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Abstract: An r-dynamic coloring is a proper k-coloring of a graph G = {V, E} such that the neighbors of every vertex v 
∈ V(G) are colored using ς: V(G) → S(c) where S(c) is a set of colors. The coloring is made in such a way that it satisfies 
the conditions: (i) For any edge uv ∈ E(G) the color of u and color of v are distinct and (ii) the cardinality of coloring 
the neighbors of any vertex v should be greater than or equal to min{r, d(vG)}, where d(vG) is the degree of the vertex 
v. In this paper, the lower bounds for the r-dynamic coloring of the m-shadow graph of the ladder graph Dm(Ln) and the
tadpole graph Dm(Tn,p) are attained. Using the lower bounds, the exact solution of the r-dynamic chromatic number of
the ladder graph Ln and tadpole graph Tn,p by the m-shadow operation is obtained.
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1. Introduction
The graphs used in this paper are simple and finite. Let G be a simple graph that is connected and undirected. The

other typical notations used here are V(G) and (G), which are the vertices and edges of G, respectively. The minimum 
degree of G is δ(G), and the maximum degree is Δ(G). For any v ∈ V, N(v) denotes the neighborhood vertex of v that 
is adjacent to v. The concept of dynamic chromatic number was first introduced by Montgomery [1], and the study 
of r-dynamic coloring is an extension of dynamic coloring, so one of the obvious results that holds is χ(G) ≤ χr(G) 
≤ χr+1(G). An r-dynamic coloring of G is a mapping of ς from V(G) to the set of colors S(c) such that the following 
conditions hold:

1. For any ( ), ( ) ( ).uv E G u vς ς∈ ≠  
2. min{ , ( )},( ( )) Gr d vN vς ≥  where d(vG) is the degree of v and r is a positive integer.
When r = 1, the 1-dynamic chromatic number of G is equal to its chromatic number. When r = 2, the 2-dynamic 

chromatic number of G is the result of the dynamic chromatic number. The r values are extended up to the maximum 
degree Δ(G). The r-dynamic chromatic number remains the same even after r values exceed Δ(G). Some of the 
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following observations were proposed by Montgomery [1] on r-dynamic chromatic number, and some of the bounds are 
studied from [2-8]. Nandini et al. [9] have studied the r-dynamic coloring of para-line graph of some standard graphs. In 
[10], there are five theorems studied, including the graph of a flower graph C(Fn), the line graph of a flower graph L(Fn), 
the subdivision graph of a flower graph S(Fn), the para-line graph of a flower graph L[S(Fn)], and the splitting graph of a 
flower graph S[Fn]. In [11], there are six theorems studied, including the central vertex join of path graph Pm with cycle 
graph Cn, the central vertex join of cycle graph Cm with path graph Pn, the central vertex join of cycle graph C3 with path 
graph in Pn, the central vertex join of cycle graph Cm with complete graph Kn, the central vertex join of cycle graph C3 
with complete graph Kn, and the central vertex join of cycle graph Cm with cycle graph Cn. In this paper, we determined 
the r-dynamic chromatic number of the ladder graph and the tadpole graph using the m-shadow operation.

2. Preliminaries
In this section, the basic definitions and preliminary lemmas that are used in the next sections are given. A graph G

is a pair (V(G), E(G)), where V(G) denotes the vertex set and E(G) denotes the edge set. If G has the same end vertices, 
it is called a loop, and an undirected, loopless graph is said to be a simple graph. A graph G is finite if its order and size 
are finite. In a graph G, the minimum degree δ(G) is the minimum number of edges that are incident from any vertex v ∈ 
V, and the maximum degree Δ(G) is the maximum number of edges that are incident from any vertex v ∈ V.

Definition 2.1. The shadow graph D2(G) of a simple connected graph G is obtained by taking two copies of G, i.e., G′ 
and G′′, and joining each vertex u′ in G′ to the neighbors of the corresponding vertex u′′ in G′′.

Definition 2.2. [12, 13] A m-shadow graph of G denoted by Dm(G) is a graph obtained by taking m-copies of G, i.e., 
G′, G′′, G′′′, ..., G(m) and then joining each vertex ui ∈ Gi, i ∈ [1, m − 1] to all the neighbors of the corresponding vertex vj 
∈ Gi+1, Gi+2, ..., G(m), i < j ≤ m.

Definition 2.3. The ladder graph is a planar undirected graph that is the Cartesian product of two path graphs and 
is denoted by Ln = Pn × P2. In other words, a ladder graph is obtained by taking two copies of a path graph of the same 
order whose corresponding vertices are connected by an edge.

Definition 2.4. The tadpole graph is a special type of graph consisting of a cycle Cn of at least n ≥ 3 vertices and a 
path Pp with p vertices connected by a bridge. It is denoted by Tn,p.

Lemma 2.1. Let G be a finite, connected graph, then the following condition holds:
1. 1( ) ( )r rG Gχ χ +≤
2. ( ) min{ , ( )} 1r G r Gχ ≥ ∆ +
3. 1 2 ( )( ) ( ) ( ) ( )r GG G G Gχ χ χ χ∆= ≤ ≤…≤
4. At ( ),r G≥ ∆  then ( )( ) ( )r GG Gχ χ∆=  

3. Results
Lemma 3.1. For a ladder graph Ln, the lower bound for the r-dynamic chromatic number of the m-shadow graph of

the ladder graph Dm(Ln) is

( ( )) 2 , for 1 ( ( )), , . nr m n mD L r r D L m nχ ≥ ≤ ≤ ∆ ∀

Proof. Let ( ( )) { , ,..., :1 2 }m
m n j j jV D L v v v j n′ ′′= ≤ ≤  be the vertex set and ( ( ))m nE D L = 2 1 2 1 2 2 2{{ , :1 ; ;a x a x

j j j jv v v v a m a x m− + + ≤ ≤ ≤ ≤ 
2 1 2 1 2 2 2{{ , :1 ; ;a x a x

j j j jv v v v a m a x m− + + ≤ ≤ ≤ ≤  11 1} { :1 ; ; 1,3,5, , 2 1}}a x
j jj n v v a m a x m j n+≤ ≤ − ∪ ≤ ≤ ≤ ≤ = … −  be the edge set  whose corresponding 

cardinalities are | ( ( )) | 2m nV D L mn=  and 2| ( ( )) | (3 2),m nE D L m n= −  respectively. The vertex jv′  is adjacent to 
( ), ,..., m

k k kv v v′′ ′′′  only where , ,..., m
j j jv v v′′ ′′′  is adjacent.

for  = 1,2
The minimum degree is ( ( ))

2 for 3m n

mn n
D L

m n
δ


=  ≥
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and

for  = 1,2
the maximum degree is ( ( ))

3 for 3.m n

mn n
D L

m n


∆ =  ≥

For n = 1, 2, the value of r varies from 1 ≤ r ≤ mn, and for n ≥ 3, the value of r varies from 1 ≤ r ≤ 3m, and hence the 
result remains same. Let L be a simple, connected graph. By the definition of a m-shadow graph, every (1 2 )i

jv j n≤ ≤  
vertex in the ith copy of L is adjacent to 1 2 ( ), , ,i i m

l l lv v v+ +


 of all i + 1, i + 2,···, mth copies of L, wherever i
jv  are adjacent. 

In order to prove the lemma, we consider two cases.
Case 1. 1 , 1, 2r mn n≤ ≤ ∀ = .
First, consider r = 1. Assign the colors 1, 2 to all the vertices of m-copies of Ln. For instance, assign the color class 

1 to ( ), , , m
j j jv v v′ ′′

  and color class 2 to ( ), , , m
j j jv v v′ ′′

  for j = even. The 1-dynamic coloring of Dm(Ln) results as the same 
as the chromatic number of Ln.

Next, consider r = 2. For a vertex ,jv′  where 1 ≤ j ≤ 2n, the maximum degree is four. Assign a color (say, ς1) to 
,jv′  so that two adjacent vertices of ,jv′  are colored with ς2, and the other two adjacent vertices are colored with ς3. For 

instance, if 2 1kv −′  where 1 ≤ k ≤ n are colored with ς1, whose two adjacent vertices 2kv′  and 2kv′′  are colored with ς2 and 
ς3. Now, to satisfy r-adjacency 2 1,kv −′′  it requires a new color, ς4. Similarly, when 3 ≤ r ≤ mn − 1, each odd copy of Dm(Ln) 
receives r − 1 colors, and each even copy of Dm(Ln) receives r + 1 new colors. Therefore, it shows a total of 2r colors are 
required.

Finally, when r = mn, we assign a new color to each vertex in order to achieve r-adjacency. Since there are 2mn 
vertices in Dm(Ln) and r = mn, it is clearly seen that 2r colors are required to satisfy the r-dynamic coloring.
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Figure 1. (Dm(L4))-m-shadow graph of ladder graph L4 

Case 2. 1 3 , 3.r m n≤ ≤ ∀ ≥
In the case of r = 1, the 1-dynamic coloring of Dm(Ln) is the same as the chromatic number of Ln, and thus the proof 

holds. When r = 2, odd and even copies of Dm(Ln) each receive r new colors, and for 3 ≤ r ≤ 3m − 1, each odd copy of 
Dm(Ln) receives r − 1 colors, and each even copy of Dm(Ln) receives r + 1 new colors. Therefore, it shows a total of 2r 
colors are required.

Further, consider the maximum degree, r = 3m, for which we assign the colors 1, 2, ···, 3m to the (2j − 1)th copies 

of ( ),1
2m n
mD L j  ≤ ≤   

 and the colors 3m + 1, 3m + 2,···, 6m to the (2j)th copies of ( ),1
2m n
mD L j  ≤ ≤   

, showing that 

2r colors are required to satisfy r-adjacency.
Theorem 3.1. Let r, n ≥ 1 and m ≥ 2 be any positive integers, then the r-dynamic chromatic number of m-shadow 

graph of ladder graph Dm(Ln) is



( ( )) 2 for 1 ( ( )). r m n m n
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D L r r D Lχ = ≤ ≤ ∆

Proof. To ascertain the r-dynamic chromatic number of Dm(Ln), we have to prove that, χr(Dm(Ln)) ≥ 2r and 
χr(Dm(Ln)) ≤ 2r. In accordance with Lemma 3.1, we have χr(Dm(Ln)) ≥ 2r. So, it completes the proof of lower bound. 
Then, we have to prove the upper bound. To prove χr(Dm(Ln)) ≤ 2r, we divide into some cases and consider a function ς 
: V (Dm(Ln)) → S(ς), where S(ς) = {1, 2, 3, . . . , 2r}.

1. Consider m = 2.
When r = 1 and ∀n, the r-dynamic chromatic number is given by,

( ) ( ) {1,2}: 1 2 .j jv v j nς ς′ ′′= = ∀ ≤ ≤

Therefore, the minimum number of colors required is 2. When r = Δ(D2(Ln)), the r-dynamic chromatic number is 
given by, for n = 1, r = Δ(D2(L1)) = 2

{ }
{ }2 1

for , 1 21,2
: ( ( ))

for , 1 23,4
j

j
V

v j

v

n
D L

j n
ς

∀ ≤ ≤=  ∀

′

≤′ ≤′

Therefore, the minimum number of colors required is 4. For n = 2, r = Δ(D2(L2)) = 4

{ }
{ }2 2

for , 1 21,2,3,4
: ( ( ))

for 1 25,6,7,8 ,
j

j

j n
V D L

n

v

v j
ς

∀ ≤ ≤=  ∀

′

≤′ ≤′

Therefore, the minimum number of colors required is 8. For n ≥ 3, r = Δ(D2(Ln)) = 6

{ }
{ }2

for , 1 21,2,3,4,5,6
: ( ( ))

for , 1 27,8,9,10,11,12
j

n
j

v

v

j n
V D L

j n
ς

∀ ≤ ≤=  ∀ ≤ ≤

′

′ ′

Therefore, the minimum number of colors required is 12.
2. Consider m = 3.

When r = 1 and ∀n, the r-dynamic chromatic number is given by,

( ) ( ) ( ) {1,  :2} 1 2j j jv v v j nς ς ς′ ′′ ′′′= = = ∀ ≤ ≤

Therefore, the minimum number of colors required is 2.
When r = Δ(D3(Ln)), the r-dynamic chromatic number is given by, for n = 1, r = Δ(D3(L1)) = 3

{ }
{ }
{ }

3 1

for , 1 21,2
for , 1 23,4: ( ( ))
for , 1 25,6

j

j

j

j n

j nV L
j

v

v

v
D

n
ς

∀ ≤ ≤


∀ ≤ ≤= 


′

′′

′′′ ∀ ≤ ≤

Therefore, the minimum number of colors required is 6. For n = 2, r = Δ(D3(L2)) = 6

{ }
{ }
{ }

3 2

 for , 1 21,2,3,4
 for , 1 25,6,7,8: ( ( ))

 for , 1 29,10,11,12

j

j

jv

j n
j nV D L
j n

v
vς

∀ ≤ ≤
 ∀ ≤ ≤


′
′= ′
′′


∀ ≤ ≤ ′

Therefore, the minimum number of colors required is 12. For n ≥ 3, r = Δ(D3(Ln)) = 9
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{ }
{ }
{ }

3

 for , 1 21,2,3,4,5,6
 for , 1 27,8,9,10,11,12: ( ( ))

 for , 1 213,14,15,16,17,18

j

j

j
nL

v
v

j n
j nV

v
D

j n
ς

∀ ≤ ≤
 ∀ ≤ ≤


′
′= ′
′′


∀ ≤ ≤ ′

Therefore, the minimum number of colors required is 18.
3. For m-shadow graph, when r = 1 and ∀n, the r-dynamic chromatic number is given by,

   
( )( ) ( ) ( ) {1,2}: 1 2 .m

j j jv v v j nς ς ς′ ′′= = = = ∀ ≤ ≤

Therefore, the minimum number of colors required is 2.
When r = Δ(Dm(Ln)), the r-dynamic chromatic number is given by, for n = 1, r = Δ(Dm(L1)) = m

{ }
{ }

{ } ( )

for ( ), 1 21,2
for ( ), 1 23,4

: ( ( ))

for , 1 22 1,2

m n

m

j

j

j

j nv

v j n
V D L

v j nm m

ς

∀ ≤ ≤


∀ ≤ ≤
= 

 −

′

∀ ≤ ≤

′



′



Since r = m, the minimum number of colors required is 2r. For n = 2, r = Δ(Dm(L2)) = 2m

{ }
{ }

{ }

2

( )

for ( ), 1 21,2,3,4
for ( ), 1 25,6,7,8

: ( ( ))

for , 1 24 3,4 2,4 1,4

j

j
m

m
j

j n

j n
V D L

v j nm m m

v

m

v

ς

∀ ≤ ≤


∀ ≤ ≤
= 

 ∀ ≤−

′

′′

≤− −



Since r = 2m, the minimum number of colors required is 2r. For n ≥ 3, r = Δ(Dm(Ln)) = 3m

{ }
{ }

{ } ( )

for ( ), 1 21,2,3,4,5,6
for ( ), 1 27,8,9,10,11,12

: ( ( ))

for , 1 26 5,6 4,6 3,6 2,6 1,6

j

j
m n

m
j

n

v j n

j
V D L

v j nm m m m m m

v
ς

∀ ≤ ≤


∀ ≤ ≤
= 

 ∀ ≤ ≤− − − − −

′

′



′



Since r = 3m, the minimum number of colors required is 2r.
Thus, χr(Dm(Ln)) ≤ 2r. In accordance with Lemma 3.1, we have χr(Dm(Ln)) ≥ 2r.
Hence, χr(Dm(Ln)) = 2r for 1 ≤ r ≤ Δ(Dm(Ln)).
Lemma 3.2. For a tadpole graph Tn,p, the lower bound for the r-dynamic chromatic number of the m-shadow graph 

of the tadpole graph Dm(Tn,p) is

,( ( )) min{ 2, }r m n pD T r r mχ ≥ + +

Proof. Let ( ) ( )
,( ( )) { , , , , , , , :1

j k k k

m m
m n p nj n n p pj pV D T v v v v v v j n′ ′′ ′ ′′= ≤ ≤   and 1 ≤ k ≤ p} be the vertex set and 

1 1 1 1,( ( )) {{ , :1 ; ;1 1;1 1} { , :1 ; ; ; }}
j j k k j k

a x a x a x a x
m n p n n p p n n n pE D T v v v v a m a x m j n k p v v v v a m a x m j n k p

+ +
= ≤ ≤ ≤ ≤ ≤ ≤ − ≤ ≤ − ∪ ≤ ≤ ≤ ≤ = =     

1 1 1 1,( ( )) {{ , :1 ; ;1 1;1 1} { , :1 ; ; ; }}
j j k k j k

a x a x a x a x
m n p n n p p n n n pE D T v v v v a m a x m j n k p v v v v a m a x m j n k p

+ +
= ≤ ≤ ≤ ≤ ≤ ≤ − ≤ ≤ − ∪ ≤ ≤ ≤ ≤ = =  b e  
the edge set whose corresponding cardinalities are ,| ( ( )) | ( )m n pV D T m n p= +  and 2

,| ( ( )) | ( ),m n pE D T m n p= +  
respectively. The vertex v'j are adjacent to ( ), ,..., m

k k kv v v′′ ′′′  only where , ,..., m
j j jv v v′′ ′′′  are adjacent. The minimum degree is 

,( ( ))m n pD T mδ =  and the maximum degree is ,( ( )) 3 .m n pD T m∆ =  
Let T be an undirected simple connected graph. By the definition of m-shadow graph, every ,

j k

i i
n pv v  (for 1 ≤ j ≤ n 

and 1 ≤ k ≤ p) vertex in the ith copy of T is adjacent to 1 2 ( ) 1 2 ( ), , , , , , ,
l l l q q q

i i m i i m
n n n p p pv v v v v v+ + + +

   of all 1, 2, , thi i m+ +   copies 



of T, wherever 
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,
j k

i i
n pv v  are adjacent.

For all m-copies of Tn,p, when r lies in the range, 1 ≤ r ≤ m − 1, the minimum number of colors required to satisfy 
r-adjacency are r + 2, whereas for ,(( ( ))),m n pm r D T≤ ≤ ∆  minimum of r + m colors are required. Considering the 
r-dynamic coloring condition, we take min{ 2, }r r m+ +  to be the lower bound for Dm(Tn,p).

1pv′

2pv′

1nv′

2nv′

1pv′′

2pv′′

1nv′′

2nv′′
3nv′

2pv′′′

1nv′′′

2nv′′′ 3nv′′′

1pv′′′

3nv′′

Figure 2. (D3(T3,2))-m-shadow graph of tadpole graph T3,2 

For example, when m ≥ 2 and r = 2, we have min{4,2 + m} to be 4.
(i) When n is odd and for all p, assign the colors (say) ς1, ς2, ς3 to the vertices ( 1), , ,

j

m
nj nj nv v v −′ ′′′

  and ( 1), , , .
k k k

m
p p pv v v −′ ′′′

  
To achieve 2-dynamic coloring, a new color, ς4, is required along with the colors ς2 and ς3, which are assigned 
to the vertices ( ) ( 1),, ,, , , , ,

j j j k k k

iv m m
n n n p p pv v v v v v −′′ ′ ′′′

   (1 ≤ j ≤ n) and (1 ≤ k ≤ p).
(ii) When n is even and for all p, to achieve proper coloring and satisfy 2-dynamic coloring, assign the colors

ς1 and ς2 to the vertices ( 1), , ,
j j j

m
n n nv v v −′ ′′′

 , ( 1) ,, , ,
k k k

m
p p pv v v −′ ′′′

  and colors ς3 and ς4 to the vertices ( ), , ,
j j j

iv m
n n nv v v′′

 , 
( ), , , ,

k k k

iv m
p p pv v v′′

  (1 ≤ j ≤ n), and (1 ≤ k ≤ p).
Theorem 3.2. Let r, m ≥ 2, n ≥ 3, and p ≥ 1 be any positive integers. Then, the r-dynamic chromatic number of the 

m-shadow graph of the tadpole graph Dm(Tn,p) is
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,

,

,

,

3 1, 1(mod2), ,
7 4, 1(mod3), ,

5, 1(mod3), 7,  and 2
8 ( ( )), 1(mod3), 8,  and 2

( ( )), 2(mod3), 8,  and 2
10 ( ( )), 5, , 2
2 1, 0(mod2),

( ( ))

m n p

m n p

m n p

mr n p

r n p m
r n p m
r n n p m
r D T n n p m
r D T n n p m
r D T n p m

r r n p

D Tχ

= = ∀
= = ∀
= = ∀ ≥ =
= ∆ = ∀ ≥ =
= ∆ = ∀ ≥ =
= ∆ = ∀ =
= = ∀

=

,

,

, ,

,
2, ,  and 
4, 4 and 2(mod3), ,
3, 1(mod3), , 7 and 1,2 and 1,2(mod3)
3, 2(mod3), ,

3 ( ( )), 0(mod3), , 2
3 ( ( )) 4, 0(mod3), , 3

( ( )) 3 ( (

m n p

m n p

m n p m n p

m
r n p m
r n n p m

r m r n m n p p
r n p m

r D T n p m
r D T n p m

D T r D T

= ∀
= = = ∀

+ = = ∀ ≥ = =
= = ∀
≤ ≤ ∆ = ∀ =
≤ ≤ ∆ − = ∀ ≥

∆ − ≤ ≤ ∆

, ,

)), 3, , 3
1 3, 4, ,

3, 1(mod3), 7, 0(mod3),
2 5, 5, ,

4 ( ( )) 3 ( ( )), 3, , 3
2( 1) 5, 1(mod3), 7, , 3
8( 3) 5, 4, ,

5

m n p m n p

n p m
r m r n p m

r n n p m
r m r n p m

m D T r D T n p m
m r n n p m
m r n p m





















 = ∀ ≥
 + + = = ∀


= = ∀ ≥ =
 + + = = ∀

∆ − ≤ ≤ ∆ ∀ > ≥
+ = = ∀ ≥ ≥

+  = = ∀  







Proof. To ascertain the r-dynamic chromatic number of Dm(Tn,p), we have to prove the theorem and divide it into 
some cases.

Case 1. 1, 1(mod2), , .r n p m= ≡ ∀  
To ascertain the r-dynamic chromatic number of Dm(Tn,p), we have to prove that χr(Dm(Tn,p)) ≥ 3 and χr(Dm(Tn,p)) ≤ 

3. In accordance with Lemma 3.2, we have χr(Dm(Tn,p)) ≥ 3. So, it completes the proof of lower bound. Then, we have to
prove the upper bound. To prove χr(Dm(Tn,p)) ≤ 3, let us define a function ς : V (Dm(Tn,p)) → S(ς), where S(ς) = {1, 2, 3}.

For this case, we divide into two subcases, namely Subcase 1 and Subcase 2. 
Subcase 1. r = 1, n ≡ 1(mod2), p ≡ 1(mod2) 

2( 3) 2( 3) 2( 3)

1( 3) 1( 3) 1( 3)

1

,

( )

( )

(

)

2
)

(

, , , , 1

, , , ,  is odd
, , , , 1

, , , ,  is 

: ( ( ))

j mod j mod j mod

j mod j mod j mod

m
n n n

m
pk odd pk odd pk odd

m
n n n

m
pk even pk even pk eve

m n p

n

v v v j n

v v v k
v v v

v

V D T j n

v v k

ς

ςς

≡ ≡ ≡

≡ ≡ ≡

= = =

= = =

′ ′′ ∀ ≤ ≤

′ ′′ ∀
′ ′′ ∀

∀

= ≤ ≤

′ ′′









0( 3) 0( 3) 0( 3)

( )
3

even
, , , , 1

j mod j mod j mod

m
n n nv v v j nς

≡ ≡ ≡








 ′ ∀ ≤ ≤ ′ ′



Subcase 2. r = 1, n ≡ 1(mod2), p ≡ 0(mod2)

1( 3) 1( 3) 1( 3)

2( 3) 2( 3) 2( 3)

1

,

( )

( )
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Based on the lower bound and the upper bound, we have 3 ≤ (Dm(Tn,p)) ≤ 3. Now, it is easy to establish the 
r-adjacency, hence χr(Dm(Tn,p)) for r = 1, n ≡ 1(mod2), ∀p, m.

Case 2. For 4 ≤ r ≤ 5, n ≡ 1(mod3), ∀p, m.
To ascertain the r-dynamic chromatic number of (Dm(Tn,p)), we have to prove that χr(Dm(Tn,p)) ≥ 7 and χr(Dm(Tn,p)) ≤ 

7. In accordance with Lemma 3.2, we have χr(Dm(Tn,p)) ≥ 7. So, it completes the proof of lower bound. Then, we have to
prove the upper bound. To prove χr(Dm(Tn,p)) ≤ 7, let us define a function ς: V (Dm(Tn,p)) → S(ς), where S(ς) = {1, 2, 3, …,
7}. For this case, we divide into two subcases, namely Subcase 3 and Subcase 4.

Subcase 3. r = 4, n ≡ 1(mod3), ∀n ≥ 7, p, m.
Consider m = 2 when r = 4, n = 7, 10, 13, … and ∀p
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Consider m-shadow graph when r = 4, n = 7, 10, 13, … and ∀p
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Subcase 4. r = 5, n ≡ 1(mod3), ∀n ≥ 7, p,m.
Consider m = 2  when r = 5, n = 7, 10, 13, … and ∀p
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Consider m-shadow graph when r = 4, n = 7, 10, 13, … and ∀p
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Based on Subcases 3 and 4, a minimum of seven colors is required to satisfy r-adjacency, χr(Dm(Tn,p)) ≤ 7. In 
accordance with the lower bound and the upper bound, we have 7 ≤ χr(Dm(Tn,p)) ≤ 7. Now, it is easy to establish the 
r-adjacency, hence χr(Dm(Tn,p)) = 7 for 4 ≤ r ≤ 5, n ≡ 1(mod3), ∀p, m.

Case 3. r = Δ(Dm(Tn,p)), n ≡ 1(mod3), ∀p,m = 2 and r = Δ(Dm(Tn,p)), n ≡ 2(mod3), ∀n ≥ 8, ∀p, m = 2. 
In accordance with Lemma 3.2, we have χr(Dm(Tn,p)) ≥ 8. So, it completes the proof of lower bound. Then, we have 

to prove the upper bound. To prove χr(Dm(Tn,p)) ≤ 8, let us define a function ς: V (Dm(Tn,p)) → S(ς), where S(ς) = {1, 2, 3,  
…, 8}. For this case, we divide into two subcases, namely Subcase 5 and Subcase 6.

Subcase 5. m = 2, r = Δ(Dm(Tn,p)), n ≡ 1(mod3), ∀p.
When m = 2, r = 6, n = 4, 7, 10, …, and ∀p.
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Subcase 6. m = 2, r = Δ(D2(Tn,p)), n ≡ 2(mod3), ∀n ≥ 8, p.
When m = 2, r = 6, n = 8, 11, 14, … and ∀p.
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Based on Subcases 5 and 6, a minimum of eight colors is required to satisfy r-adjacency, χr(Dm(Tn,p)) ≤ 8. In 
accordance with the lower bound and the upper bound, we have 8 ≤ χr(Dm(Tn,p)) ≤ 8. Now, it is easy to establish the 
r-adjacency, hence χr(Dm(Tn,p)) = 8 for r = Δ(Dm(Tn,p)), n ≡ 1(mod3), ∀p, m = 2 and r = Δ(Dm(Tn,p)), n ≡ 2(mod3), ∀n ≥ 8
∀p, m = 2.

Case 4. m = 2, r = Δ(D2(T5,p)), n = 5, ∀p. 
In accordance with Lemma 3.2, we have χr(Dm(Tn,p)) ≥ 10. So, it completes the proof of lower bound. Then, we 

have to prove the upper bound. To prove χr(Dm(Tn,p)) ≤ 10, let us define a function ς: V (Dm(Tn,p)) → S(ς) where (ς) = {1, 2, 
3, …, 10}. 
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Thus, a minimum of 10 colors is required to satisfy r-adjacency, χr(Dm(Tn,p)) ≤ 10. Based on the lower bound and 
the upper bound, we have 10 ≤ χr(Dm(Tn,p)) ≤ 10. So, we can conclude that χr(Dm(Tn,p)) = 10 for m = 2, r = Δ(D2(T5,p)), n = 5, 
∀p .

Case 5. r = 1, n ≡ 0(mod2), ∀p, m.
To ascertain the r-dynamic chromatic number of Dm(Tn,p), we have to prove that χr(Dm(Tn,p)) ≤ 2r and χr(Dm(Tn,p)) 

≥ 2r. In accordance with Lemma 3.2, we have χr(Dm(Tn,p)) ≥ 2r. To prove χr(Dm(Tn,p)) ≤ 2r, let us define a function ς: V 
(Dm(Tn,p)) → S(ς) where (ς) = {1,2,3, …, 2r}. 

Subcase 7. r = 1, n ≡ 0(mod2), p ≡ 1(mod2).
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Subcase 8. r = 1, n ≡ 1(mod2), p ≡ 0(mod2).
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Subcase 9. r = 2, ∀n, p, m.
1. Consider m = 2.

When r = 2, n ≡ 0(mod2), ∀p.
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When r = 2, n ≡ 1(mod2), ∀p
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2. Consider m-shadow graph.
When r = 2, n ≡ 0(mod2), ∀p
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When r = 2, n ≡ 1(mod2), ∀p
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Subcase 10. r = 4, n = 4 and n ≡ 2(mod3), ∀p,m.
Consider m = 2, when r = 4, n = 4, ∀p
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Consider m-shadow graph, when r = 4, n = 4, ∀p
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Consider m = 2, when r = 4, n = 5, 8, 11, …, ∀p
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Consider m-shadow graph, when r = 4, n = 5, 8, 11, …, ∀p
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Thus, a minimum of 2r colors is required to satisfy r-adjacency, χr(Dm(Tn,p)) ≤ 2. In accordance with the lower 
bound and the upper bound, we have 2 ≤ χr(Dm(Tn,p)) ≤ 2, hence χr(Dm(Tn,p)) = 2 for r = 4, n = 4 and n ≡ 2(mod3), ∀p, m. 

Case 6. r = 3, n ≡ 1(mod3), ∀ m, n ≥ 7 and p = 1, 2 and p ≡ 1, 2(mod3); r = 3, n ≡ 2(mod3) ∀ p, m; 3 ≤ r ≤ 
Δ(Dm(Tn,p)), n ≡ 0(mod3), ∀ p,m = 2; 3 ≤ r ≤ Δ((Dm(Tn,p)) − 4, n ≡ 0(mod3), ∀ p, m ≥ 3 ; Δ(Dm(Tn,p)) − 3 ≤ r ≤ Δ(Dm(Tn,p)), 
n =3, ∀ p, m ≥ 3.

To ascertain the r-dynamic chromatic number of Dm(Tn,p), we have to prove that, χr(Dm(Tn,p)) ≤ r + m and χr(Dm(Tn,p)) 
≥ r + m. In accordance with Lemma 3.2, we have, χr(Dm(Tn,p)) ≥ r + m. It completes the proof of lower bound. Then, we 
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have to prove the upper bound. To prove, χr(Dm(Tn,p)) ≤ r + m, let us define a function, ς : V(Dm(Tn,p)) → S(ς), where S(ς) 
= {1, 2, 3, … , r + m}. For this case, we divide into five subcases.

Subcase 11. r = 3, n ≡ 1(mod3), ∀m, n ≥ 7, p = 1, 2 and p ≡ 1, 2(mod3).
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Consider m = 3, when r = 3, n = 7, 10, 13, … and p = 1, 2, 4, 5, 7, 8, …
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Consider m-shadow graph, when r = 3, n = 7, 10, 13, … and p = 1, 2, 4, 5, 7, 8, …
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Subcase 12. r = 3, n ≡ 2(mod3), ∀p, m.
Consider m = 2, when r = 3, n = 5, 8, 11, … and ∀p
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Consider m-shadow graph, when r = 3, n = 5, 8, 11, … and ∀p
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Subcase 13. m = 2, 3 ≤ r ≤ Δ(D2(Tn,p)), n ≡ 0(mod3), ∀p.
When r = 3, n = 3, 6, 9, … and ∀p

{ } ( )
{ } ( )2 ,

, , 1  and 1

,

for 1, 2,3
: ( ( ))

for 1 3, , 1  and4  ,5

j k

j k

n

n p

n p
p

v v j n k p

v v j n k
T

p
V Dς

= 


′ ′ ∀ ≤ ≤ ≤ ≤

′′ ′′ ∀ ≤ ≤ ≤ ≤

When r = Δ(D2(Tn,p)) = 6, n = 3, 6, 9, … and ∀p
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Subcase 14. m ≥ 3, 3 ≤ r ≤ Δ(Dm(Tn,p)) − 4, n ≡ 0(mod3), ∀p.
Consider m = 3, when r = 3, n = 3, 6, 9, … and ∀p
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Consider m = 3, when r = Δ(D3(Tn,p)) − 4 = 5, n = 3, 6, 9, … and ∀p
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Consider m-shadow graph, when r = 3, n = 3, 6, 9, … and ∀p
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Consider m-shadow graph, when r = Δ(Dm(Tn,p)) − 4, n = 3, 6, 9, … and ∀p
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Subcase 15. m ≥ 3, Δ(Dm(Tn,p)) − 3 ≤ r ≤ Δ(Dm(Tn,p)), n = 3, ∀p.
Consider m = 3, when r = Δ(D3(Tn,p)) − 3 = 6, n = 3 and ∀p
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Consider m = 3, when r = Δ(D3(Tn,p)) = 9, n = 3 and ∀p
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Consider m-shadow graph, when r = Δ(Dm(Tn,p)) − 3, n = 3 and ∀p
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Consider m-shadow graph, when r = Δ(Dm(Tn,p)), n = 3 and ∀p
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Based on Subcase 11 until Subcase 15, a minimum of r + m colors is required to satisfy r-adjacency, χr(Dm(Tn,p)) ≤ 
r + m. In accordance with the lower bound and the upper bound, we have r + m χr(Dm(Tn,p)) ≤ r + m, hence χr(Dm(Tn,p)) = 
r + m for m ≥ 3 Δ(Dm(Tn,p)) – 3 ≤ r ≤ Δ(Dm(Tn,p)), n = 3 and ∀p.

Case 7. For r = 3 , n = 4, ∀p and for r = 3, n ≡ 1(mod3), ∀ n ≥ 7, p ≡ 0(mod3). 
To ascertain the r-dynamic chromatic number of Dm(Tn,p), we have to prove that χr(Dm(Tn,p)) ≥ r + m + 1 and 

χr(Dm(Tn,p)) ≤ r + m + 1. In accordance with Lemma 3.2, we have χr(Dm(Tn,p)) ≥ r + m + 1. It completes the proof of lower 
bound. Then, we have to prove the upper bound. To prove χr(Dm(Tn,p)) ≤ r + m + 1, let us define a function ς : V(Dm(Tn,p)) 
→ S(ς), where S(ς) = {1, 2, 3, … , r + m +1}.

Subcase 16. r = 3 , n = 4, ∀p.
Consider m = 2, when r = 3, n = 4 and ∀p, m
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Consider m-shadow graph, when r = 3, n = 4 and ∀p
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Subcase 17. r = 3, n ≡ 1(mod3), ∀ n ≥ 7, p ≡ 0(mod3).
Consider m = 2, when r = 3, n = 7, 10, 13, … and p = 3, 6, 9, …
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Consider m-shadow graph, when r = 3, n = 7, 10, 13, … and p = 3, 6, 9, …
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Based on Subcases 16 and 17, a minimum of r + m + 1 colors is required to satisfy r-adjacency, χr(Dm(Tn,p)) ≤ r + 
m + 1. In accordance with the upper bound and the lower bound, we have r + m + 1 ≤ χr(Dm(Tn,p)) ≤ r + m + 1, hence 
χr(Dm(Tn,p)) = r + m + 1 for r = 3, n ≡ 1(mod3), ∀ n ≥ 7, p ≡ 0(mod3). 

Case 8. r = 5, n = 5, ∀p, m.
To ascertain the r-dynamic chromatic number of Dm(Tn,p), we have to prove that χr(Dm(Tn,p)) ≥ r + m + 2 and 

χr(Dm(Tn,p)) ≤ r + m + 2. In accordance with Lemma 3.2, we have χr(Dm(Tn,p)) ≥ r + m + 2. It completes the proof of lower 
bound. Then, we have to prove the upper bound. To prove χr(Dm(Tn,p)) ≤ r + m + 2, let us define a function ς : V(Dm(Tn,p)) 
→ S(ς), where S(ς) = {1, 2, 3, … , r + m +2}.

Consider m = 2, when r = 5, n = 5 and ∀p

{ } ( )
{ } ( )2 ,

, , 1  and 1

, , 1  and 

for 1, 2,3, 4,5
: ( ( ))

for 6,7,8,9 1
j k

j k

p

n p

n

n p

v v j n k p
T

n
V

v v j k p
Dς



′ ′ ∀ ≤ ≤ ≤ ≤

′′ ′′ ≤



∀ ≤
=

≤



 ≤

Consider m-shadow graph, when r = 5, n = 5 and ∀p
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Thus, a minimum of r + m + 2 colors is required to satisfy r-adjacency, χr(Dm(Tn,p)) ≤ r + m + 2. In accordance with 
the upper bound and the lower bound, we have r + m + 2 ≤ χr(Dm(Tn,p)) ≤ r + m + 2, hence χr(Dm(Tn,p)) = r + m + 2 for r = 
5, n = 5, ∀p, m. 

Case 9. m ≥ 3, Δ(Dm(Tn,p)) − 3 ≤ r ≤ Δ(Dm(Tn,p)), ∀n > 3, p. 
To ascertain the r-dynamic chromatic number of Dm(Tn,p), we have to prove that χr(Dm(Tn,p)) ≥ 4m and χr(Dm(Tn,p)) ≤ 

4m. In accordance with Lemma 3.2, we have χr(Dm(Tn,p)) ≥ 4m. It completes the proof of lower bound. Then, we have to 
prove the upper bound. To prove χr(Dm(Tn,p)) ≤ 4m, let us define a function ς : V(Dm(Tn,p)) → S(ς), where S(ς) = {1, 2, 3, 
… , 4m}. 

Consider m = 3, when r = Δ(Dm(Tn,p)) − 3 = 6, n = 4, 5, 6, … and ∀p  
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Consider m = 3, when r = Δ(Dm(Tn,p)) = 9, n = 4, 5, 6, … and ∀p
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Consider m-shadow graph, when r = Δ(Dm(Tn,p)) − 3, n = 4, 5, 6, … and ∀p
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Consider m-shadow graph, when r = Δ(Dm(Tn,p)), n = 4, 5, 6, … and ∀p
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Thus, a minimum of 4m colors is required to satisfy r-adjacency, χr(Dm(Tn,p)) ≤ 4m. In accordance with Lemma 3.2, 
we have χr(Dm(Tn,p)) ≥ 4m, hence χr(Dm(Tn,p)) = 4m for m ≥ 3, Δ(Dm(Tn,p)) − 3 ≤ r ≤ Δ(Dm(Tn,p)), ∀n > 3, p. 

Case 10. m ≥ 3, r = 5, n ≡ 1(mod3), ∀n ≥ 7, p.
To ascertain the r-dynamic chromatic number of Dm(Tn,p), we have to prove that χr(Dm(Tn,p)) ≥ 2m + 2 and 

χr(Dm(Tn,p)) ≤ 2m + 2. To prove χr(Dm(Tn,p)) ≤ 2m + 2, let us define a function ς : V(Dm(Tn,p)) → S(ς), where S(ς) = {1, 2, 3, 
…, r + 2m +2}. 

1. Consider m = 3, when r = 5, n = 7, 10, 13, … and ∀p
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2. Consider m-shadow graph, when r = 5, n = 7, 10, 13, … and ∀p
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Thus, a minimum of 2m + 2 colors is required to satisfy r-adjacency, χr(Dm(Tn,p)) ≤ 2m + 2. In accordance with 
Lemma 3.2, we have χr(Dm(Tn,p)) ≥ 2m + 2, hence χr(Dm(Tn,p)) = 2m + 2 for m ≥ 3, r = 5, n ≡ 1(mod3), ∀n ≥ 7, p. 

Case 11. r = 4, n = 5, ∀p,m. 
To ascertain the r-dynamic chromatic number of Dm(Tn,p), we have to prove that ,
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2. Consider m-shadow graph, when r = 4, n = 5, ∀p
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Thus, on generalizing, a minimum of 8( 3)
5

m + 
  

 colors is required to satisfy r-adjacency, ,
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In accordance with Lemma 3.2, we have ,
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 hence ,
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 for r = 4, n = 5, 

∀p, m.

4. Concluding remarks
We have studied the r-dynamic chromatic number of the ladder graph and the tadpole graph using the m-shadow

operation of graphs. Further, we are working on the r-dynamic coloring of various graphs in the ladder graph family 
using the block circulant matrix approach. Since obtaining the exact value of the r-dynamic chromatic number is 
considered a nondeterministic polynomial time-complete problem, solving this problem is still widely open. Therefore, 
we propose the following open problem:

• Determine the r-dynamic chromatic number of other special graph operations.
• Characterize the existence of r-dynamic coloring of any graph.
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