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Abstract: In this article, we approach a class of problems in probability theory, namely, the asymptotic expansion 
of probability. We consider an independent, identically distributed, and normalized stochastic process ( )k kX ∈  in a 
separable Hilbert space H, and associate it with the normalized partial sum

                                                                                   
1/2

1
.

n

n i
i

S n X−

=

= ∑

As a result, we built on the ball with a fixed center asymptotic expansion of non-uniform probabilities; our conditions 
on the moments are minimal, and the dependency of estimates on the covariance operator is expressed with the terms of 
the eigenvalue series. Likewise, the covariance operators of the random elements do not coincide. In the open ball set 
with fixed center a and radius { }, ( ( ) :|| ||rr B a x H x a r= ∈ − < , we estimate the optimal result of the Berry-Esseen type 
of the remainder, and the terms of the probability ( )|| ||nP S a r− <  by the Fourier method.
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1. Introduction
Convergence acceleration methods for sequences have been studied for several years. In many fields, sequences 

are used as tools to solve problems. Some of these sequences converge; others do not. Among those that converge, 
you will find some with a low convergence rate. Therefore, one area of mathematics was concerned with the theory 
of the transformation of sequences. However, for a long time, the acceleration of convergence was only illustrated for 
numerical sequences with methods, such as those of Richardson or Aitken.

Nowadays, not being able to ignore the randomness of dynamic systems, this mathematical research field is now 
oriented towards stochastic processes and provides answers to many problems. Indeed, with convergence acceleration 
methods, not only are approximation problems (Riemann sum, integral computation, differential equation) theoretically 
solved, but also many algorithms can be constructed for the simulation of many phenomena in economics, finance, etc. 
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For instance, Devineau and Loise [1] have developed an acceleration algorithm of the method called “simulations dans 
les simulations” for the computation of solvency economic capital. 

Concerning the sequences of random variables, or more generally, stochastic processes, several methods have been 
proposed and continue to appear in the literature. This is because a universal transformation of sequences to accelerate 
the convergence of all convergent sequences cannot exist, according to Delahaye and Germain Bonne [2].

However, a fundamental and effective technique for convergence acceleration methods of stochastic processes still 
remains asymptotic expansions of probability. They provide good estimates in terms of approximation.

These expansions were first examined, without exact foundation, by Tchebycheff [3] for the case of the classical 
limit theorem. Later, the expansions of the Tchebycheff type were studied by Bruns [4] and Edgeworth [5]. However, 
the most comprehensive results in this direction were obtained much later by Cramer [6] and Esseen [7].

In finite dimension, for example, results are obtained in Euclidean space by Bikyalis [8]. These results have shown 
that, in  , if the random variables 1, , kξ ξ

 are independent and identically distributed and admit an absolute moment 
of order 3 (meaning that 3

iξ  < ∞  ), then for any x∈ ,
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where σ2 is the variance of the random variable ξ1, α3 the third absolute moment of ξ1, and Fn is the cumulative 
distribution function of the sum of the normalized and centered random variables ξ1,··· ,ξn.

If, however, the variables ξ1,··· ,ξn are in k and admit a non-degenerate covariance matrix Ʌ, then for all x in k
 , 

we have:
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 and 1 1( , , ), ( , , )k kt t t y y y= =   for some vectors of the 

k-dimensional Euclidean space with norm ,t y , respectively.
In infinite dimension, under the different results in Hilbert space, the construction of the asymptotic probability 

expansion takes several forms depending on the authors. First, with Bentkus [9], we find a form that is more dependent 
on the moments in the rest of the expansion. In [10], under condition ( )2( 1)|| || ,pX + < ∞  and some other conditions on 
the covariance operator of the random element X, whose description we omit here, the following result is obtained
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where Ck = Ck(r) are certain functions with a known Fourier transform.
For several years, for more than a decade, a variety of results have emerged in the literature under different 

conditions on the distribution of random elements, of their moments, and of their covariance operators. The first results 
of the construction of asymptotic expansions on the metric of the ball are described in Bentkus’s papers [9]. Later in 
[11], his results were extended into Banach spaces. This last article has recently been at the center of studies in a Hilbert 
space to determine the speed of convergences of stochastic processes (see [12]) and, also, for asymptotic developments 
for symmetric statistics with degenerate kernels (see [13]).

Motivated by the above work, we will exploit the properties of the covariance operator and moment to improve the 
previous results by giving a new version of the asymptotic expansion of probabilities on the ball with a fixed center in 
Hilbert spaces.

Thus, in this article, we pursue two goals. On the one hand, we give an optimal result of Berry-Esseen type in an 
asymptotic expansion of probability under the hypotheses of weak moments and different covariance operators for two 
random elements in H. On the other hand, we estimate the terms of this expansion.
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The sequel to the paper is the following: in Section 2, we set the mathematical problem of the asymptotic 
expansion of probability and formulate the various notations and assumptions in the study of the problem. In Section 3, 
we give our main results. The proofs of our results are discussed in Section 4. We end up with a conclusion.

2. Preliminaries
2.1 Mathematical model of the problem 

In the theory of the asymptotic expansion of probability for the normalized sum 1/2

1

n

n i
i

S n X−

=

= ∑  of independent and 

identically distributed random elements ( )i iX ∈  in the separable Hilbert space H, the mathematical problem consists in 
estimating the terms of the following expression:

                                                                                   ( )|| || ,nP S x r− <                                                                               (4)

, 0.x H r∈ >

2.2 Notations and assumptions 

Before adopting the notations, which will follow in the article, we give these two definitions:
Definition 2.1. Let E be a vector space and .,.〈 〉  a scalar product on E. The norm associated with .,.〈 〉  is defined 

by:

                                                                               , , .x x x x E= 〈 〉 ∀ ∈

Definition 2.2. Let ( ) ( )*, , , ( )  and , ( )n n m mn m∈       be two measurable spaces. The function : n mf →   
is said to be a Borel function if it is measurable from ( ), ( )n n

   to ( ), ( )m m
  , i.e., with regard to the Borel 

algebra.
For the construction of the model 4, we use the following notations:
Let H be a separable Hilbert space with norm . . We denote by .〈 〉 , the scalar product in H. The open ball in H 

centered at  ( , 0)a a H r∈ >  is defined as follows:

                                                                         { }( ) :|| || .rB a x H x a r= ∈ − <                                                                     (5)

Let ( )i iX ∈  be independent and identically distributed random element in H. The mean and variance of X1 are denoted 
by 1( )X  and σ2, respectively, and are defined by:

                                                            2 2
1 1 1 1( ) (|| ||), (|| ( ) || ).X X X Xσ= = −                                                           (6)

Denote by ɅX the covariance operator of the random element X1:

                                                          ( )( )1 1 1 1, ( ), ( ), .x y X X x X X y〈Λ 〉 = 〈 − 〉 〈 − 〉                                                        (7)

We set 1 2, ,X Xλ λ 
 (respectively, 1 2, ,e e  ) the eigenvalues (respectively, the eigenvectors) of ɅX. We denote by c 

(respectively, c()) generic constants (respectively, constants depending on parameters). Considering the results in [14], 
we notice that c(ɅX) depends only on 2 , 1, ,13.X

i iσ λ =   So, using the result of Nagaev [15], we set:
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For any non-zero integer k, let A0 be the linear operator defined by:
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Let Y1,··· ,Yn be another sequence of random Gaussian elements of zero mean and with covariance operator ɅY.
Let’s denote by 1 2 13

Y Y Yλ λ λ> > >  the eigenvalues of ɅY.
For all , , 0, 0,1,a h H r i n∈ > =   let’s put:
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If ( , )m a rΦ  is differentiable (assumption that we will assume in the following), we define the operators k
hd  by:
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For any integer k ≥ 2, m ≤ k − 2, we write:

                                                       
/2 ( ) 1

1
( , ) ( !) ( ) ( , );m j j j

n j

m

j
m jA a r n n C Q a r−

=

− −= Φ∑∑  
                                                 

(11)

                                                 

2

1
( , ) || (|| || ) (|| || ) ( , ) ||;

k

n n m
m

a r P S a r P Y a r A a r
−

=

= − < − − < −∑

                                          
(12)

where: 1 3, , 3j≥ ≥    and ( )
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 . Let’s put || |||| ||s a r= −  and α is a 

real, such that α ≥ 1/5. Let u be the integer part of sα. Our main results will be based on the following hypotheses (Hs):
H1: In order to guarantee the existence of the moments of the random element X1 in the terms of the asymptotic 

probability expansion of our mathematical model, we assume the following minimal moment:
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H2: The eigenvalues of the operators ɅX and ɅY have decreasing order and are strictly positive:

                                                                     1 2 1 13; min 0;X X X
i iλ λ λ≤ ≤≥ ≥ >                                                               (14)

                                                                     1 2 1 13; min 0.Y Y Y
i iλ λ λ≤ ≤≥ ≥ >                                                               (15)

H3: We assume that ( , )m a rΦ  is differentiable with regards to a. This means that:
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H4: We also assume that the random element X1 satisfies the Cramer condition on A0. That is, A0 is non-negative 
and that for all L > 0, ρ < 1,
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Remark 1. If the operator A0 is the identity function, then we get a “generalization” of the classical Cramer 
condition
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However, in the case of an infinite dimensional space H, (18) no longer makes sense since for each r ≥ 0 and for 
all X1 ∈  H, we always have ( )1,

|| ||sup || || 1.{ }i x X
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= =  This results from the weak continuity of the characteristic 

function of the random elements Xi and from the fact that the unit sphere closure contains point O.
H5: Assume that A0 ∈  σ(β, s). That is, the operator A0 has no less than s eigenvalues (counting their multiplicity) 

exceeding the number β > 0.
H6: We assume, thanks to the following inequalities
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In the following section, we state the main results that we obtained.

3. Main results
As announced in the objectives of this article, we have the following result of Berry-Esseen type for the model.
Theorem 3.1. Under the assumptions, H1-H4 and H6, for any L ≤ n1/2, we have:
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For the estimation of the terms of the model asymptotic development, we have the following result:
Theorem 3.2. Under the assumptions of Theorem 3.1, the terms of the asymptotic expansion satisfy the following 

estimates:
•	 For all ε > 0, if m is even,
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•	 For all ε > 0, if m is odd,
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we give following this theorem the following corollary.
Corollary 3.3. Assume the assumptions of Theorem 3.1. For all 0 < L < n1/2,
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Remark 2. Our results are similar to those in [16], but their particularity is that they give precision on the 
constants depending on the parameters. Also, contrary to previous works on the subject, we considered random 
elements having different covariance operators because assuming that two random elements of the same space always 
have the same covariance operator (see [17] and [11]) does not always seem relevant to us. Also, since any function 
is not systematically differentiable, in [16], notation ( , )md a rΦ  as the differential function of ( , )m a rΦ  rather than a 
hypothesis is not right because it still does not exist.

4. Proofs of theorems
The proofs of our theorems are based on a packaging argument, similar to the spirit of the approach in [9]. We 

prove the theorems from Esseen inequality and the Fourier-Stieltjes transform. First, we collect and examine, under 
Section 4.1, some required results from the literature. Then, in Section 4.2, we state and prove some auxiliary results. 
Finally, we establish the proof of our main results in Section 4.3.



Contemporary Mathematics 1054 | Victorien F. Konane, et al.

4.1 Some required results of literature

The lemma we use below in our Esseen-inequality type estimates, in the proof of the Theorem 3.1, is an adapted 
version and appears in some variants of literature (see, for example, [11], p.58).

Lemma 4.1. Let 1/2
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The next lemma, allows us to reformulate, in another way, through Lemma 4.9 of our auxiliary results, the inequality 
given by Bentkus (see Theorem 3.1 in [11]).

Lemma 4.2. Let u > 0. Let’s put j jX X= 1 and 
,j uj j 'X' X= 1 . Let A be a Borel subset of H, f be a real Borel function on  

[0; ∞]. Set 1/2
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The next lemma appears in [12] and serves as a result in the proof of our auxiliary results (see proof Lemma 4.4).
Lemma 4.3. For all random elements X and Y fulfilling our assumptions, we have:
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4.2 Auxiliary results

We state and prove the following auxiliary results:
Lemma 4.4. Inequalities (19) and (20) are true.
Proof of Lemma 4.4. Let us first show that the characteristic function 2Y

ψ  of the random element Y 2 is:
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From relations (26) and (27), we can deduce (25).
From Lemma 4.3, we have:
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= −∏ 

and this clearly implies (19).
Since

                                                                 ( ) ( )exp( , ) exp , / 2 ,Yit x Y x x〈 〉 = −〈Λ 〉

we have

                                              ( ) ( ) ( )2 2 2 2
1 2exp( , ) , / 2 exp( ( ) ) .

kY Y
kit Y Y t Y Y t Yλ〈 〉 = − 〈Λ 〉 ≤ − 

This implies (20).
Lemma 4.5. Let h1,··· , hm be some elements in H. The function

                                                                                       :ϕ → 

                                                                                             exp{ ( )},t itw x

were 2 ,: || ||w x x a−  is infinitely Frèchet differentiable and we have:
                                                           1 1

( ) ( ) ( ) ( ) ( ),
m q

q
h h A Ad d x x it d w x d w xϕ ϕ= ∑                                                      (28)

where the sum is taken into account over all possible decompositions 1 1{ , , }q mA A h h∪ ∪ =   into non-empty subsets 
A1,···, Aq of cardinality lower or equal than two, and 

1 kA g gd d d=   for 1{ , , }.kA g g=   
In addition



Contemporary Mathematics 1056 | Victorien F. Konane, et al.

                                                             1 1 1|| ( ) || (1 || || ) || || || || .
m

m
h hd d x c x h hϕ ≤ +                                                         (29)

Proof of Lemma 4.5. The function ( )xϕ  is indefinitely Frèchet differentiable (see Lemma 4.4 in [18]). Since ϕ  is 
differentiable, then for any fixed h, its derivative ( )hd Aϕ  is a set function. By applying an induction to m (see Lemma 4.3 
in [18]), we can define the derivatives marked 

1
( ) ( ).

mh hd A d Aϕ ϕ  Noting that the third-order derivative of w is zero, we 
can conclude by writing (28). The estimate of (29) is obtained using the inverse Fourier-Stieltjes transform and the proof 
of Theorem 4.1 in [9].

The following lemma is an adapted version of Lemma 14 in [17].
Lemma 4.6. Let Y be a Gaussian random element with value in H, with mean zero with a covariance operator 
1 2;Y Y Yλ λΛ ≥ ≥  the eigenvalues of YΛ . Let b in H, such that 1|| ||b sα≤  with 1/2

1  | || |||, 0, , [0;1].s u a u a H α= − ≥ ∈ ∈  
Then, for all 0, , [0;1],mε θ> ∈ ∈  k even, integers 1, , kk k k ′′

  and 1, kz z H′ ∈

, we have:

                                 
( ){ } { }( )2 2 2

1

|| exp (1 ) || || exp || || || || , || j
k

km k
j

j

it u a t it Y a Y Y z dtθ θ
∞ ′

=−∞

− − − × − 〈 〉∏∫ 

                                                          

2
/2

1

( , , ) ( ) , exp ,
2

j
k

kY
j j

j

sc k m c z zε
ε

′

=

 
≤ Λ 〈Λ 〉 − + 

∏

where 
1

.
k

j
j

k k k
′

=

= +∑  

Lemma 4.7. For all ε > 0, integer k ≥ 1, n ≥ 1, m, such that 1 ≤ m ≤ k; h1,··· ,hm ∈ H, positive integers 1, , m  
 and 

j, such that j ≥ k ≥ n.
•	 If 1 ml = + +  

 is even, we have:

                                   
( )1

1

2

1

|| ( , ) || ( , , )exp ( ) || || || , || .
2

j jm

m

m

h h j j j
j

sd d a r c k l c h a hε
ε =

 
Φ ≤ − × Λ + 〈 〉 + 

∏  





                             
(30)

•	 For odd values of , we have:

                            
( )1

1

2
1

1
|| ( , ) || ( , , )exp ( ) || , |||| || || , ||

2
[m i i

m

m

h h j i i i
i

sd d a r c k l c a h h a hε
ε

−

=

 
Φ ≤ − × Λ 〈 〉 + 〈 〉 + 

∑  



                     
(31)

Proof of Lemma 4.7. We show that the function a   Θa(r) = Φj(a,r) is indefinitely Frèchet differentiable and that 
its derivatives can be estimated by the right-hand side terms of (30) and (31) because of (28),

                                                                    
1

1 1
( ) ( , ).m

m m

ll
h h a h h jd d r d d a rΘ = Φ 

According to Lemma 4.5, { }( ) exp ( )x itw xϕ =  is indefinitely Frèchet differentiable and (28) is bounded by Lemma 
4.4 of [18]. When | | ,t →∞  the boundary of (28) and the dimension of the operator YΛ , we have a decrease of the 
function

                                                                                 1
( ).

mh h tt d d xϕ                                                                            (32)

By applying the inversion formula of the Fourier-Stieltjes transform, we see that the inverse transform, inverting 
the relation (32) which is an infinitely function, having bounded derivatives. Hence, ( ) ( , )a ja r a rΘ =Φ  is 
indefinitely Frèchet differentiable.

We notice that due to the symmetry of the Gaussian distribution, if G is a Gaussian measure on H with centered, 
then for all non-negative m, and all odd 



 we have:

                                                                  { }2exp || || || || , ( ) 0.m lit x x x y G dx〈 〉 =∫                                                            (33)
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We notice that the function 2exp{ (|| || 2 , )}it x x a+ 〈 〉  can be put under the form

                                                                                                                                                                                          (34)
                                 

1
2 2 2

0

exp{ (|| || 2 , )} exp{ (|| || )} 2 , exp{ (|| || 2 , )} .it x x a it x x a it it x x a dθ θ+ 〈 〉 = + 〈 〉 + 〈 〉∫

•	 If s ≥ 1, by repeating the arguments of Lemma 15 in [17], Lemmas 4.5 and 4.6, and relations (33), (34), we 
obtain the second member.

•	 If s < 1, it suffices to apply (33), (34), Lemma 4.5 and the inverse Fourier Stieltjes transform. 
Lemma 4.8. Let a and b be two positive numbers and ε, such that 0 < ε < 1/4. We have

                                                                                                                                                                                          (35)
                                                                    { } 1/22

1 min( , ) .
exp | |

a a bf
a b εε

+
= ≤

−

Proof of Lemma 4.8. It is obvious that f ≤ a and also obvious that (35) holds if b < a ≤ 2b. If a > 2b, then a − b > 
a/2 and using the inequality 2 1/2exp{ / ,4} 1/x x ε ε− ≤  for all x, we conclude.

Lemma 4.9. Suppose nS  is defined as in Lemma 4.2, and Am(a,r) satisfying (11). Then,

                                                                         ( , ) ( , ) ( , , ),n a r a r A p s t∆ ≤ ∆ +                                                                   (36)

where

                                                  

2

1
( , ) || (|| || ) (|| || ) ( , ) || .

k

n m
m

a r P S a r P Y a r A a r
−

=

∆ = − < − − < −∑

Proof of Lemma 4.9. Following the main ideas of the proof of Theorem 3.1 in [11] (see also the articles [10] and 
[17] for more details) and Lemma 4.2, we easily deduce the inequality (36).

Lemma 4.10. Given H3 and H5, if 2
0( ) ( , )X A sσ βΛ ∈ , then there exists a constant c(), such that:

                                                       || (|| || ) (|| || ) || ( , ) ().n mP S a r P Y a r a r c− < − − < ≤ Φ +

Proof of Lemma 4.10. The proof of this lemma is a direct consequence of the theorems of Section 3 in [9].

4.3 Proof of the main results

Proof of Theorem 3.1. For the proof, we proceed by case for possible values of s.
Case 1: s < c.
Let ( ) ( ) ( )

2

0 0( ) , ( ) , ( ) , ( ) ( )n n

k
S S Y Y

n n n n i
i

F x P S a x F x P S a x F y P Y a y G y F y
−

= − < = − < = − < = ∑ , and respectively, 

( ), ( )
n nS Sf t f t  and h(t) the Fourier-Stieltjes transforms of ( ), ( )n nS S

n nF x F x  and G(y).
According to Theorem 3.1 in [9], the Fourier-Stieltjes transform h(t) of the function G(y) is

                                                             
/2 ( ) 1

1
( ) ( !) ( ) ( ),

m
m j j j

n j j
j

h t n n C Q aϕ− ′ −

=

= ∑∑  

where

                                                                    
2( ) exp 1 .|| ||j

ja it Y a
n

ϕ   = − −  
  

Using Lemma 4.6 of [18] we can write:
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( ) ( ) ( )( ) ( ) ( )( )

1
2 22 23 3, 1 , , 1 , , .

k

k k

m
LA a r c a r a a a c a r a a a
n

ϑ ϑ

−

− − 
≤ Λ + Λ ≤ Λ + Λ 

 

Since according to [9],

                                                                     
|| ( ) || || ( ) || ( ) ,G y h t dt c a

+∞

−∞

′ ≤ ≤ < ∞∫

let’s put

                                                                             
sup || ( )( ) || .

y
C G y t′= < ∞

For the remaining of the proof, we state as a lemma the following estimate proved in [16].
Lemma 4.11. (see [16], p.1058). Let 

2
2 1/2

0 ( ) (|| || ), ( ) ( , ), 1, ( ) ( )
k

i i i
i

N y P Y a y N y A a y i N y N y
−

= − < = ≥ = ∑ , and 

respectively, fn(t), gi(t), g(t) their Fourier-Stieltjes transform. Let’s put ( ) || ( ) ( ) || .nD t f t g t= −  For any random 

element  1/2
ii iU n X−= 1  where 1/2

i iU n Y−= , let 1/2 1/2
1

1

( , , ) { , }.
n

n i i i
i

U U U n X n Y− −

=

= ∈∏ 1  For any other random element 

1( , , )nU U U′ ′ ′=  , if for any , ii U'  is independent of Ui, let’s put ( ) ( )
2

1
, , exp

n j

j j kx a x a t U' it U' a
−    ≡ = −     
∑  and 

directional derivatives of higher order are defined by induction:

                                                                
( )1

0
( ) lim ( ) ( ) .h j j jy

d a y a yh a−

→
= − −  

For integers r and m such that 0 < m ≤ r ≤ n, let the differential operators ( , )mrQ U   be defined by:

                                                                        
( )( , ) (1 ) ,i i

i

r

mr i U
i m

Q U s dβ

=

= −∏  

 1
                                                                

(37)

where 1( , , ), ( ) 1n il β= =    , if 1i =  where 2i =  and ( ) 0iβ =  otherwise. In (37), we put i iU X=  if 1i =  or 
2i = , and introduce the following relation:

                                                                ( ) ( ), , ,l l

H x n
x b X dx x b dx

>
= −∫ ∫ P

where X is the difference between the distributions of X11 and Y, P the distribution of X1, b ∈ H, l = 1,2.
We obtain the following estimate for D(t):

                                      

( ) ( ) ( ) ( ) ( )( )
( ) ( ) ( )

1 1

2

1
1 /2 1/2 2

1 1
, 1

1
2 2 /2

2
1

sup , 1

, ,j

k '
k

j j X X
U U' j

k '
j

j j
j

D t c n Q U a n d d

n Q U a

−
− −

=

−
− − − −

=

≤ + − +
 


×   

∑∑

∑∑   





 



1

                                (38)

where: 
'

∑ is the sum overall 1( , , )j   , such that 1 13, , 3, 2, 1j j j k≥ ≥ + + = + −       and 
''

∑ is the sum overall 
2( )j+ +   , such that 2 3, , 3j≥ ≥    and 2 1 2( 1).j k j+ + ≤ − + −    The supremum in (37) is taken over all 

possible combinations that may give U and U'.
We now continue with the proof of our theorem. 

Due to the estimated (38), we obtain:
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( ) ( ) ( ( )( )( ) ( ) ( )
( ) ( ) ( )

( )( ) ) ( ) ( )

( ) ( )

2

1 1

2 1
1

1 /2
1

, 2
1

2 2 /21/2 2
1 2

2

, , , 1

sup ,

1 ,

.

n

j

n

S
n

k ''
k

j j
U U' j

k ''
j

X X j j
j

S
n

A p s t c B a r F x G y

c n Q U a

n d d n Q U a

F x G y

−
− −

=

−
− − − −

=

+ Λ − ≤ −

 ≤  


+ − + ×   
+ −

∑∑

∑∑   







 



1

1

Applying Esseen’s inequality, for all 
( 1)/2

0 20 , 2
knT k

L

−
 ≤ = ≥ 
 

, we obtain:

                                                               ( ) ( ) ( )1 1 2 3/ ,nS
nF x G y c C T I I I− ≤ + + +                                                         (39)

where

                                                

( ) ( )

( ) ( )( )
( )

1

1 2

2

1/21/2
1

1 1 2 2

1

2 2
1

3

, In ,

, 23 ,

.

n

n

St T

T t T

St T

n nI t f t h t dt T c
L L

I t h t dt T T cf

I t f t dt

−
−

≤

−

≤ ≤
−

≤

    = − =     
    

= =

=

∫
∫

∫

It follows from (39) that:

                                                                       ( )1 1 2 3( , ) / .a r c C T I I I∆ ≤ + + +                                                                 (40)

Using Lemma 4.6, Lemma 11 in [17] and inequality (38), we obtain

                           ( ) ( )( )( ) ( )( )( ) ( )( )3/23 1/2
1 2 3 2 1 1 1, 1 1 , , , .kI I I c B a r a r a a n B a rϑ −

++ + ≤ Λ − + + Λ 1 1

To conclude the first case, we smooth the characteristic function of the event { :|| || }X H X a r∈ − < . Using Lemma 
1 in [19], and constructing the following function:

                                                                          

1/20 if
( ) ,

1 if
t r n

f t
t r

− < −
= 

>

we make the set { :|| || }X H X a r∈ − <  smooth because f is three times differentiable and there exists a generic constant c, 
such that ( ) /2|| ( ) ||i if t cn≤  (f being the density of (|| || )P X a r− < ).

Case 2: s ≥ c (same argument as the proof of Theorem 1.1 in [9]).
Proof of Theorem 3.2. Given (13) and inequality L < n1/2, we get from Theorem 1 in [17] that:

                                                                                   ( )1

2
1

2|| || .
3

X ≥ 1                                                                             
(41)

With the conditions on the random element Y in Section 2.2, for any positive integer k, we get:

                                                         ( ) ( )/2|| , || ( ) , , || || ( ).k k kY a c k a a Y c k〈 〉 ≤ 〈Λ 〉 ≤                                                     (42)

From Lemmas 4.6 and 4.7, Hölder’s inequality and estimates (41) and (42), we conclude the theorem.
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5. Conclusion
Asymptotic developments in probability, as we have already said, are of notable importance in probability theory. 

Indeed, they allow for good approximation estimates in the convergence of random elements. The aim of this paper 
was to give an asymptotic probability expansion on the ball with a fixed center a in a Hilbert space for the sum of 
independent and identically distributed random elements. In contrast to previous authors, we have considered the 
covariance operators of the different random elements X and Y with small moments. We used Nagaev [15] on the 
covariance operator XΛ . Also, we have relied on the techniques and methods in [16] and [9] to give a new asymptotic 
probability expansion of model (4).

At the end of this work, we were able to give a solution to the problem of the model (4) with a high degree of 
accuracy. Indeed, our expansion terms are estimated both in terms of moments and eigenvalues of both covariance 
operators XΛ  and YΛ .

Our perspectives after this article will be as follows: Given the importance of studying the convergence of random 
elements (presented in the introduction), we intend to study the following convergence problem:

                                                                                  
1 ( ) ,nS X Z
n Λ→



                                                                           
(43)

where Z denotes a sequence of Gaussian-centered random elements with covariance operator (.) [ ,. ].E Z ZΛ ΛΛ = 〈 〉  In 
a second perspective, we wish to illustrate the interest of the acceleration of the convergence of random elements in a 
practical problem: a dynamic system.
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