(\boldsymbol{D}_3(\boldsymbol{L}_1)) = \begin{cases} \{1,2\} & \text{for } \boldsymbol{v}_j', \forall 1 \le j \le 2n \\ \{3,4\} & \text{for } \boldsymbol{v}_j'', \forall 1 \le j \le 2n \\ \{5,6\} & \text{for } \boldsymbol{v}_j''', \forall 1 \le j \le 2n \end{cases}$$

Therefore, the minimum number of colors required is 6. For n = 2, $r = \Delta(D_3(L_2)) = 6$

$$\varsigma: V(D_3(L_2)) = \begin{cases} \{1, 2, 3, 4\} & \text{for } v'_j, \forall 1 \le j \le 2n \\ \{5, 6, 7, 8\} & \text{for } v''_j, \forall 1 \le j \le 2n \\ \{9, 10, 11, 12\} & \text{for } v''_j, \forall 1 \le j \le 2n \end{cases}$$

Therefore, the minimum number of colors required is 12. For $n \ge 3$, $r = \Delta(D_3(L_n)) = 9$

$$\varsigma: V(D_3(L_n)) = \begin{cases} \{1, 2, 3, 4, 5, 6\} & \text{for } v'_j, \forall 1 \le j \le 2n \\ \{7, 8, 9, 10, 11, 12\} & \text{for } v''_j, \forall 1 \le j \le 2n \\ \{13, 14, 15, 16, 17, 18\} & \text{for } v'''_j, \forall 1 \le j \le 2n \end{cases}$$

Therefore, the minimum number of colors required is 18.

3. For *m*-shadow graph, when r = 1 and $\forall n$, the *r*-dynamic chromatic number is given by,

$$\zeta(v'_i) = \zeta(v''_i) = \dots = \zeta(v^{(m)}_i) = \{1, 2\} : \forall 1 \le j \le 2n.$$

Therefore, the minimum number of colors required is 2. When $r = \Delta(D_m(L_n))$, the *r*-dynamic chromatic number is given by, for n = 1, $r = \Delta(D_m(L_1)) = m$

$$\varsigma: V(D_m(L_n)) = \begin{cases} \{1, 2\} & \text{for } (v'_j), \forall 1 \le j \le 2n \\ \{3, 4\} & \text{for } (v''_j), \forall 1 \le j \le 2n \\ \vdots \\ \{2m - 1, 2m\} & \text{for } v_j^{(m)}, \forall 1 \le j \le 2n \end{cases}$$

Since r = m, the minimum number of colors required is 2r. For n = 2, $r = \Delta(D_m(L_2)) = 2m$

$$\varsigma: V(D_m(L_2)) = \begin{cases} \{1, 2, 3, 4\} & \text{for } (v'_j), \forall 1 \le j \le 2n \\ \{5, 6, 7, 8\} & \text{for } (v''_j), \forall 1 \le j \le 2n \\ \vdots \\ \{4m - 3, 4m - 2, 4m - 1, 4m\} & \text{for } v_j^{(m)}, \forall 1 \le j \le 2n \end{cases}$$

Since r = 2m, the minimum number of colors required is 2r. For $n \ge 3$, $r = \Delta(D_m(L_n)) = 3m$

$$\varsigma: V(D_m(L_n)) = \begin{cases} \{1, 2, 3, 4, 5, 6\} & \text{for } (v'_j), \forall 1 \le j \le 2n \\ \{7, 8, 9, 10, 11, 12\} & \text{for } (v''_j), \forall 1 \le j \le 2n \\ \vdots \\ \{6m - 5, 6m - 4, 6m - 3, 6m - 2, 6m - 1, 6m\} & \text{for } v_j^{(m)}, \forall 1 \le j \le 2n \end{cases}$$

Since r = 3m, the minimum number of colors required is 2r.

Thus, $\chi_r(D_m(L_n)) \leq 2r$. In accordance with Lemma 3.1, we have $\chi_r(D_m(L_n)) \geq 2r$.

Hence, $\chi_r(D_m(L_n)) = 2r$ for $1 \le r \le \Delta(D_m(L_n))$.

Lemma 3.2. For a tadpole graph $T_{n,p}$, the lower bound for the *r*-dynamic chromatic number of the *m*-shadow graph of the tadpole graph $D_m(T_{n,p})$ is

$$\chi_r(D_m(T_{n,n})) \ge \min\{r+2, r+m\}$$

 $\begin{aligned} Proof. \ \text{Let } V(D_m(T_{n,p})) &= \{v'_{nj}, v''_{nj}, \cdots, v'^{(m)}_{n_j}, v'_{p_k}, v''_{p_k}, \cdots, v^{(m)}_{p_k}: 1 \leq j \leq n \ \text{and} \ 1 \leq k \leq p\} \ \text{be the vertex set and} \ E(D_m(T_{n,p})) \\ &= \{\{v^a_{n_j}v^x_{n_{j+1}}, v^a_{p_k}v^x_{p_{k+1}}: 1 \leq a \leq m; a \leq x \leq m; 1 \leq j \leq n-1; 1 \leq k \leq p-1\} \cup \{v^a_{n_l}v^x_{n_j}, v^a_{n_l}v^x_{p_k}: 1 \leq a \leq m; a \leq x \leq m; j=n; k=p\}\} \ \text{be the edge set whose corresponding cardinalities are} \ |V(D_m(T_{n,p}))| = m(n+p) \ \text{and} \ |E(D_m(T_{n,p}))| = m^2(n+p), \\ \text{respectively. The vertex } v'_j \ \text{are adjacent to} \ v''_k, v'''_k, \dots, v^{(m)}_k \ \text{only where} \ v''_j, v'''_j, \dots, v^m_j \ \text{are adjacent. The minimum degree is} \\ \delta(D_m(T_{n,p})) &= m \ \text{and the maximum degree is} \ \Delta(D_m(T_{n,p})) = 3m. \end{aligned}$

Let *T* be an undirected simple connected graph. By the definition of *m*-shadow graph, every $v_{n_j}^i, v_{p_k}^i$ (for $1 \le j \le n$ and $1 \le k \le p$) vertex in the *i*th copy of *T* is adjacent to $v_{n_l}^{i+1}, v_{n_l}^{i+2}, \dots, v_{n_l}^{(m)}, v_{p_q}^{i+1}, v_{p_q}^{i+2}, \dots, v_{p_q}^{(m)}$ of all $i+1, i+2, \dots, m$ th copies

of *T*, wherever $v_{n_i}^i, v_{p_k}^i$ are adjacent.

For all *m*-copies of $T_{n,p}$, when *r* lies in the range, $1 \le r \le m - 1$, the minimum number of colors required to satisfy *r*-adjacency are r + 2, whereas for $m \le r \le \Delta((D_m(T_{n,p}))))$, minimum of r + m colors are required. Considering the *r*-dynamic coloring condition, we take $\min\{r+2, r+m\}$ to be the lower bound for $D_m(T_{n,p})$.

Figure 2. $(D_3(T_{3,2}))$ -*m*-shadow graph of tadpole graph $T_{3,2}$

For example, when $m \ge 2$ and r = 2, we have min $\{4, 2 + m\}$ to be 4.

- (i) When *n* is odd and for all *p*, assign the colors (say) $\zeta_1, \zeta_2, \zeta_3$ to the vertices $v'_{nj}, v''_{nj}, \dots, v^{(m-1)}_{n_i}$ and $v'_{p_k}, v''_{p_k}, \dots, v^{(m-1)}_{p_k}$.
- (ii) When n is even and for all p, to achieve proper coloring and satisfy 2-dynamic coloring, assign the colors ζ₁ and ζ₂ to the vertices vⁿ_{nj}, vⁱⁿ_{nj}, ···, v^(m)_{nj}, v^{iv}_{pk}, v^m_{pk}, ···, v^(m-1)_{pk}, (1 ≤ j ≤ n) and (1 ≤ k ≤ p).
 (ii) When n is even and for all p, to achieve proper coloring and satisfy 2-dynamic coloring, assign the colors ζ₁ and ζ₂ to the vertices vⁱⁿ_{nj}, vⁱⁿ_{nj}, ···, v^(m-1)_{nj}, vⁱⁿ_{pk}, v^m_{pk}, ···, v^(m-1)_{pk}, v^m_{pk}, ···, v^(m-1)_{pk}, v^m_{pk}, ···, v^(m-1)_{pk}, v^m_{pk}, ···, v^(m-1)_{pk}, and colors ζ₃ and ζ₄ to the vertices vⁿ_{nj}, vⁱⁿ_{nj}, ···, v^(m)_{nj}, vⁱⁿ_{pk}, v^m_{pk}, ···, v^(m)_{pk}, v^m_{pk}, ···, v^(m)_{pk}, vⁱⁿ_{pk}, ···, v^(m)_{pk}, ···

Theorem 3.2. Let $r, m \ge 2, n \ge 3$, and $p \ge 1$ be any positive integers. Then, the *r*-dynamic chromatic number of the *m*-shadow graph of the tadpole graph $D_m(T_{n,p})$ is

$$\chi_r(D_m(T_{n,p})) = \begin{cases} 3 & r = 1, n = 1 \pmod{2}, \forall p, m \\ 7 & r = 4, n = 1 \pmod{3}, \forall p, m \\ r = 5, n = 1 \pmod{3}, \forall n \ge 7, p \text{ and } m = 2 \\ 8 & r = \Delta(D_m(T_{n,p})), n = 1 \pmod{3}, \forall n \ge 8, p \text{ and } m = 2 \\ r = \Delta(D_m(T_{n,p})), n = 2 \pmod{3}, \forall n \ge 8, p \text{ and } m = 2 \\ 10 & r = \Delta(D_m(T_{n,p})), n = 5, \forall p, m = 2 \\ 2r & r = 1, n = 0 \pmod{2}, \forall p, m \\ r = 2, \forall n, p \text{ and } m \\ r = 4, n = 4 \text{ and } n = 2 \pmod{3}, \forall p, m \\ r + m & r = 3, n = 1 \pmod{3}, \forall m, n \ge 7 \text{ and } p = 1, 2 \text{ and } p = 1, 2 \pmod{3} \\ \gamma = 3, n = 2 \pmod{3}, \forall p, m \\ 3 \le r \le \Delta(D_m(T_{n,p})), n = 0 \pmod{3}, \forall p, m = 2 \\ 3 \le r \le \Delta(D_m(T_{n,p})) - 4, n = 0 \pmod{3}, \forall p, m \ge 3 \\ r + m + 1 & r = 3, n = 4, \forall p, m \\ r = 3, n = 1 \pmod{3}, \forall n \ge 7, p = 0 \pmod{3}, m \\ r + m + 2 & r = 5, n = 5, \forall p, m \\ 4m & \Delta(D_m(T_{n,p})) - 3 \le r \le \Delta(D_m(T_{n,p})), \forall n > 3, p, m \ge 3 \\ 2(m+1) & r = 5, n = 1 \pmod{3}, \forall n \ge 7, p, m \ge 3 \\ \left\lceil \frac{8(m+3)}{5} \right\rceil \quad r = 5, n = 4, \forall p, m \\ \rceil$$

Proof. To ascertain the *r*-dynamic chromatic number of $D_m(T_{n,p})$, we have to prove the theorem and divide it into some cases.

Case 1. $r = 1, n \equiv 1 \pmod{2}, \forall p, m$.

To ascertain the *r*-dynamic chromatic number of $D_m(T_{n,p})$, we have to prove that $\chi_r(D_m(T_{n,p})) \ge 3$ and $\chi_r(D_m(T_{n,p})) \le 3$. 3. In accordance with Lemma 3.2, we have $\chi_r(D_m(T_{n,p})) \ge 3$. So, it completes the proof of lower bound. Then, we have to prove the upper bound. To prove $\chi_r(D_m(T_{n,p})) \le 3$, let us define a function $\varsigma : V(D_m(T_{n,p})) \to S(\varsigma)$, where $S(\varsigma) = \{1, 2, 3\}$.

For this case, we divide into two subcases, namely Subcase 1 and Subcase 2.

Subcase 1. $r = 1, n \equiv 1 \pmod{2}, p \equiv 1 \pmod{2}$

$$\varsigma: V(D_m(T_{n,p})) = \begin{cases} \varsigma_1 & v'_{n_{j=2(mod_3)}}, v''_{n_{j=2(mod_3)}}, \cdots, v^{(m)}_{n_{j=2(mod_3)}}, \forall 1 \le j \le n \\ & v'_{pk=odd}, v''_{pk=odd}, \cdots, v^{(m)}_{pk=odd}, \forall k \text{ is odd} \\ \varsigma_2 & v'_{n_{j=1(mod_3)}}, v''_{n_{j=1(mod_3)}}, \cdots, v^{(m)}_{n_{j=1(mod_3)}}, \forall 1 \le j \le n \\ & v'_{pk=even}, v''_{pk=even}, \cdots, v^{(m)}_{pk=even}, \forall k \text{ is even} \\ \varsigma_3 & v'_{n_{j=0(mod_3)}}, v''_{n_{j=0(mod_3)}}, \cdots, v^{(m)}_{n_{j=0(mod_3)}}, \forall 1 \le j \le n \end{cases}$$

Subcase 2. $r = 1, n \equiv 1 \pmod{2}, p \equiv 0 \pmod{2}$

$$\varsigma: V(D_m(T_{n,p})) = \begin{cases} \varsigma_1 & v'_{n_{j=1}(mod_3)}, v''_{n_{j=1}(mod_3)}, \cdots, v^{(m)}_{n_{j=1}(mod_3)}, \forall l \le j \le n \\ & v'_{pk=odd}, v''_{pk=odd}, \cdots, v^{(m)}_{pk=odd}, \forall k \text{ is odd} \\ \varsigma_2 & v'_{n_{j=2}(mod_3)}, v''_{n_{j=2}(mod_3)}, \cdots, v^{(m)}_{n_{j=2}(mod_3)}, \forall l \le j \le n \\ & v'_{pk=even}, v''_{pk=even}, \cdots, v^{(m)}_{pk=even}, \forall k \text{ is even} \\ \varsigma_3 & v'_{n_{j=0}(mod_3)}, v''_{n_{j=0}(mod_3)}, \cdots, v^{(m)}_{n_{j=0}(mod_3)}, \forall l \le j \le n \end{cases}$$

Based on the lower bound and the upper bound, we have $3 \le (D_m(T_{n,p})) \le 3$. Now, it is easy to establish the *r*-adjacency, hence $\chi_r(D_m(T_{n,p}))$ for r = 1, $n \equiv 1 \pmod{2}$, $\forall p, m$.

Case 2. For $4 \le r \le 5$, $n \equiv 1 \pmod{3}$, $\forall p, m$.

To ascertain the *r*-dynamic chromatic number of $(D_m(T_{n,p}))$, we have to prove that $\chi_r(D_m(T_{n,p})) \ge 7$ and $\chi_r(D_m(T_{n,p})) \le 7$. In accordance with Lemma 3.2, we have $\chi_r(D_m(T_{n,p})) \ge 7$. So, it completes the proof of lower bound. Then, we have to prove the upper bound. To prove $\chi_r(D_m(T_{n,p})) \le 7$, let us define a function $\varsigma: V(D_m(T_{n,p})) \to S(\varsigma)$, where $S(\varsigma) = \{1, 2, 3, ..., 7\}$. For this case, we divide into two subcases, namely Subcase 3 and Subcase 4.

Subcase 3. $r = 4, n \equiv 1 \pmod{3}, \forall n \ge 7, p, m$.

Consider m = 2 when r = 4, n = 7, 10, 13, ... and $\forall p$

$$\varsigma: V(D_2(T_{n,p})) = \begin{cases} \{1,2,3\} & \text{for } v'_{n_j}, v'_{p_k}, \forall 1 \le j \le n \text{ and } 1 \le k \le p \\ \{4,5,6,7\} & \text{for } v''_{n_j}, v''_{p_k}, \forall 1 \le j \le n \text{ and } 1 \le k \le p. \end{cases}$$

Consider *m*-shadow graph when r = 4, n = 7, 10, 13, ... and $\forall p$

$$\varsigma: V(D_m(T_{n,p})) = \begin{cases} \{1, 2, 3, 4\} & \text{for } \left(v'_{n_j}, v'_{p_k}\right), \left(v''_{n_j}, v''_{p_k}\right), \cdots, \left(v^{(m-1)}_{n_j}\right), \forall \le j \le n \\ & \text{and } 1 \le k \le p \\ \\ \{4, 5, 6, 7\} & \text{for } \left(v''_{n_j}, v''_{p_k}\right), \left(v^{iv}_{n_j}, v^{iv}_{p_k}\right), \cdots, \left(v^{(m)}_{n_j}, v^{(m)}_{p_k}\right), \forall \le j \le n \\ & \text{and } 1 \le k \le p. \end{cases}$$

Subcase 4. r = 5, $n \equiv 1 \pmod{3}$, $\forall n \ge 7$, p,m. Consider m = 2 when r = 5, n = 7, 10, 13, ... and $\forall p$

$$\varsigma: V(D_2(T_{n,p})) = \begin{cases} \{1, 2, 3, 4\} & \text{ for } \left(v'_{n_j}, v'_{p_k}\right), \forall 1 \le j \le n \text{ and } 1 \le k \le p \\ \{4, 5, 6, 7\} & \text{ for } \left(v''_{n_j}, v''_{p_k}\right), \forall 1 \le j \le n \text{ and } 1 \le k \le p \end{cases}$$

Consider *m*-shadow graph when r = 4, n = 7, 10, 13, ... and $\forall p$

$$\varsigma: V(D_m(T_{n,p})) = \begin{cases} \{1,2,3,4\} & \text{for } \left(v'_{n_j},v'_{p_k}\right), \left(v'''_{n_j},v'''_{p_k}\right), \cdots, \left(v^{(m-1)}_{n_j}\right), \forall \le j \le n \\ & \text{and } 1 \le k \le p \\ \{4,5,6,7\} & \text{for } \left(v''_{n_j},v''_{p_k}\right), \left(v^{iv}_{n_j},v^{iv}_{p_k}\right), \cdots, \left(v^{(m)}_{n_j},v^{(m)}_{p_k}\right), \forall \le j \le n \\ & \text{and } 1 \le k \le p. \end{cases}$$

Based on Subcases 3 and 4, a minimum of seven colors is required to satisfy *r*-adjacency, $\chi_r(D_m(T_{n,p})) \leq 7$. In accordance with the lower bound and the upper bound, we have $7 \leq \chi_r(D_m(T_{n,p})) \leq 7$. Now, it is easy to establish the *r*-adjacency, hence $\chi_r(D_m(T_{n,p})) = 7$ for $4 \leq r \leq 5$, $n \equiv 1 \pmod{3}$, $\forall p, m$.

Case 3. $r = \Delta(D_m(T_{n,p})), n \equiv 1 \pmod{3}, \forall p, m = 2 \text{ and } r = \Delta(D_m(T_{n,p})), n \equiv 2 \pmod{3}, \forall n \ge 8, \forall p, m = 2.$

In accordance with Lemma 3.2, we have $\chi_r(D_m(T_{n,p})) \ge 8$. So, it completes the proof of lower bound. Then, we have to prove the upper bound. To prove $\chi_r(D_m(T_{n,p})) \le 8$, let us define a function ς : $V(D_m(T_{n,p})) \to S(\varsigma)$, where $S(\varsigma) = \{1, 2, 3, ..., 8\}$. For this case, we divide into two subcases, namely Subcase 5 and Subcase 6.

Subcase 5. m = 2, $r = \Delta(D_m(T_{n,p}))$, $n \equiv 1 \pmod{3}$, $\forall p$.

When $m = 2, r = 6, n = 4, 7, 10, ..., and \forall p$.

$$\varsigma: V(D_2(T_{n,p})) = \begin{cases} \{1,2,3,4\} & \text{for } (v'_{n_j},v'_{p_k}), \forall 1 \le j \le n \text{ and } 1 \le k \le p \\ \{5,6,7,8\} & \text{for } (v''_{n_j},v''_{p_k}), \forall 1 \le j \le n \text{ and } 1 \le k \le p \end{cases}$$

Volume 5 Issue 1|2024| 833

Subcase 6. $m = 2, r = \Delta(D_2(T_{n,p})), n \equiv 2 \pmod{3}, \forall n \ge 8, p.$ When $m = 2, r = 6, n = 8, 11, 14, \dots$ and $\forall p.$

$$\varsigma: V(D_2(T_{n,p})) = \begin{cases} \{1, 2, 3, 4\} & \text{for } (v'_{n_j}, v'_{p_k}), \forall 1 \le j \le n \text{ and } 1 \le k \le p \\ \{5, 6, 7, 8\} & \text{for } (v''_{n_j}, v''_{p_k}), \forall 1 \le j \le n \text{ and } 1 \le k \le p \end{cases}$$

Based on Subcases 5 and 6, a minimum of eight colors is required to satisfy *r*-adjacency, $\chi_r(D_m(T_{n,p})) \le 8$. In accordance with the lower bound and the upper bound, we have $8 \le \chi_r(D_m(T_{n,p})) \le 8$. Now, it is easy to establish the *r*-adjacency, hence $\chi_r(D_m(T_{n,p})) = 8$ for $r = \Delta(D_m(T_{n,p}))$, $n \equiv 1 \pmod{3}$, $\forall p, m = 2$ and $r = \Delta(D_m(T_{n,p}))$, $n \equiv 2 \pmod{3}$, $\forall n \ge 8$, $\forall p, m = 2$.

Case 4. $m = 2, r = \Delta(D_2(T_{5,p})), n = 5, \forall p$.

In accordance with Lemma 3.2, we have $\chi_r(D_m(T_{n,p})) \ge 10$. So, it completes the proof of lower bound. Then, we have to prove the upper bound. To prove $\chi_r(D_m(T_{n,p})) \le 10$, let us define a function ς : $V(D_m(T_{n,p})) \to S(\varsigma)$ where $(\varsigma) = \{1, 2, 3, ..., 10\}$.

$$\varsigma: V(D_2(T_{n,p})) = \begin{cases} \{1,2,3,4,5\} & \text{for } (v'_{n_j},v'_{p_k}), \forall 1 \le j \le n \text{ and } 1 \le k \le p \\ \{5,6,7,8,9,10\} & \text{for } (v''_{n_j},v''_{p_k}), \forall 1 \le j \le n \text{ and } 1 \le k \le p \end{cases}$$

Thus, a minimum of 10 colors is required to satisfy *r*-adjacency, $\chi_r(D_m(T_{n,p})) \le 10$. Based on the lower bound and the upper bound, we have $10 \le \chi_r(D_m(T_{n,p})) \le 10$. So, we can conclude that $\chi_r(D_m(T_{n,p})) = 10$ for m = 2, $r = \Delta(D_2(T_{5,p}))$, n = 5, $\forall p$.

Case 5. $r = 1, n \equiv 0 \pmod{2}, \forall p, m$.

To ascertain the *r*-dynamic chromatic number of $D_m(T_{n,p})$, we have to prove that $\chi_r(D_m(T_{n,p})) \leq 2r$ and $\chi_r(D_m(T_{n,p})) \geq 2r$. In accordance with Lemma 3.2, we have $\chi_r(D_m(T_{n,p})) \geq 2r$. To prove $\chi_r(D_m(T_{n,p})) \leq 2r$, let us define a function ς : $V(D_m(T_{n,p})) \rightarrow S(\varsigma)$ where $(\varsigma) = \{1, 2, 3, ..., 2r\}$.

Subcase 7. $r = 1, n \equiv 0 \pmod{2}, p \equiv 1 \pmod{2}$.

$$\varsigma: V(D_m(T_{n,p})) = \begin{cases} \varsigma_1 & \text{for } v'_{p_{k=odd}}, v''_{p_{k=odd}}, \forall l \le k \le p \\ & \text{for } v'_{n_{j=even}}, v''_{n_{j=even}}, \forall l \le j \le n \end{cases}$$
$$\varsigma_2 & \text{for } v'_{p_{k=even}}, v''_{p_{k=even}}, \forall l \le k \le p \\ & \text{for } v'_{n_{j=odd}}, v''_{n_{j=odd}}, \forall l \le j \le n \end{cases}$$

Subcase 8. $r = 1, n \equiv 1 \pmod{2}, p \equiv 0 \pmod{2}$.

$$\varsigma: V(D_m(T_{n,p})) = \begin{cases} \varsigma_1 & \text{for } v'_{p_{k=odd}}, v''_{p_{k=odd}}, \forall 1 \le k \le p \\ & \text{for } v'_{n_{j=odd}}, v''_{n_{j=odd}}, \forall 1 \le j \le n \end{cases}$$
$$\varsigma_2 & \text{for } v'_{p_{k=even}}, v''_{p_{k=even}}, \forall 1 \le k \le p \\ & \text{for } v'_{n_{j=even}}, v''_{n_{j=even}}, \forall 1 \le j \le n \end{cases}$$

Subcase 9. $r = 2, \forall n, p, m$.

1. Consider m = 2.

When r = 2, $n \equiv 0 \pmod{2}$, $\forall p$.

$$\varsigma: V(D_2(T_{n,p})) = \begin{cases} \{1,2\} & \text{for } \left(v'_{n_j}, v'_{p_k}\right), \forall 1 \le j \le n \text{ and } 1 \le k \le p \\ \{3,4\} & \text{for } \left(v''_{n_j}, v''_{p_k}\right), \forall 1 \le j \le n \text{ and } 1 \le k \le p \end{cases}$$

Contemporary Mathematics

834 | Dafik, et al.

When r = 2, $n \equiv 1 \pmod{2}$, $\forall p$

$$\varsigma: V(D_2(T_{n,p})) = \begin{cases} \{1,2,3\} & \text{for } \left(v'_{n_j}, v'_{p_k}\right), \forall 1 \le j \le n \text{ and } 1 \le k \le p \\ \{2,3,4\} & \text{for } \left(v''_{n_j}, v''_{p_k}\right), \forall 1 \le j \le n \text{ and } 1 \le k \le p \end{cases}$$

2. Consider *m*-shadow graph.

When r = 2, $n \equiv 0 \pmod{2}$, $\forall p$

$$\varsigma: V(D_m(T_{n,p})) = \begin{cases} \{1,2\} & \text{for } v'_{n_j}, v'_{p_k} = v'''_{n_j}, v'''_{p_k} = \dots = v^{(m-1)}_{n_j}, v^{(m-1)}_{p_k}, \forall \le j \le n \text{ and } 1 \le k \le p \end{cases}$$

$$\begin{cases} \{3,4\} & \text{for } v''_{n_j}, v''_{p_k}, v^{iv}_{n_j}, v^{iv}_{p_k} = \dots = v^{(m)}_{n_j}, v^{(m)}_{p_k}, \forall 1 \le j \le n \text{ and } 1 \le k \le p \end{cases}$$

When r = 2, $n \equiv 1 \pmod{2}$, $\forall p$

$$\varsigma: V(D_m(T_{n,p})) = \begin{cases} \{1,2,3\} & \text{for } v'_{n_j}, v'_{p_k} = v'''_{n_j}, v'''_{p_k} = \dots = v^{(m-1)}_{n_j}, v^{(m-1)}_{p_k} \forall \le j \le n \text{ and } 1 \le k \le p \\ \{2,3,4\} & \text{for } v''_{n_j}, v''_{p_k}, v^{iv}_{n_j}, v^{iv}_{p_k} = \dots = v^{(m)}_{n_j}, v^{(m)}_{p_k}, \forall 1 \le j \le n \text{ and } 1 \le k \le p \end{cases}$$

Subcase 10. r = 4, n = 4 and $n \equiv 2 \pmod{3}$, $\forall p, m$. Consider m = 2, when r = 4, n = 4, $\forall p$

$$\varsigma: V(D_2(T_{n,p})) = \begin{cases} \{1,2,3,4\} & \text{for } v'_{n_j}, v'_{p_k}, \forall 1 \le j \le n \text{ and } 1 \le k \le p \\ \{5,6,7,8\} & \text{for } v''_{n_j}, v''_{p_k}, \forall 1 \le j \le n \text{ and } 1 \le k \le p \end{cases}$$

Consider *m*-shadow graph, when r = 4, n = 4, $\forall p$

$$\varsigma: V(D_m(T_{n,p})) = \begin{cases} \{1, 2, 3, 4\} & \text{for } v'_{n_j}, v'_{p_k} = v'''_{n_j}, v''_{p_k} = \dots = v^{(m-1)}_{n_j}, v^{(m-1)}_{p_k} \forall \le j \le n \text{ and } 1 \le k \le p \end{cases}$$

$$\begin{cases} \{5, 6, 7, 8\} & \text{for } v''_{n_j}, v''_{p_k}, v^{iv}_{p_j}, v^{iv}_{p_k} = \dots = v^{(m)}_{n_j}, v^{(m)}_{p_k}, \forall 1 \le j \le n \text{ and } 1 \le k \le p \end{cases}$$

Consider m = 2, when $r = 4, n = 5, 8, 11, ..., \forall p$

$$\varsigma: V(D_2(T_{n,p})) = \begin{cases} \{1, 2, 3, 4\} & \text{for } v'_{n_j}, v'_{p_k}, \forall 1 \le j \le n \text{ and } 1 \le k \le p \\ \{5, 6, 7, 8\} & \text{for } v''_{n_j}, v''_{p_k}, \forall 1 \le j \le n \text{ and } 1 \le k \le p \end{cases}$$

Consider *m*-shadow graph, when r = 4, $n = 5, 8, 11, ..., \forall p$

$$\varsigma : V(D_3(T_{n,p})) = \begin{cases} \{1,2,3\} & \text{for } \left(v'_{n_j}, v'_{p_k}\right), \forall 1 \le j \le n \text{ and } 1 \le k \le p \\ \{3,4,5\} & \text{for } \left(v''_{n_j}, v''_{p_k}\right), \forall 1 \le j \le n \text{ and } 1 \le k \le p \\ \{4,5,6\} & \text{for } \left(v'''_{n_j}, v'''_{p_k}\right), \forall 1 \le j \le n \text{ and } 1 \le k \le p \end{cases}$$

Thus, a minimum of 2r colors is required to satisfy *r*-adjacency, $\chi_r(D_m(T_{n,p})) \le 2$. In accordance with the lower bound and the upper bound, we have $2 \le \chi_r(D_m(T_{n,p})) \le 2$, hence $\chi_r(D_m(T_{n,p})) = 2$ for r = 4, n = 4 and $n \equiv 2 \pmod{3}$, $\forall p, m$.

Case 6. r = 3, $n \equiv 1 \pmod{3}$, $\forall m, n \ge 7$ and p = 1, 2 and $p \equiv 1$, 2(mod3); r = 3, $n \equiv 2 \pmod{3}$, $\forall p, m; 3 \le r \le \Delta(D_m(T_{n,p}))$, $n \equiv 0 \pmod{3}$, $\forall p, m = 2$; $3 \le r \le \Delta((D_m(T_{n,p})) - 4, n \equiv 0 \pmod{3})$, $\forall p, m \ge 3$; $\Delta(D_m(T_{n,p})) - 3 \le r \le \Delta(D_m(T_{n,p}))$, n = 3, $\forall p, m \ge 3$.

To ascertain the *r*-dynamic chromatic number of $D_m(T_{n,p})$, we have to prove that, $\chi_r(D_m(T_{n,p})) \le r + m$ and $\chi_r(D_m(T_{n,p})) \ge r + m$. In accordance with Lemma 3.2, we have, $\chi_r(D_m(T_{n,p})) \ge r + m$. It completes the proof of lower bound. Then, we

have to prove the upper bound. To prove, $\chi_r(D_m(T_{n,p})) \le r + m$, let us define a function, $\varsigma : V(D_m(T_{n,p})) \to S(\varsigma)$, where $S(\varsigma) = \{1, 2, 3, ..., r + m\}$. For this case, we divide into five subcases.

Subcase 11. r = 3, $n \equiv 1 \pmod{3}$, $\forall m, n \ge 7$, p = 1, 2 and $p \equiv 1, 2 \pmod{3}$. Consider m = 2, when r = 3, $n = 7, 10, 13, \dots$ and $p = 1, 2, 4, 5, 7, 8, \dots$

$$\varsigma: V(D_2(T_{n,p})) = \begin{cases} \{1,2,3\} & \text{for } \left(v'_{n_j},v'_{p_k}\right), \forall 1 \le j \le n \text{ and } 1 \le k \le p \\ \{3,4,5\} & \text{for } \left(v''_{n_j},v''_{p_k}\right), \forall 1 \le j \le n \text{ and } 1 \le k \le p \end{cases}$$

Consider m = 3, when r = 3, n = 7, 10, 13, ... and p = 1, 2, 4, 5, 7, 8, ...

$$\varsigma: V(D_3(T_{n,p})) = \begin{cases} \{1,2,3\} & \text{for } \left(v'_{n_j}, v'_{p_k}\right), \forall 1 \le j \le n \text{ and } 1 \le k \le p \\ \{3,4,5\} & \text{for } \left(v''_{n_j}, v''_{p_k}\right), \forall 1 \le j \le n \text{ and } 1 \le k \le p \\ \{4,5,6\} & \text{for } \left(v'''_{n_j}, v''_{p_k}\right), \forall 1 \le j \le n \text{ and } 1 \le k \le p \end{cases}$$

Consider *m*-shadow graph, when r = 3, n = 7, 10, 13, ... and p = 1, 2, 4, 5, 7, 8, ...

$$\varsigma : V(D_m(T_{n,p})) = \begin{cases} \{1, 2, 3\} & \text{for } (v'_{n_j}, v'_{p_k}), \forall 1 \le j \le n \text{ and } 1 \le k \le p \\ \{3, 4, 5\} & \text{for } (v''_{n_j}, v''_{p_k}), \forall 1 \le j \le n \text{ and } 1 \le k \le p \\ \vdots \\ \{r + m - 2, r + m - 1, r + m\} & \text{for } (v^{(m)}_{n_j}, v^{(m)}_{p_k}), \forall 1 \le j \le n \text{ and } 1 \le k \le p \end{cases}$$

Subcase 12. $r = 3, n \equiv 2 \pmod{3}, \forall p, m$. Consider m = 2, when $r = 3, n = 5, 8, 11, \dots$ and $\forall p$

$$\varsigma: V(D_2(T_{n,p})) = \begin{cases} \{1,2,3\} & \text{for } (v'_{n_j},v'_{p_k}), \forall 1 \le j \le n \text{ and } 1 \le k \le p \\ \{3,4,5\} & \text{for } (v''_{n_j},v''_{p_k}), \forall 1 \le j \le n \text{ and } 1 \le k \le p \end{cases}$$

Consider *m*-shadow graph, when r = 3, n = 5, 8, 11, ... and $\forall p$

$$\varsigma: V(D_m(T_{n,p})) = \begin{cases} \{1,2,3\} & \text{for } (v'_{n_j},v'_{p_k}), \forall 1 \le j \le n \text{ and } 1 \le k \le p \\ \{3,4,5\} & \text{for } (v''_{n_j},v''_{p_k}), \forall 1 \le j \le n \text{ and } 1 \le k \le p \\ \vdots \\ \{r+m-2,r+m-1,r+m\} & \text{for } (v^{(m)}_{n_j},v^{(m)}_{p_k}), \forall 1 \le j \le n \text{ and } 1 \le k \le p \end{cases}$$

Subcase 13. $m = 2, 3 \le r \le \Delta(D_2(T_{n,p})), n \equiv 0 \pmod{3}, \forall p$. When $r = 3, n = 3, 6, 9, \dots$ and $\forall p$

$$\varsigma: V(D_2(T_{n,p})) = \begin{cases} \{1,2,3\} & \text{for } (v'_{n_j}, v'_{p_k}), \forall 1 \le j \le n \text{ and } 1 \le k \le p \\ \{3,4,5\} & \text{for } (v''_{n_j}, v''_{p_k}), \forall 1 \le j \le n \text{ and } 1 \le k \le p \end{cases}$$

When $r = \Delta(D_2(T_{n,p})) = 6, n = 3, 6, 9, ... \text{ and } \forall p$

Contemporary Mathematics

836 | Dafik, et al.

$$\varsigma: V(D_2(T_{n,p})) = \begin{cases} \{1,2,3,4\} & \text{for } (v'_{n_j},v'_{p_k}), \forall 1 \le j \le n \text{ and } 1 \le k \le p \\ \{5,6,7,8\} & \text{for } (v''_{n_j},v''_{p_k}), \forall 1 \le j \le n \text{ and } 1 \le k \le p \end{cases}$$

Subcase 14. $m \ge 3, 3 \le r \le \Delta(D_m(T_{n,p})) - 4, n \equiv 0 \pmod{3}, \forall p$. Consider m = 3, when $r = 3, n = 3, 6, 9, \dots$ and $\forall p$

$$\varsigma: V(D_3(T_{n,p})) = \begin{cases} \{1,2,3\} & \text{for } (v'_{n_j}, v'_{p_k}), \forall 1 \le j \le n \text{ and } 1 \le k \le p \\ \{2,3,4\} & \text{for } (v''_{n_j}, v''_{p_k}), \forall 1 \le j \le n \text{ and } 1 \le k \le p \\ \{4,5,6\} & \text{for } (v'''_{n_j}, v'''_{p_k}), \forall 1 \le j \le n \text{ and } 1 \le k \le p \end{cases}$$

Consider m = 3, when $r = \Delta(D_3(T_{n,p})) - 4 = 5$, n = 3, 6, 9, ... and $\forall p$

$$\varsigma: V(D_3(T_{n,p})) = \begin{cases} \{1,2,3,4\} & \text{for } \left(v'_{n_j},v'_{p_k}\right), \forall 1 \le j \le n \text{ and } 1 \le k \le p \\ \{3,4,5,6\} & \text{for } \left(v''_{n_j},v''_{p_k}\right), \forall 1 \le j \le n \text{ and } 1 \le k \le p \\ \{5,6,7,8\} & \text{for } \left(v'''_{n_j},v'''_{p_k}\right), \forall 1 \le j \le n \text{ and } 1 \le k \le p \end{cases}$$

Consider *m*-shadow graph, when r = 3, n = 3, 6, 9, ... and $\forall p$

$$\varsigma : V(D_m(T_{n,p})) = \begin{cases} \{1, 2, 3\} & \text{for } (v'_{n_j}, v'_{p_k}), \forall 1 \le j \le n \text{ and } 1 \le k \le p \\ \{2, 3, 4\} & \text{for } (v''_{n_j}, v''_{p_k}), \forall 1 \le j \le n \text{ and } 1 \le k \le p \\ \vdots \\ \{r + m - 2, r + m - 1, r + m\} & \text{for } (v^{(m)}_{n_j}, v^{(m)}_{p_k}), \forall 1 \le j \le n \text{ and } 1 \le k \le p \end{cases}$$

Consider *m*-shadow graph, when $r = \Delta(D_m(T_{n,p})) - 4$, n = 3, 6, 9, ... and $\forall p$

$$\varsigma : V(D_m(T_{n,p})) = \begin{cases} \{1, 2, 3, 4\} & \text{for } (v'_{n_j}, v'_{p_k}), \forall 1 \le j \le n \text{ and } 1 \le k \le p \\ \{3, 4, 5, 6\} & \text{for } (v''_{n_j}, v''_{p_k}), \forall 1 \le j \le n \text{ and } 1 \le k \le p \\ \vdots \\ \{r + m - 3, r + m - 2, r + m - 1, r + m\} & \text{for } (v_{n_j}^{(m)}, v_{p_k}^{(m)}), \forall 1 \le j \le n \text{ and } 1 \le k \le p \end{cases}$$

Subcase 15. $m \ge 3$, $\Delta(D_m(T_{n,p})) - 3 \le r \le \Delta(D_m(T_{n,p}))$, n = 3, $\forall p$. Consider m = 3, when $r = \Delta(D_3(T_{n,p})) - 3 = 6$, n = 3 and $\forall p$

$$\varsigma : V(D_3(T_{n,p})) = \begin{cases} \{1, 2, 3, 4\} & \text{for } \left(v'_{n_j}, v'_{p_k}\right), \forall 1 \le j \le n \text{ and } 1 \le k \le p \\ \{4, 5, 6, 7\} & \text{for } \left(v''_{n_j}, v''_{p_k}\right), \forall 1 \le j \le n \text{ and } 1 \le k \le p \\ \{7, 8, 9\} & \text{for } \left(v''_{n_j}, v''_{p_k}\right), \forall 1 \le j \le n \text{ and } 1 \le k \le p \end{cases}$$

Consider m = 3, when $r = \Delta(D_3(T_{n,p})) = 9$, n = 3 and $\forall p$

$$\varsigma: V(D_3(T_{n,p})) = \begin{cases} \{1, 2, 3, 4\} & \text{for } \left(v'_{n_j}, v'_{p_k}\right), \forall 1 \le j \le n \text{ and } 1 \le k \le p \\ \{5, 6, 7, 8\} & \text{for } \left(v''_{n_j}, v''_{p_k}\right), \forall 1 \le j \le n \text{ and } 1 \le k \le p \\ \{9, 10, 11, 12\} & \text{for } \left(v'''_{n_j}, v'''_{p_k}\right), \forall 1 \le j \le n \text{ and } 1 \le k \le p \end{cases}$$

Consider *m*-shadow graph, when $r = \Delta(D_m(T_{n,p})) - 3$, n = 3 and $\forall p$

$$\varsigma : V(D_m(T_{n,p})) = \begin{cases} \{1, 2, 3, 4\} & \text{for } \left(v'_{n_j}, v'_{p_k}\right), \forall 1 \le j \le n \text{ and } 1 \le k \le p \\ \{4, 5, 6, 7\} & \text{for } \left(v''_{n_j}, v''_{p_k}\right), \forall 1 \le j \le n \text{ and } 1 \le k \le p \\ \{7, 8, 9, 10\} & \text{for } \left(v''_{n_j}, v''_{p_k}\right), \forall 1 \le j \le n \text{ and } 1 \le k \le p \\ \vdots \\ \{r + m - 2, r + m - 1, r + m\} & \text{for } \left(v^{(m)}_{n_j}, v^{(m)}_{p_k}\right), \forall 1 \le j \le n \text{ and } 1 \le k \le p \end{cases}$$

Consider *m*-shadow graph, when $r = \Delta(D_m(T_{n,p}))$, n = 3 and $\forall p$

$$\varsigma : V(D_m(T_{n,p})) = \begin{cases} \{1, 2, 3, 4\} & \text{for } \left(v'_{n_j}, v'_{p_k}\right), \forall 1 \le j \le n \text{ and } 1 \le k \le p \\ \{5, 6, 7, 8\} & \text{for } \left(v''_{n_j}, v''_{p_k}\right), \forall 1 \le j \le n \text{ and } 1 \le k \le p \end{cases}$$

$$\vdots \\ \{r + m - 3, r + m - 2, r + m - 1, r + m\} & \text{for } \left(v^{(m)}_{n_j}, v^{(m)}_{p_k}\right), \forall 1 \le j \le n \text{ and } 1 \le k \le p \end{cases}$$

Based on Subcase 11 until Subcase 15, a minimum of r + m colors is required to satisfy r-adjacency, $\chi_r(D_m(T_{n,p})) \le r + m$. In accordance with the lower bound and the upper bound, we have $r + m \chi_r(D_m(T_{n,p})) \le r + m$, hence $\chi_r(D_m(T_{n,p})) = r + m$ for $m \ge 3 \Delta(D_m(T_{n,p})) - 3 \le r \le \Delta(D_m(T_{n,p}))$, n = 3 and $\forall p$.

Case 7. For r = 3, n = 4, $\forall p$ and for r = 3, $n \equiv 1 \pmod{3}$, $\forall n \ge 7$, $p \equiv 0 \pmod{3}$.

To ascertain the *r*-dynamic chromatic number of $D_m(T_{n,p})$, we have to prove that $\chi_r(D_m(T_{n,p})) \ge r + m + 1$ and $\chi_r(D_m(T_{n,p})) \le r + m + 1$. In accordance with Lemma 3.2, we have $\chi_r(D_m(T_{n,p})) \ge r + m + 1$. It completes the proof of lower bound. Then, we have to prove the upper bound. To prove $\chi_r(D_m(T_{n,p})) \le r + m + 1$, let us define a function $\varsigma : V(D_m(T_{n,p})) \rightarrow S(\varsigma)$, where $S(\varsigma) = \{1, 2, 3, ..., r + m + 1\}$.

Subcase 16. r = 3, n = 4, $\forall p$.

Consider m = 2, when r = 3, n = 4 and $\forall p, m$

$$\varsigma: V(D_2(T_{n,p})) = \begin{cases} \{1,2,3\} & \text{for } (v'_{n_j}, v'_{p_k}), \forall 1 \le j \le n \text{ and } 1 \le k \le p \\ \{4,5,6\} & \text{for } (v''_{n_j}, v''_{p_k}), \forall 1 \le j \le n \text{ and } 1 \le k \le p \end{cases}$$

Consider *m*-shadow graph, when r = 3, n = 4 and $\forall p$

$$\varsigma : V(D_m(T_{n,p})) = \begin{cases} \{1, 2, 3, \} & \text{for } (v'_{n_j}, v'_{p_k}), \forall 1 \le j \le n \text{ and } 1 \le k \le p \\ \\ \{4, 5, 6\} & \text{for } (v''_{n_j}, v''_{p_k}), \forall 1 \le j \le n \text{ and } 1 \le k \le p \\ \\ \vdots \\ \\ \{r + m - 1, r + m, r + m + 1\} & \text{for } (v^{(m)}_{n_j}, v^{(m)}_{p_k}), \forall 1 \le j \le n \text{ and } 1 \le k \le p \end{cases}$$

Subcase 17. r = 3, $n \equiv 1 \pmod{3}$, $\forall n \ge 7$, $p \equiv 0 \pmod{3}$. Consider m = 2, when r = 3, n = 7, 10, 13, ... and p = 3, 6, 9, ...

Contemporary Mathematics

838 | Dafik, et al.

$$\varsigma: V(D_2(T_{n,p})) = \begin{cases} \{1,2,3\} & \text{for } (v'_{n_j}, v'_{p_k}), \forall 1 \le j \le n \text{ and } 1 \le k \le p \\ \{4,5,6\} & \text{for } (v''_{n_j}, v''_{p_k}), \forall 1 \le j \le n \text{ and } 1 \le k \le p \end{cases}$$

Consider *m*-shadow graph, when r = 3, n = 7, 10, 13, ... and p = 3, 6, 9, ...

$$\varsigma: V(D_m(T_{n,p})) = \begin{cases} \{1,2,3\} & \text{for } (v'_{n_j},v'_{p_k}), \forall 1 \le j \le n \text{ and } 1 \le k \le p \\ \{4,5,6\} & \text{for } (v''_{n_j},v''_{p_k}), \forall 1 \le j \le n \text{ and } 1 \le k \le p \\ \vdots \\ \{r+m-1,r+m,r+m+1\} & \text{for } (v^{(m)}_{n_j},v^{(m)}_{p_k}), \forall 1 \le j \le n \text{ and } 1 \le k \le p \end{cases}$$

Based on Subcases 16 and 17, a minimum of r + m + 1 colors is required to satisfy *r*-adjacency, $\chi_r(D_m(T_{n,p})) \le r + m + 1$. In accordance with the upper bound and the lower bound, we have $r + m + 1 \le \chi_r(D_m(T_{n,p})) \le r + m + 1$, hence $\chi_r(D_m(T_{n,p})) = r + m + 1$ for r = 3, $n \equiv 1 \pmod{3}$, $\forall n \ge 7$, $p \equiv 0 \pmod{3}$.

Case 8. $r = 5, n = 5, \forall p, m$.

To ascertain the *r*-dynamic chromatic number of $D_m(T_{n,p})$, we have to prove that $\chi_r(D_m(T_{n,p})) \ge r + m + 2$ and $\chi_r(D_m(T_{n,p})) \le r + m + 2$. In accordance with Lemma 3.2, we have $\chi_r(D_m(T_{n,p})) \ge r + m + 2$. It completes the proof of lower bound. Then, we have to prove the upper bound. To prove $\chi_r(D_m(T_{n,p})) \le r + m + 2$, let us define a function $\varsigma : V(D_m(T_{n,p})) \rightarrow S(\varsigma)$, where $S(\varsigma) = \{1, 2, 3, ..., r + m + 2\}$.

Consider m = 2, when r = 5, n = 5 and $\forall p$

$$\varsigma: V(D_2(T_{n,p})) = \begin{cases} \{1, 2, 3, 4, 5\} & \text{for } (v'_{n_j}, v'_{p_k}), \forall 1 \le j \le n \text{ and } 1 \le k \le p \\ \{6, 7, 8, 9\} & \text{for } (v''_{n_j}, v''_{p_k}), \forall 1 \le j \le n \text{ and } 1 \le k \le p \end{cases}$$

Consider *m*-shadow graph, when r = 5, n = 5 and $\forall p$

$$\varsigma : V(D_m(T_{n,p})) = \begin{cases} \{1, 2, 3, 4, 5\} & \text{for } (v'_{n_j}, v'_{p_k}), \forall 1 \le j \le n \text{ and } 1 \le k \le p \\ \{2, 3, 4, 5, 6\} & \text{for } (v''_{n_j}, v''_{p_k}), \forall 1 \le j \le n \text{ and } 1 \le k \le p \\ \{3, 4, 5, 6, 7\} & \text{for } (v''_{n_j}, v''_{p_k}), \forall 1 \le j \le n \text{ and } 1 \le k \le p \\ \vdots \\ \{r + m - 1, r + m, r + m + 1, r + m + 2\} & \text{for } (v^{(m)}_{n_j}, v^{(m)}_{p_k}), \forall 1 \le j \le n \text{ and } 1 \le k \le p \end{cases}$$

Thus, a minimum of r + m + 2 colors is required to satisfy *r*-adjacency, $\chi_r(D_m(T_{n,p})) \le r + m + 2$. In accordance with the upper bound and the lower bound, we have $r + m + 2 \le \chi_r(D_m(T_{n,p})) \le r + m + 2$, hence $\chi_r(D_m(T_{n,p})) = r + m + 2$ for r = 5, n = 5, $\forall p, m$.

Case 9. $m \ge 3$, $\Delta(D_m(T_{n,p})) - 3 \le r \le \Delta(D_m(T_{n,p}))$, $\forall n > 3, p$.

To ascertain the *r*-dynamic chromatic number of $D_m(T_{n,p})$, we have to prove that $\chi_r(D_m(T_{n,p})) \ge 4m$ and $\chi_r(D_m(T_{n,p})) \le 4m$. In accordance with Lemma 3.2, we have $\chi_r(D_m(T_{n,p})) \ge 4m$. It completes the proof of lower bound. Then, we have to prove the upper bound. To prove $\chi_r(D_m(T_{n,p})) \le 4m$, let us define a function $\varsigma : V(D_m(T_{n,p})) \to S(\varsigma)$, where $S(\varsigma) = \{1, 2, 3, ..., 4m\}$.

Consider m = 3, when $r = \Delta(D_m(T_{n,p})) - 3 = 6$, n = 4, 5, 6, ... and $\forall p$

$$\varsigma: V(D_3(T_{n,p})) = \begin{cases} \{1, 2, 3, 4, 5\} & \text{for } \left(v'_{n_j}, v'_{p_k}\right), \forall 1 \le j \le n \text{ and } 1 \le k \le p \\ \{5, 6, 7, 8, 9\} & \text{for } \left(v''_{n_j}, v''_{p_k}\right), \forall 1 \le j \le n \text{ and } 1 \le k \le p \\ \{9, 10, 11, 12\} & \text{for } \left(v''_{n_j}, v'''_{p_k}\right), \forall 1 \le j \le n \text{ and } 1 \le k \le p \end{cases}$$

Consider m = 3, when $r = \Delta(D_m(T_{n,p})) = 9$, $n = 4, 5, 6, \cdots$ and $\forall p$

$$\varsigma: V(D_3(T_{n,p})) = \begin{cases} \{1, 2, 3, 4,\} & \text{for } \left(v'_{n_j}, v'_{p_k}\right), \forall 1 \le j \le n \text{ and } 1 \le k \le p \\ \{5, 6, 7, 8,\} & \text{for } \left(v''_{n_j}, v''_{p_k}\right), \forall 1 \le j \le n \text{ and } 1 \le k \le p \\ \{9, 10, 11, 12\} & \text{for } \left(v'''_{n_j}, v'''_{p_k}\right), \forall 1 \le j \le n \text{ and } 1 \le k \le p \end{cases}$$

Consider *m*-shadow graph, when $r = \Delta(D_m(T_{n,p})) - 3$, n = 4, 5, 6, ... and $\forall p$

$$\varsigma: V(D_m(T_{n,p})) = \begin{cases} \{1, 2, 3, 4, 5\} & \text{for } \left(v'_{n_j}, v'_{p_k}\right), \forall 1 \le j \le n \text{ and } 1 \le k \le p \\ \{5, 6, 7, 8, 9\} & \text{for } \left(v''_{n_j}, v''_{p_k}\right), \forall 1 \le j \le n \text{ and } 1 \le k \le p \\ \{9, 10, 11, 12, 13\} & \text{for } \left(v''_{n_j}, v''_{p_k}\right), \forall 1 \le j \le n \text{ and } 1 \le k \le p \\ \vdots \\ \{4m - 3, 4m - 2, 4m - 1, 4m\} & \text{for } \left(v^{(m)}_{n_j}, v^{(m)}_{p_k}\right), \forall 1 \le j \le n \text{ and } 1 \le k \le p \end{cases}$$

Consider *m*-shadow graph, when $r = \Delta(D_m(T_{n,p}))$, n = 4, 5, 6, ... and $\forall p$

$$\varsigma : V(D_m(T_{n,p})) = \begin{cases} \{1, 2, 3, 4\} & \text{for } \left(v'_{n_j}, v'_{p_k}\right), \forall 1 \le j \le n \text{ and } 1 \le k \le p \\ \{5, 6, 7, 8\} & \text{for } \left(v''_{n_j}, v''_{p_k}\right), \forall 1 \le j \le n \text{ and } 1 \le k \le p \\ \{9, 10, 11, 12\} & \text{for } \left(v''_{n_j}, v''_{p_k}\right), \forall 1 \le j \le n \text{ and } 1 \le k \le p \\ \vdots \\ \{4m - 3, 4m - 2, 4m - 1, 4m\} & \text{for } \left(v^{(m)}_{n_j}, v^{(m)}_{p_k}\right), \forall 1 \le j \le n \text{ and } 1 \le k \le p \end{cases}$$

Thus, a minimum of 4m colors is required to satisfy *r*-adjacency, $\chi_r(D_m(T_{n,p})) \le 4m$. In accordance with Lemma 3.2, we have $\chi_r(D_m(T_{n,p})) \ge 4m$, hence $\chi_r(D_m(T_{n,p})) = 4m$ for $m \ge 3$, $\Delta(D_m(T_{n,p})) - 3 \le r \le \Delta(D_m(T_{n,p}))$, $\forall n > 3$, *p*.

Case 10. $m \ge 3, r = 5, n \equiv 1 \pmod{3}, \forall n \ge 7, p$.

To ascertain the *r*-dynamic chromatic number of $D_m(T_{n,p})$, we have to prove that $\chi_r(D_m(T_{n,p})) \ge 2m + 2$ and $\chi_r(D_m(T_{n,p})) \le 2m + 2$. To prove $\chi_r(D_m(T_{n,p})) \le 2m + 2$, let us define a function $\varsigma : V(D_m(T_{n,p})) \to S(\varsigma)$, where $S(\varsigma) = \{1, 2, 3, ..., r + 2m + 2\}$.

1. Consider m = 3, when r = 5, n = 7, 10, 13, ... and $\forall p$

$$\varsigma: V(D_3(T_{n,p})) = \begin{cases} \{1, 2, 3, 4\} & \text{for } \left(v'_{n_j}, v'_{p_k}\right), \forall 1 \le j \le n \text{ and } 1 \le k \le p \\ \{3, 4, 5, 6\} & \text{for } \left(v''_{n_j}, v''_{p_k}\right), \forall 1 \le j \le n \text{ and } 1 \le k \le p \\ \{5, 6, 7, 8\} & \text{for } \left(v'''_{n_j}, v'''_{p_k}\right), \forall 1 \le j \le n \text{ and } 1 \le k \le p \end{cases}$$

2. Consider *m*-shadow graph, when r = 5, n = 7, 10, 13, ... and $\forall p$

$$\varsigma : V(D_m(T_{n,p})) = \begin{cases} \{1, 2, 3, 4\} & \text{for } \left(v'_{n_j}, v'_{p_k}\right), \forall 1 \le j \le n \text{ and } 1 \le k \le p \\ \{3, 4, 5, 6\} & \text{for } \left(v''_{n_j}, v''_{p_k}\right), \forall 1 \le j \le n \text{ and } 1 \le k \le p \end{cases} \\ \vdots \\ \{2m - 1, 2m, 2m + 1, 2m + 2\} & \text{for } \left(v^{(m)}_{n_j}, v^{(m)}_{p_k}\right), \forall 1 \le j \le n \text{ and } 1 \le k \le p \end{cases}$$

Thus, a minimum of 2m + 2 colors is required to satisfy *r*-adjacency, $\chi_r(D_m(T_{n,p})) \le 2m + 2$. In accordance with Lemma 3.2, we have $\chi_r(D_m(T_{n,p})) \ge 2m + 2$, hence $\chi_r(D_m(T_{n,p})) = 2m + 2$ for $m \ge 3$, r = 5, $n \equiv 1 \pmod{3}$, $\forall n \ge 7$, *p*. **Case 11.** r = 4, n = 5, $\forall p, m$.

To ascertain the *r*-dynamic chromatic number of $D_m(T_{n,p})$, we have to prove that $\chi_r(D_m(T_{n,p})) \ge \left\lceil \frac{8(m+3)}{5} \right\rceil$ and

$$\chi_r(D_m(T_{n,p})) \le \left\lceil \frac{8(m+3)}{5} \right\rceil. \text{ To prove } \chi_r(D_m(T_{n,p})) \le \left\lceil \frac{8(m+3)}{5} \right\rceil, \text{ let us define a function } \varsigma : V(D_m(T_{n,p})) \to S(\varsigma), \text{ where } S(\varsigma) = \left\{1, 2, 3, \dots, \left\lceil \frac{8(m+3)}{5} \right\rceil\right\}.$$

1. Consider m = 2, when r = 4, n = 5, $\forall p$

$$\varsigma: V(D_2(T_{n,p})) = \begin{cases} \{1, 2, 3, 4\} & \text{ for } \left(\nu'_{n_j}, \nu'_{p_k}\right), \forall 1 \le j \le n \text{ and } 1 \le k \le p \\ \{5, 6, 7, 8\} & \text{ for } \left(\nu''_{n_j}, \nu''_{p_k}\right), \forall 1 \le j \le n \text{ and } 1 \le k \le p \end{cases}$$

2. Consider *m*-shadow graph, when r = 4, n = 5, $\forall p$

$$\varsigma : V(D_m(T_{n,p})) = \begin{cases} \{1, 2, 3, 4\} & \text{for } (v'_{n_j}, v'_{p_k}), \forall 1 \le j \le n \text{ and } 1 \le k \le p \\ \{5, 6, 7, 8\} & \text{for } (v''_{n_j}, v''_{p_k}), \forall 1 \le j \le n \text{ and } 1 \le k \le p \\ \vdots \\ \left\{\frac{8m+9}{5}, \frac{8m+14}{5}, \frac{8m+19}{5}, \frac{8m+24}{5}\right\} & \text{for } (v^{(m)}_{n_j}, v^{(m)}_{p_k}), \forall 1 \le j \le n \text{ and } 1 \le k \le p \end{cases}$$

Thus, on generalizing, a minimum of $\left\lceil \frac{8(m+3)}{5} \right\rceil$ colors is required to satisfy *r*-adjacency, $\chi_r(D_m(T_{n,p})) \le \left\lceil \frac{8(m+3)}{5} \right\rceil$. In accordance with Lemma 3.2, we have $\chi_r(D_m(T_{n,p})) \ge \left\lceil \frac{8(m+3)}{5} \right\rceil$, hence $\chi_r(D_m(T_{n,p})) = \left\lceil \frac{8(m+3)}{5} \right\rceil$ for r = 4, n = 5, $\forall p, m$.

4. Concluding remarks

We have studied the *r*-dynamic chromatic number of the ladder graph and the tadpole graph using the *m*-shadow operation of graphs. Further, we are working on the *r*-dynamic coloring of various graphs in the ladder graph family using the block circulant matrix approach. Since obtaining the exact value of the *r*-dynamic chromatic number is considered a nondeterministic polynomial time-complete problem, solving this problem is still widely open. Therefore, we propose the following open problem:

- Determine the *r*-dynamic chromatic number of other special graph operations.
- Characterize the existence of *r*-dynamic coloring of any graph.

Acknowledgments

We would like to express our special thanks and gratitude for the sincere efforts and valuable guidance given by the research teams of PUI-PT Combinatorics and Graph, CGANT, University of Jember, Indonesia.

Conflict of interest

There is no conflict of interest in this study.

References

- [1] Montgomery B. *Dynamic coloring of graphs*. PhD thesis. West Virginia University; 2001. Available from: https:// researchrepository.wvu.edu/cgi/viewcontent.cgi?article=2400&context=etd.
- [2] Aparna V, Mohanapriya N. *r*-dynamic chromatic number of extended neighborhood corona of complete graph with some graphs. In: *International Conference on Mathematical Modelling and Computational Intelligence Techniques*. Singapore: Springer; 2021. p.235-254. Available from: https://doi.org/10.1007/978-981-16-6018-4_15.
- [3] Dafik, Meganingtyas DEW, Purnomo KD, Tarmidzi MD, Agustin IH. Several classes of graphs and their r-dynamic chromatic numbers. *Journal of Physics: Conference Series*. 2017; 855: 012011. Available from: https://doi. org/10.1088/1742-6596/855/1/012011.
- [4] Jahanbekam S, Kim J, Suil O, West DB. On *r*-dynamic coloring of graphs. *Discrete Applied Mathematics*. 2016; 206: 65-72. Available from: https://doi.org/10.1016/j.dam.2016.01.016.
- [5] Kristiana AI, Nandini G, Venkatachalam M, Utoyo MI, Gowri S. On *r*-dynamic coloring of the family of tadpole graphs. *Ars Combinatoria*. 2020; 148: 109-122.
- [6] Lai HJ, Montgomery B, Poon H. Upper bounds of dynamic chromatic number. ARS Combinatoria. 2003; 68: 193-201.
- [7] Kristiana AI, Utoyo MI, Dafik, Alfarisi R, Waluyo E. On the *r*-dynamic chromatic number of corona product of star graph. *Thai Journal of Mathematics*. 2022; 20: 1389-1397.
- [8] Riba'Ah RZ, Dafik, Kristiana AI, Maylisa IN, Slamin. On the *r*-dynamic chromatic number of subdivision of wheel graph. *Journal of Physics: Conference Series*. 2022; 2157: 012016. Available from: https://doi.org/10.1088/1742-6596/2157/1/012016.
- [9] Nandini G, Venkatachalam M, Dafik. On *r*-dynamic coloring of para-line graph of some standard graphs. *Palestine Journal of Mathematics*. 2021; 10: 12-22.
- [10] Gomathi CS, Mohanapriya N, Kristina AI, Dafik. On r-dynamic vertex coloring of some flower graph families. Discrete Mathematics, Algorithms and Applications. 2022; 14(1): 2150097. Available from: https://doi.org/10.1142/ S179383092150097X.
- [11] Mohanapriya N, Kalaiselvi K, Aparna V, Dafik, Agustin IH. On *r*-dynamic coloring of central vertex join of path, cycle with certain graphs. *Journal of Physics: Conference Series*. 2022; 2157: 012007. Available from: https://doi.org/10.1088/1742-6596/2157/1/012007.
- [12] Manjula T, Rajeswari R. Dominator chromatic number of *m*-splitting graph and *m*-shadow graph of path graph. *International Journal of Biomedical Engineering and Technology*. 2018; 27(1-2): 100-113. Available from: https:// doi.org/10.1504/IJBET.2018.093089.
- [13] Vaidya SK, Popat KM. Energy of *m*-splitting and *m*-shadow graphs. *Far East Journal of Mathematical Sciences*. 2017; 102(8): 1571-1578. Available from: http://dx.doi.org/10.17654/MS102081571.