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Abstract: In this work, we investigate the local and semi-local convergence of a harmonic mean Newton-type fourth-
order technique for estimating the locally unique solutions of nonlinear systems in Banach spaces. The local analysis is 
established in previous works under assumptions reaching the fifth derivative of the involved operator. Therefore, the 
applicability of the method is restricted to solving nonlinear equations containing operators that are at least five times 
differentiable. However, this method may converge even if these assumptions are not satisfied. Other limitations include 
the lack of a priori error estimates and the isolation of the solution results. The local analysis in this work is shown using 
only the first derivative of the method. Moreover, a priori estimates on the error distances and uniqueness results are 
provided based on generated continuity assumptions on the Fréchet derivative of the operator. Furthermore, the more 
interesting semi-local case not studied previously is developed by means of majorizing sequences. The analysis in both 
cases is given not in the finite-dimensional Euclidean but in the more general setting of Banach spaces. Some numerical 
tests are performed to validate the theoretical results further.
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1. Introduction
Let S1 and S2 be Banach spaces, and let S denote a nonempty and open subset of the space S1. Moreover, the 

notation L(S1, S2) denotes the space of continuous operators from S1 into S2, which are linear. Furthermore, H is an 
operator between S and S2, which is differentiable according to Fréchet.

A multitude of applications from diverse fields is governed by mathematical modeling [1-4]. In particular, the 
applications are reduced to

( ) 0.H x =

The determination of a solution x* ∈ S of (1) is a very challenging undertaking in general. The analytical form 
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of x* is most desirable. However, that is fulfilled only on rare occasions. Thus, iterative solution methods have been 
developed, when starting from a certain point x0 ∈ S, a sequence is generated that approximates x* (see, for example, [4-
7]).

The most popular method is Newton’s method (NM) defined for each m = 0, 1, 2, ... by

1
1 ( ) ( ).m m m mx x H x H x−
+ ′= −

The convergence order (CO) for NM is quadratic [5]. In order to increase convergence order numerous methods 
have been developed based on geometrical or algebraic considerations (see [8-14] and references cited therein).

Among those, we select the two-step Harmonic mean method (TSHM) given as
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The convergence order of TSHM was established to be four in [12]. This method is the generalization of one of 
the members of the family of higher-order multi-point methods based on the power mean for solving a single nonlinear 
equation by Babajee et al. [15]. The benefit of using this method is that it does not require the evaluation of second- or 
higher-order Fréchet derivatives. Such derivatives are costlier from a computational point of view. This property of a 
method makes it useful to solve large-scale systems of nonlinear equations. The performance of the comparison with 
other methods is well explained in [12]. The operator H' satisfies generalized continuity conditions, which include the 
Lipschitz or Hölder continuity as special cases [2]. These properties of the operators H and H' are used in conditions 
(C1)-(C3) and (H1)-(H5), which are stated before the main theorems.

The following problems-limitations constitute our motivation for writing this article:
(P1) S1 = S2 = R j.
(P2) The operator H must be at least five times differentiable. Notice that only H' appears on the method.
(P3) There is no advanced knowledge of how many iterations should be found to achieve pre-decided accuracy. 

That is, computable upper and lower bounds on the norms ||xm +1 − xm || or ξm = ||xm − x*|| are not available.
(P4) A computable uniqueness domain for x* is not determined.
(P5) The results are only local.
(P6) The selection of the starting guess x0 is very challenging.
According to the problem (P2), there exist even simple scalar equations that cannot be solved using TSHM. As an 

example, let S be any open interval containing the numbers 0 and 1. Define the real function:

4 7 6log( ) 6 6 , 0
( )

0,                              0
f

τ τ τ τ τ
τ

τ
 + − ≠

= 
=
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Notice that f (1) = 0. But the function f (5)(τ) is not continuous at τ = 0. Thus, the result in [12] cannot be applied, 
although TSHM may converge.

Similar problems exist in the application of other high-convergence order methods [5, 6, 8-11, 15]. The novelty of 
our article is that the applicability of TSHM is extended to local as well as semi-local convergence by relying only on F 
and F', which are on (3), and the concept of w-continuity [2].

In particular, extensions to problems (P1)-(P6) are:
(F1) The convergence takes place in a Banach space.
(F2) Operator H is assumed to be only once differentiable. Notice also that only the first derivative of H appears on 

TSHM. Moreover, the w-continuity conditions are very weak and cover a wide range of problems.
(F3) We know in advance the iterations needed to get pre-decided accuracy.
(F4) Some computable uniqueness region is specified.
(F5) The new results are local and semi-local.
(F6) The radius of convergence is determined, making it possible to select initial points starting from which the        

convergence to x* is assumed.
(F7) The convergence order is recovered by the formulas: order of computational convergence (OCC) and order of        

approximate convergence (OAC), defined respectively by
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where di = xi − x* and 1.j j jd x x −= −
Notice that no high-order derivatives are needed but only the iterates and x*. Moreover, in the case of OAC, the 

iterate x* is not involved.
Let k be a fixed natural number. Then, these results also extend the application of the extended TSHM (ETSHM) 

given as
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The notation zi = zi(xn) shall also be used. It was shown in [12] that the convergence order is 2k + 4, k = 1, 2, ... . 
Although our approach is employed to handle TSHM and ETSHM, it also applies to other methods requiring linear 
operators with inverses, since it is so general and does not really depend on these two methods.

The convergence analysis for TSHM and ETSHM is developed in Section 2 and Section 3, respectively. Numerical 
tests and conclusions appear in Section 4 and Section 5, respectively.
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2. Convergence for TSHM
In what follows, the local and semi-local convergence is studied. The former relies on some real functions and the 

latter on the concept of a majoring sequence [16].

2.1 Local convergence

It is appropriate to introduce some real functions on the interval D = [0, ∞). Suppose:
(i) There exists a continuous and nondecreasing (CN) real function ϕ 0 on the interval D such that the equation        

ϕ 0(τ) − 1 has the smallest zero δ ∈ D − {0}. Set D1 = [0, δ).
(ii) There exists a CN real function ϕ  on the interval D1, such that the equation h1(τ) − 1 = 0 has a R1 ∈ D1 − {0}, 

where
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admits the smallest solution δ1 ∈ D1 − {0} where
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Set δ2 = min{δ, δ1}and D2 = [0, δ2).
(iv) The equation h2(τ) − 1 has the smallest solution R2 ∈ D2 − {0}, where
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The parameter R is a convergence radius for TSHM (see Theorem 2.1). Set also D3 = [0, R). The definition (8) and 

(8)
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D3 give each τ ∈ D3
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The symbols U[x*, r], and U[x, r] represent the open and closed ball in S1, respectively, with center x ∈ S1 and 
radius r > 0.

The functions φ0, φ, and the radius R are connected to the operators on TSHM if x* ∈ S is a simple solution for the 
equation H(x) = 0 as follows.

Suppose:
(C1) ||H'(x*)−1(H'(u) − H'(x*))|| ≤ φ0(||u − x*||) for each u ∈ S. Set S0 = S ∩ U(x*, δ).
(C2) ||H'(x*)−1(H'(u2) − H'(u1))|| ≤ φ(||u2 − u1||) for each u1, u2 ∈ S0.
(C3) U [x*, R] ⸦ S.
We are equipped to show the local convergence of TSHM.
Theorem 2.1 Under the conditions (C1)-(C3), further suppose that the starting point x0 ∈ U (x*, R) − {x*}. Then, the 

iterates {xm} generated by TSHM are well defined in U(x*, R) − {x*}, and remain in U(x*, R) − {x*} for each m = 0, 1, 2, ... 
and *lim .mm

x x
→+∞

= . Moreover, the following assertions hold for each m = 0, 1, 2, ...
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and
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where the radius R is defined by the formula (8) and the functions h1 and h2 are as previously given.
Proof. Let u ∈ U(x*, R) − {x*} and ξm = ||xm − x*|| be an arbitrary point. By the conditions (C1) and (C3), it follows:
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In view of the estimate (15) and the standard lemma due to Banach on the existence of inverses for linear operators 
[3], we get that H'(u)−1 ∈ L(S2, S1) with
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In particular, H'(x0)
−1 ∈ L(S2, S1), since x0 ∈ U(x*, R) − {x*}. It follows from the first subset of the method TSHM 

that the iterate y0 exists, and we can write
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Summing up (18) and (19) in (17), we get
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Therefore, the iterate y0 ∈ U(x*, R) − {x*} and the assertion (13) hold for m = 0. Next, we establish its existence of 
B0

−1. It follows from (8), (10), (C2), and (20) that
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the iterate x1 is well-defined by the second substep of the TSHM, and we can write
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Hence, the iterate x1 ∈ U (x*, R) − {x*} and the assertion (14) holds if m = 0.
The induction for assertions (13) and (14) is finished by switching x0, y0, and x1 with xi, yi, and xi + 1 in the 

aforementioned computations. Then, by the estimation

1 ,j j Rξ µ ξ+ ≤ <

where µ = h2(||ξ0||) ∈ [0, 1), we deduce that the iterates xj +1 ∈ U(x*, R) − {x*} and *lim .jj
x x

→∞
= . 

Next, the uniqueness region is determined.
Proposition 2.2 Suppose: There exists a solution *( , )x U x ξ∈ U(x*, ξ ) of the equation H(x) = 0 for some ξ > 0 the condition 

(C1) holds on the ball U(x*, ξ ) and there exists ξ1 > ξ, such that
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Set S2 = S ∩ U[x*, ξ1]. Then, the only solution of the equation H(x) = 0 in the region S2 is x*.
Proof. Let 2y S∈  be a solution of the equation H(x) = 0. Consider the operator
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Remark 2.3 A possible choice for ξ = R provided that all the conditions of Theorem 2.1 hold.

2.2 Semi-local convergence

Let ψ0 and ψ be continuous and nondecreasing real functions defined on the intervals D and D1, respectively. 
Moreover, define the scaler sequences {am}, {βm} for t0 = 0, some s0 ≥ 0 and each m = 0, 1, 2, ... by

( )
( ) ( )0 0

m m
m

m m

ψ α β
ψ

ψ α ψ β
 +=  +

( ) ( )( )0 0
1
2m m mµ ϕ α ϕ β= +

( ) ( )
( )( ) ( )

2
0

1
0 0

13 13 15
8 4 1 2 1 1

mm m
m m m m

m m m

t
ψ αψ ψ

β β α
ψ α ψ α µ+

  +   
 = + + + −       − − −    

(26)

(27)

□

□



Volume 5 Issue 3|2024| 3321 Contemporary Mathematics
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These sequences are shown to be majorizing for TSHM (see Theorem 2.6). But first, a general auxiliary 
convergence result for these sequences is developed.

Lemma 2.4 Assume there exists t** ∈ [0, δ) so for each m = 0, 1, 2, ...,

( ) **
0 1, 1 and . m m m tψ α µ α< < <

Then,
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1  .m m mt tα β +≤ ≤ <
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Proof. It follows from the formula (28) and the conditions (29) that the assertion (30) holds. Then, the assertion (31) 
follows (30).

Remark 2.5
(i) The limit t* is the unique least upper bound of the sequences {αm}.
(ii) A possible choice for t** = ψ−1(1), provided that the function ψ0 is strictly increasing.
As in the local case, we connect the functions ψ0, ψ, and the limit t* to operators on TSHM, provided that there 

exists x0 ∈ S, such that H'(x0)
−1 ∈ L(S2, S1). Suppose:

(H1) 1
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(H2) ||H'(x0)
−1(H'(u) − H'(x0))|| ≤ φ0(||u − x0||) for each u ∈ S. Set S3 = S ∩ U(x0, δ).

(H3) ||H'(x0)
−1(H'(u2) − H'(u1))|| ≤ φ(||u2 − u1||) for each u1, u2 ∈ S3.

(H4) The conditions of the Lemma 2.4 are fulfilled and 
(H5) U [x0, t*] ⸦ S.
Next, the semi-local convergence of the TSHM is presented.
Theorem 2.6 Under the conditions (H1)-(H5) the iteration {xj} exists in U(x0, t*), stays in U(x0, t*), for each j = 0, 1, 2, 

... and converges to a solution x* ∈ U [ x0, t*] of the equation H(x) = 0, such that

* * ,  for each 0,1, 2, ,j jx x t j    α− ≤ − = …

Proof. Induction shall first establish the assertions
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1 1 .j j j jx y t β+ +− ≤ −

Formula (28) and the condition (H1) give
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implying the assertion (33) for j = 0 as well as that the iterate y0 ∈ U(x0, t ). As in the local case, but by exchanging x*, ϕ 0 
by x0, ψ0, respectively, we get

( ) ( )0
1 ,

2 1j
j

B H x
µ

′ ≤
−

and xj +1 exists by the second substep of TSHM. Moreover,

( ) ( )1

1
2 . 
3j j j j j jx y H x T A H x

−

+
 ′− = − 
 

We also need the estimates

( ) ( ) ( )1 1 12 3 1
3 2 2j j j j j j jH x T A H x I H x T B

− − − ′ ′ ′− = −  

( ) ( )1 11 3
2 j j j j jH x B H x T B

− − ′ ′= − 

and

( ) ( ) ( ) ( ) ( ) ( )21 13 3 3
4 2j j j j j j j jB H x T H x H y H x I s I s I ′ ′ ′ ′− = + − − − + −  

( ) ( ) ( )( ) ( )( )21 12 3 ,
4 2j j j j j jH x H y H x s I H x s I′ ′ ′ ′= + + − − −

so

( ) ( )( ) ( ) ( )1 21 13 2 3
4 2j j j j j j jH x B H x T I s s I s I

−
′ ′− = + + − − −

( ) ( ) ( )21 15 3
4 2j j jI s I s I s I= + − + − − −

( ) ( )213 15 ,
4 2j jI s I s I= + + − − −

(34)

(35)

(36)
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leading (36) to

( ) ( ) ( )2 1
1

1 13 15 .
2 4 2j j j j j jx y I s I s I B H x−

+
 − = + − − − 
 

Thus, we get

( ) ( ) ( ) ( )( )
2

1
0 0

1 13 1 1 35
2 4 2 21 1 2 1

j j
j j j j j

j j j

x y H x y x
ψ ψ

ψ α ψ α ξ+

    
     ′− ≤ + + − −    − − −     

( ) ( )
( )( ) ( )

2

0

0 0

13 13 15
8 4 2 11 1

jj j
j j

jj j

ψ αψ ψ
β α

µψ α ψ α

     +    = + + −     −− −     

1j jt β+= −

and

*
1 0 1 0 1 0 1 .j j j j j j j jx x x y y x t t t tβ β+ + + +− ≤ − + − ≤ − + − = <

Therefore, the assertion (31) holds and the iterate xj+1 ∈ U(x0, t* ).
By the first substep of TSHM, it follows

( ) ( ) ( ) ( )( )1 1
3
2j j j j j jH x H x H x H x y x+ + ′= − − −

( )( ) ( ) ( )( )1

1 10

3
2j j j j j j j jH x x x d x x H x y xρ ρ+ +′ ′= + − − − −∫

( )( ) ( ) ( )( )( ) ( ) ( )( )( )(1

1 0 0 1 0 00

3
2j j j j j j j jH x x x d H x H x x x H x H x H x y xρ ρ+ +′ ′ ′ ′ ′ ′= + − − + − − − + −∫

leading to

( ) ( ) ( )( )( )( ) ( )( )( )11
0 1 0 1 1 0 10

.31 1
2j j j j j j j j j jH x H x t d tψ α ρ α ρ α ψ α β α γ−

+ + + +′ ≤ + + − − + + − =∫

Consequently, we have

( ) ( ) ( ) ( )1 1
1 1 1 0 0 1

2
3j j j jy x H x H x H x H x

− −
+ + + +′ ′ ′ ′− ≤

(37)

(38)



Contemporary Mathematics 3324 | Ioannis K. Argyros, et al.

( )
1

1 1
0 1

2
3 1

j
j j

j

s t
t

γ

ϕ
+

+ +
+

≤ = −
−

and

1 0 1 1 1 0j j j jy x y x x x+ + + +− ≤ − + −

*
1 1 1 0 1 .j j j js t t t s t+ + + +≤ − + − = <

Thus, the induction for the assertions (33) and (34) is completed, and x*, yj ∈ U [x0, t*] for each j = 0, 1, 2, … .
Notice that the sequence {αj} is fundamentally convergent under the condition (H4). Therefore, the sequence {xj} is 

also fundamental in the Banach space S1. Thus, it is convergent to some x* ∈ U [x0, t*]. By letting j → ∞ in the estimate 
(38), the continuity of the operator gives H(x*) = 0. 

Next, the uniqueness of the solution region is specified.
Proposition 2.7 Suppose: There exists a solution 

_
x ∈ U(x0, r0) of the equation H(x) = 0 for some r0 > 0; the 

condition (H2) holds on the ball U(x0, r) and there exists r1 > r0, such that

( )
1

0 10
(1 ) 1. r dψ ρ ρ ρ− + <∫

Set S4 = S ∩ U [x0, r1]. Then, the point 
_
x is the only solution of the equation H(x) = 0 in the region S4.

Proof. Let 
_
y ∈ S4 be a solution of the equation H(x) = 0. Consider the operator

1

0
( ( )) . Q H x y x dρ ρ′= + −∫

Then, by (39) that

( ) ( )( ) ( ) ( )
1 11

0 0 0 0 0 0 0 10 0
(1 ) (1 ) 1,H x Q H x x x y x d r r dψ ρ ρ ρ ψ ρ ρ ρ−′ ′− ≤ − − + − ≤ − + <∫ ∫

Thus, we conclude that 
_
y = 

_
x.

Remark 2.8
(i) The point t* may be switched with δ or t** in the condition (H5).
(ii) Under Theorem 2.6, we can take 

_
x = x* and r0 = t* in Proposition 2.7.

3. Convergence for ETSHM
As in the local convergence of TSHM, some real functions are defined. Define the functions on interval D1 by

1

00

0

( ) 1 ( )

( ) ( )( ) 1
4(1 ( )) 1 ( )

( ) 1 ( )

a d

ab
q

c b

τ ϕ ρτ ρ

τ ϕ ττ
τ ϕ τ

τ τ

= +

 
= + − − 

= +

∫
1

00

0

( ) 1 ( )

( ) ( )( ) 1
4(1 ( )) 1 ( )

( ) 1 ( )

a d

ab
q

c b

τ ϕ ρτ ρ

τ ϕ ττ
τ ϕ τ

τ τ

= +

 
= + − − 

= +

∫

( ) 1 ( )c bτ τ= +

□

□

(39)
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and

2( ) ( ) ( ).d c hτ τ τ=

Assume: the equation d(τ) − 1 = 0 has the smallest solution in the interval (0, R]. Denote such a solution by R*. The 
condition (C3) is replaced by

( ) * *
3 , .C U x R S′   ⊂ 

Then, we have the local convergence analysis for ETSHM.
Theorem 3.1 Under the conditions (C1), (C2), and (C3)', the sequence {xm} is convergent to x*.
Proof. As in Theorem 2.1, we have in turn the estimates

( ) ( ) ( ) ( )( ) ( ) ( )1* * * * *
1 1 10

,i i iH z H z H x H x z x d H x H x  ρ ρ− − −
 ′ ′= − = + − − + ∫

so

( ) ( ) ( )( )( )11* * *
1 0 1 10

1i i iH x H z z x d z xϕ ρ ρ
−

− − −′ ≤ + − −∫

*
1 1i ia z x− −= −

and

( ) ( ) ( ) ( ) ( )11 * *
1 1

11 1
2m m i m m iM A H z s B H x H x H z

−−
− −

  ′ ′= + −       

( ) ( )
*1

1* *
0

1 1
4 1 1

m i
i

m m

a
z x

x x q x x
ϕ

ϕ
−

−

 
 ≤ + −
 − − − − 

( )* *
1 .ib R z x−≤ −

By Theorem 2.1, we have

( )* * *
0 2 .m mz x h x x x x− ≤ − −

Hence, by the rest of the substeps, we get in turn that

( )* * *
1 0z x C R z x− ≤ −

( ) ( )* * * 2 * *
2 1 0 .z x C R z x C R z x− ≤ − ≤ −
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( )* * *
1 0

k
m kz x C R z xξ + = − ≤ −

( ) ( ) ( )* *
2 .k

m m mC R h d Rξ ξ ξ≤ ≤

Therefore, we get *lim mm
x x

→∞
=  and xm ∈ U (x*, R) for each m = 0, 1, 2, ... .

Clearly, the uniqueness domain for the solution x* is already established in Proposition 2.2.

4. Experiments
We take into account some numerical examples to estimate the real parameters in order to validate the theoretical 

deductions. The parameters R1 and R2 are obtained as solutions of the nonlinear equations h1(t) − 1 = 0, h2(t) − 1 = 
0, defined earlier, respectively, for specialized functions φ0 and φ. Then, the radius R is given by the formula (8). 
Numerical computations are performed in Mathematica software, with multi-precision arithmetic that uses a floating-
point representation of 50 decimal digits of mantissa.

Example 1 Let us consider the example given in the introduction (see (4)). Note that t* = 1 is the zero of this 
function. Then, pick φ0(τ) = Lτ and φ(τ) = Lτ where L = 146.66290. So, we obtain the radii

R1 = 0.00272734, R2 = 0.000659923, R = 0.000659923.

Example 2 Consider (see [17]) the function, H:= ( f1, f2, f3)T : D → ℝ3 defined by

( ) ( ) ( )( )2
1 1 2 2 3 2 3 3( ) 10 sin 1, 8 cos 1,12 sin 1 ,

T
H l l l l  l l l  l l= + + − − − − + −

where l = (l1, l2, l3)
T.

Fréchet-derivative of H(l ) is given by

( ) ( )
( ) ( )

( )

1 2 1 2

2 3 2 3

3

10 cos cos 0
( ) 0 8 sin 2 sin 2 .

0 0 12 cos

l l l l
H l l l l l

l

+ + + 
 ′ = + − − − 
 + 

Set φ0(τ) = φ(τ) = 0.269812τ. So, we obtain

R1 = 1.48251, R2 = 0.358717, R = 0.358717.

Example 3 We study Kepler’s equation [18]

( ) sin( ) 0,H l l l Kβ= − − =

where β ∈ [0, 1), and K ∈ [0, π]. In [18], β and K are studied for many values. We fix K = 0.1 and β = 0.27. So, l * ≈ 
0.13682853547099... and

( ) 1 cos( )H l lβ′ = −

Thus,



Volume 5 Issue 3|2024| 3327 Contemporary Mathematics

( )
( )1 cos( ) cos( )

( ) ( ) ( )
|1 cos( ) |

l q
H H l H q

β
α

β α
−

−
′ ′ ′− =

−

2 sin sin
2 2

|1 cos( ) |

l q l qβ

β α

+ −   
   
   =
−

| |,
|1 cos( ) |

l qβ
β α

≤ −
−

1 |1 cos( ) | 1( ) ( ) .
|1 cos( ) | |1 cos( ) |

lH H l β βα
β α β α

− − +′ ′ = ≤
− −

So, we can set φ0(τ) = φ(τ) = 0.3685888τ. Then, we obtain

R1 = 1.08522, R2 = 0.262586, R = 0.262586.

Example 4 See [17]. Let, C [0, 1] = Y = X and D =  Ū (0, 1). Let the operator H on D be

1 3

0
( )( ) ( ) 10 ( ) .H l l l dϕ ϕ ρϕ ρ ρ= − ∫

Thus, it follows

1 2

0
( ( ))( ) ( ) 30 ( ) ( ) ,H l l l dϕ ξ ξ ρϕ ρ ξ ρ ρ′ = − ∫

for each ξ ∈ D.
But l * = 0, so we can set φ0(τ) = 15τ, φ(τ) = 30τ. Then, we obtain

R1 = 0.0205128, R2 = 0.00420457, R = 0.00420457.

Example 5 Introducing the integral equation (see [3]),

21 3/2

0

( )( ) ( , ) ( ) ,
2

ll d T d  l dωω ω ω
 

= + 
 

∫

(1 ) , ,
( , )

(1 ), .
d d

T d  
d d

ω ω
ω

ω ω
− ≤

=  − ≤

But α(d) = 0. Define H : D ⊆ [0, 1] → C[0, 1] is as

21 3/2

0

( )( )( ) ( ) ( , ) ( ) .
2

lH l d l d T d  l dωω ω ω
 

= − + 
 

∫

(40)
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Notice that 

1

0

1( , ) .
8

T d  dω ω ≤∫

Thus, we have

1 1/2

0

3( ) ( ) ( ) ( , ) ( ) ( ) ,
2

H l q d q d T d  l l dω ω ω ω ′ = − + 
 ∫

since H'(α(d )) = 1, it follows that

( )1 5( ) ( ) ( ) .
16

H H l H q l qα −′ ′ ′− ≤ −

In (41), switch q by l0

( )( )1
0 0

5( ) ( ) .
16

H H l H l l lα −′ ′ ′− ≤ −

Thus, we take

0 0 0
5( ) ( ) , where .

16
l l L l Lϕ ϕ= = =

Hence, we obtain

R1 = 1.28, R2 = 0.309716, R = 0.309716.

5. Conclusion
This paper thoroughly discusses the convergence (local and semi-local) of a fourth-order technique in Banach 

space. We have simply taken into account the first derivative in our process, unlike other techniques that rely on higher 
derivatives and the Taylor series. In this way, the method’s uses are broadened because it may be used for a wider 
class of functions. The production of an error estimate and convergence ball, within which the iterates lie, is another 
benefit of convergence analysis. The theoretical outcomes of this approach are verified through numerical testing on 
a few problems. The idea is applicable to other methods cited in the introduction and can be extended to handle more 
advanced equations [19].
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