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Abstract: Goal programming (GP) is a well-known multi-criteria decision-making tool that is supported by a network 
of practitioners and researchers who aim to develop its mathematical foundation to cover a wide range of applications. 
The popularity of GP models stems from their structure, which is based on a satisfying philosophy. This philosophy 
takes into consideration the preferences of the decision-maker concerning the model parameters. Therefore, the 
GP model provides the decision-maker with one satisfactory solution that reflects the trade-off between competing 
objectives. Nevertheless, there is no guarantee regarding the efficiency of this solution. Consequently, this study is 
designed to improve the quality of decision-making processes by addressing the efficiency issue with the solutions of 
GP models. The main contribution of this paper is to improve the mathematical framework of the GP model so that it 
can generate a set of Pareto optimal solutions rather than just one solution. This allows stakeholders to have a complete 
picture of the feasible space of solutions and select the solution that represents the best compromise according to their 
preferences. As a result, the proposed methodology is called generational GP. In addition, the study enhances the quality 
of GP solutions by integrating the notion of the hypervolume subset selection problem with the suggested technique. 
This, in turn, overcomes the efficiency problem of GP solutions. The performance of the proposed method has been 
validated through an application to the flow shop scheduling problem. However, our modeling approach is useful for 
decision-makers in different fields of study. Finally, the merits of the generational GP method are highlighted, with a 
strong emphasis on potential areas for future research.

Keywords: multi-objective optimization problems, Pareto optimal solutions, generational GP, hypervolume subset 
selection problem, green permutation flowshop scheduling problem
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1. Introduction
Most real-world applications take into account multiple competing objectives. There are two primary categories 

of methods for solving multi-objective optimization problems (MOPs) [1]. The first category includes evolutionary 
algorithms. The second category involves a range of classical techniques. These methods are sorted into three different 
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groups depending on the phase in which decision-makers participate in the decision-making process [2]. These groups 
are known in the literature as a posteriori (generation), a priori, and interactive methods.

The first group involves techniques that generate a set of efficient solutions for the decision-maker. Therefore, the 
intervention of the stakeholder is limited to the selection process for solutions. The epsilon constraint method is one 
of the most common techniques in this group. On the contrary, the methods in the second group, i.e., a priori methods, 
allow decision-makers to express their preferences before starting the solution process. Goal programming (GP) is a 
popular technique in this group. In GP, model parameters, such as the aspiration levels of goals, are determined based 
on the preferences of the decision-maker before solving the optimization problem. In interactive methods, stakeholders 
interact after each step of the solution process to show their preferences [2]. Despite the variety of multi-criteria 
decision-making (MCDM) tools to solve MOPs, this study focuses on developing the mathematical framework of GP to 
provide the decision-maker with the solution of the best compromise.  

The GP technique is one of the most widely used MCDM approaches because of the simplicity of its mathematical 
framework [3]. This framework takes into account the simultaneous optimization of competing objectives. Therefore, 
the GP model provides the decision-maker with a solution that reflects the trade-off between several conflicting 
objectives. Moreover, the GP approach is based on the satisficing philosophy, which allows the decision-maker to 
represent his or her preferences concerning the model parameters. Consequently, the quality of the decision-making 
processes is enhanced through interacting with the stakeholder before solving the GP model.

The mathematical structure of GP models is based on minimizing a distance function that considers the deviations 
between the objectives and their target values, which are determined by the decision-maker. The first GP model was 
initially presented by Charnes et al. [4], and it was considered an extension to linear programming models. Furthermore, 
several variants of GP models were suggested in the literature to represent the decision-maker’s preferences. The 
most common variants are weighted GP (WGP) and lexicographic GP (LGP) [5]. On the one hand, WGP focuses on 
minimizing the weighted sum of the deviations from all objectives. These weights reflect the relative importance of each 
objective. On the other hand, the LGP models allow the decision-maker to rank objectives according to their importance. 
The deviations from the goals at the highest priority level are minimized first. Goals at the next level of importance are 
optimized while maintaining the minimal values of goals at higher priority levels. Consequently, this variant is based on 
solving a series of sequential optimization models [6]. 

Despite the popularity of GP and the variety of its variants to solve different MOPs, there is no guarantee that it 
provides the decision-maker with an efficient solution. The efficiency issue happens due to the mathematical structure 
of GP, which is based on the satisfying philosophy [7]. The essence behind this philosophy is to provide the decision-
maker with a solution that is as close as possible to the desired target value. This is opposed to the optimization 
philosophy, which seeks to find an optimal solution. Consequently, several studies were introduced in the literature to 
handle this problem. The contributions of these studies are classified into two main directions [8]. The first one focused 
on testing only the efficiency of a GP solution, such as the technique introduced by Cabllero et al. [9]. The second type 
of study was designed to provide the decision-maker with an efficient solution in the case of the failure of an efficiency 
test [8, 10, 11].

This study aims at developing the mathematical framework of GP models to avoid introducing a dominant solution 
to the decision-maker. In addition, the study suggests a GP model that generates a set of efficient solutions rather than 
just one solution. This set covers the feasible space of potential solutions. This, in turn, allows the stakeholder to have 
a variety of efficient candidate solutions and select the one that ideally reflects his or her preferences. Consequently, the 
contribution of this paper is twofold. Firstly, the suggested technique is able to produce a set of GP solutions rather than 
just one solution. Therefore, the framework of GP is adjusted to be similar to the a posteriori approach. This implies that 
the proposed generational goal programming (GGP) methodology converts the GP technique to a generation method 
while maintaining the preferences of the decision-maker. The second contribution of this paper is to improve the quality 
of GP solutions by overcoming the efficiency issues related to them. This is accomplished by combining the proposed 
technique with the concept of the hypervolume subset selection problem (HYPssp). This allows stakeholders to have 
a subset of non-dominated solutions that capture the most diverse and well-distributed solution points in the objective 
space. To assess the reliability of the proposed method, it has been applied to the green permutation flowshop scheduling 
problem (GPFSP). This application has practical benefits in the fields of manufacturing and industrial engineering, and it 
is used as an example to show the usefulness of the suggested technique. Nevertheless, the proposed GGP methodology 
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can be compared to the current optimization methods in the literature in addition to applying it to other applications, 
such as resource allocations among level crossings [12], the vehicle routing problem [13], the ship scheduling problem 
[14], the complex building design problem [15], and the vessel scheduling problem [16].

The rest of this paper is arranged as follows: Section 2 introduces the proposed GGP method. Section 3 gives an 
overview of the GPFSP. Moreover, it presents the mathematical programming models used in this study. In Section 
4, data settings and computational results are illustrated to test the validity of the proposed technique. The last section 
concludes the paper.

2. The proposed GGP methodology
In this study, the suggested GGP technique is introduced in the context of bi-objective minimization problems. 

However, it can be generalized to any MOP. The purpose of a two-dimensional minimization problem is to find a vector 
of decision variables in the decision space Χ that minimizes a vector of conflicting objectives in the objective space, i.e., 

2:f Χ→  . Furthermore, this study is interested in points in the objective space that form a subset of 2 .  A point p = 
(p1, p2) 2

1 2( ),q qq = ∈  weakly dominates another point q = (q1, q2) 2
1 2( ),q qq = ∈  (also known as p   p q q) if and only if  for 1, 2t tp q t≤ =  1, 2 

[17]. Therefore, the desired output from any technique used to solve MOP is to obtain non-dominated solutions. These 
solutions are incomparable and are used to determine a Pareto frontier [18].

The proposed GGP methodology relies on several steps. The first step is based on calculating the minimum and 
maximum values for each objective. On the one hand, the minimum value of each objective is considered an ideal 
value since the suggested technique is illustrated in the context of bi-objective minimization problems. Ideal values 
are obtained by running two single-objective optimization models. On the other hand, a maximum value is regarded as 
the worst value that an objective function reaches. Maximum values are estimated in this study by adopting the idea of 
redundant goals in LGP [19, 20].

The issue of goal redundancy occurs in the lexicographic variant of GP when the target values of goals at the 
highest priority level are equal to their ideal values. This results in redundancy in goals placed at the lowest priority 
level, which implies that these goals are not achieved [20]. This also implies that the goals at the lowest priority level 
obtain their worst possible values. Consequently, this concept is adopted in this study to estimate the worst value for 
each objective. On the one hand, the maximum value of the first objective is obtained by placing it at the second priority 
level in the LGP model. Due to choosing the ideal values of both goals as their target levels, the model achieves the goal 
at the first priority level, i.e., the second objective, and produces the worst value of the goal at the second rank, i.e., the 
first objective. On the other hand, the worst value of the second objective is achieved by running the same LGP model 
after reversing the previous priority order.

After computing the maximum and minimum values for each objective, the next step aims at constructing a group 
of intervals for each objective to generate a set of aspiration levels for the LGP model. To create these intervals, the 
range of each objective is determined as the difference between the maximum and minimum values. The length of each 
interval is the range divided by the number of intervals (n), which is determined by the decision-maker. Furthermore, 
this number is equivalent to the number of aspiration levels since one aspiration level is randomly generated from each 
interval. Therefore, the set w of n points of aspiration levels is obtained from these intervals. The x-coordinate of each 
point represents an aspiration level for the first objective, while the y-coordinate is an aspiration level for the second 
objective. Moreover, the intervals are constructed such that these points have an increasing order of the first coordinates 
and a decreasing order of the second coordinates. 

After running the LGP model n times to obtain a set of GP solutions, the last step in the proposed methodology 
is to select a subset of non-dominated solutions. There are several criteria for choosing this subset. This study follows 
the approach presented by Bringmann et al. [17] to obtain a subset of incomparable solutions. The authors suggested 
the HYPssp algorithm, which produces a subset of efficient solutions based on the maximum value of the hypervolume 
performance metric. This indicator, which was introduced by Zitzler and Thiele [21], is designed to measure the volume 
of the objective space covered by a set of solutions according to a reference value. This paper follows the study of 
Hughes [22], which estimated the coordinates of the reference point as the maximum (worst) value for each objective. 

There are several reasons behind combining the HYPssp algorithm with the proposed methodology. Firstly, GP 
does not necessarily produce a Pareto-optimal solution [8]. As mentioned in the previous section, GP may provide the 
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decision-maker with an inefficient solution since its mathematical structure follows the satisfying philosophy rather than 
the optimizing one. Secondly, and most importantly, rational decision-makers do not choose a dominant solution [8]. 
Accepting a dominant solution occurs in the traditional variants of GP because other efficient solutions are unavailable 
to stakeholders due to a lack of knowledge about the feasible region. Consequently, adjusting the structure of GP to 
generate a set of solutions is considered fundamental for stakeholders who are interested in exploring the feasibility of 
GP solutions. The HYPssp algorithm ensures that inefficient GP solutions are avoided. Therefore, the decision-maker 
selects from this subset the most suitable solution for the MOP under consideration.

The proposed GGP methodology can be summarized in the framework of bi-objective minimization problems as 
follows:

1. Calculate the minimum (ideal) value of each objective using a single-objective optimization model.
2. Compute the maximum (worst) value of each objective by considering the redundancy issue of LGP. 
3. Set intervals for each objective, and choose an aspiration level at random from each one.
4. Construct the set w of points for aspiration levels.  
5. Use these target values for the goals in the LGP model.
6. Run the HYPssp algorithm to obtain a subset of efficient GP solutions.
The advantages of the suggested technique are highlighted by applying it to the GPFSP. This application has 

practical benefits in the field of industrial engineering. The next section introduces this application and explains in detail 
the steps of the GGP methodology. 

3. Overview of the GPFSP
This section introduces the GPFSP. In addition, it presents the mathematical programming models used to solve it 

in the context of the proposed GGP methodology.

3.1 Introduction to the GPFSP

The traditional permutation flowshop scheduling problem (PFSP) is a combinatorial optimization problem that 
takes objectives related to production time into account. The maximum completion time, i.e., makespan, flow time, 
and tardiness, are the most common production efficiency-related objectives in the literature. The purpose of the PFSP 
is to identify the optimal order of processing jobs on machines. Additionally, it makes the assumption that jobs will be 
processed on machines in the same order [23]. Other assumptions include the independence of jobs and the availability 
of jobs at the start of processing time. Moreover, machines are independent, and their interruption is not allowed during 
the processing stage. These assumptions are considered in this study. More details about the PFSP and its requirements 
are available at [24].

The GPFSP is considered an extension of the traditional PFSP. This recent variant considers energy efficiency-
related objectives, such as energy consumption and carbon emissions. In this study, makespan and total energy 
consumption (TEC) are considered the competing objectives, and they are assessed using the proposed methodology. 
Moreover, the speed of machines is the factor that creates the conflict between these objectives. Processing jobs at a 
higher speed decreases makespan. However, this increases the energy consumed by machines. 

Several optimization techniques were introduced to evaluate the trade-off between production and energy 
efficiency-related objectives in the context of the speed-scaling strategy. Mansouri et al. [25] used the epsilon constraint 
method and developed constructive heuristics to study the compromise between makespan and TEC for a two-machine 
sequence-dependent permutation flowshop scheduling problem. Moreover, the compromise between the total flow 
time and TEC was assessed in the context of the GPFSP [26]. The authors employed the augmented epsilon constraint 
technique to generate Pareto-optimal solutions for small-scale problems. To cope with the complexity of this problem, 
their study proposed multi-objective iterated greedy algorithms and variable block insertion heuristics for large-scale 
problems. Furthermore, Saber and Ranjbar [27] studied the conflict between the total tardiness and the total carbon 
emissions for the GPFSP. The authors suggested a mixed integer mathematical programming model and a multi-
objective decomposition-based heuristic algorithm to solve this problem. Recently, in the context of task scheduling 
for parallel systems, Stewart et al. [28] developed a mixed-integer mathematical programming model to minimize 
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makespan and energy consumption by varying the speed of processors. The authors used the epsilon constraint and the 
weighted sum scalarization methods to solve this problem.

The next subsection introduces the mathematical programming models used to study the GPFSP. 

3.2 Mathematical programming models for the GPFSP

As mentioned in Section 2, the proposed GGP methodology relies on calculating the minimum and maximum 
values for each objective. Model 1 below is a single-objective mixed-integer mathematical programming model that is 
used twice to compute the minimum (ideal) values for makespan and TEC. These ideal values are used as target levels in 
the LGP model, i.e., Model 2 below. Before introducing these models, Table 1 below presents the notations, parameters, 
and decision variables used.

Table 1. Indexes, parameters, and variables of the mathematical programming models

Indexes Parameters Positive decision variables Binary decision variables

i Index for jobs N Number of jobs: 
i,  j = 1, 2, …, N Cjm

Completion time of the 
job in the jth position on 

m machine  
xijms

1 if job i is in the jth 
position on machine m 
at speed s, 0 otherwise

j Index for positions 
of jobs M Number of machines: 

m, k = 1, 2, …, M θm Idle time on machine m

m, k Indexes for 
machines S

Number of speed levels; s = 1, 2, 
3 for fast, normal and slow speeds, 

respectively.
Cmax

Maximum completion 
time (makespan)

s Index for 
processing speeds pim

The standard processing time of job 
i on machine m TEC Total energy 

consumption (KWh)

vs Processing speed factor

γs
Conversion factor for processing 

speed s 

φm
Conversion factor for idle time on 

machine m

πm Power of machine m (KWh)

It is worth mentioning that Model 1 below is similar to the model introduced by Amiri and Behnamian [29]. 
However, their model is designed to assess the stochastic variant of the GPFSP under scenario analysis. The 
deterministic version of their model is used in this study. 

Model 1. Deterministic mixed-integer mathematical programming model for GPFSP 

                                                                                    *
1 maxmin  z C=                                                                                  (1)

                                                                                    *
2min TECz =                                                                                 (2)

subject to 

1
11 111 1

*N S i
i si s

s

pC x
v= =

≥ ∑ ∑ (3)

, 1
, 1 1 1

* , ,N S i m
j m jm ijmsi s

s

p
C C x j N m M

v
+

+ = =
≥ + ∀ ∀ ∈∑ ∑  (4)
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1, , 1, ,1 1

* , ,N S im
j m jm i j m si s

s

p
C C x j N m M

v+ += =
≥ + ∀ ∀ ∈∑ ∑ 

                                       
(5)

                                           1 1
, , , ,S S

ijms ijkss s
x x i j N m k M

= =
= ∀ ∀ ∈∑ ∑                                         (6)

                                           1 1
1, , ,N S

ijmsi s
x j N m M

= =
= ∀ ∀ ∈∑ ∑                                         (7)

                                           1 1
1, , ,N S

ijmsj s
x i N m M

= =
= ∀ ∀ ∈∑ ∑                                         (8)

                                           *
max  NMC C≥                                        (9)

                                           
*

max 1 1 1
* ,N N S im

m ijmsi j s
s

p
C x m M

v= = =
θ = − ∀ ∈∑ ∑ ∑

                                     
(10)

                                           
*

1 1 1 1 1

* *
TEC *

60 60
M N N S Mm s im m M m

ijmsm i j s m
s

p
x

v
π γ π ϕ

= = = = =

θ
= +∑ ∑ ∑ ∑ ∑

                                     
(11)

                                           0, ,jmC j N m M≥ ∀ ∀ ∈                                      (12)

                                           { }0,1 , , , ,ijmsx i j N m M s S∈ ∀ ∀ ∈ ∀                                       (13)

The objective functions (1) and (2) aim at minimizing makespan and TEC, respectively. Each objective function 
is minimized individually to get its ideal value. This implies that Model 1 is used twice. Constraint (3) states that the 
completion time of the job in the first position on the first machine should equal the processing time on that machine. 
The inequality is used in the case of machine idle time. Constraint (4) guarantees that a job in sequence position j 
cannot end its processing on the current machine unless it has already finished its processing on the previous machine. 
Constraint (5) states that a job in processing on machine m can move to the next position in the sequence after ensuring 
that the job in the previous position has finished processing on the same machine. In other words, the completion time of 
any job on any machine is determined by the processing time on that machine in addition to the completion time of its 
predecessor on the same machine. Constraint (6) states that jobs are processed in the same order, with one speed on each 
machine. Constraint (7) ensures that each position on each machine has one job with one speed. Furthermore, constraint 
(8) guarantees that each job is processed at exactly one speed and has one position on each machine. The makespan of 
the schedule is defined in constraint (9). Idle times on machines are computed using constraint (10). Constraint (11) 
calculates TEC in kilowatt hours. The non-negativity and binary constraints of the decision variables are defined in 
constraints (12) and (13), respectively.

It is worth noting that the output of Model 1 is twofold. Firstly, it gives the optimal sequence of processing jobs on 
machines. Secondly, it assigns the optimal processing speed of each job to each machine. Moreover, the LGP version of 
Model 1 is introduced in Model 2 below. Model 2 is used to estimate the worst value of each objective.

Model 2. Deterministic LGP model for the GPFSP
Achievement function

                                                                                  [ ]1 2min ,  Z p p=                                                                             (14)
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subject to:
Goal constraints

*
max 1 1 max C n p C+ − = (15)

*
2 2TEC TECn p+ − = (16)

System constraints (3)-(13)

1 1 2 2, , , 0n p n p ≥ (17)

where n1 and n2 (p1 and p2) are the negative (positive) deviational variables of the two goals. These deviational variables 
are defined to be non-negative, as stated in constraint (17). Constraints (15) and (16) specify the two goals and their 
corresponding target values, i.e., Cmax

* and TEC*, respectively. These target values are calculated from Model 1 above, 
and they represent the ideal values for both goals. The achievement function in equation (14) is a vector of positive 
deviational variables since both objectives have to be minimized. Furthermore, the achievement function places 
makespan in the first priority order, followed by TEC in the second place. By considering this order, the maximum (worst) 
value of TEC is computed due to redundancy in the LGP model. The worst value of makespan is estimated by reversing 
the previous priority order of the two goals.

The proposed GGP methodology is based on generating a set of GP solutions rather than just one solution. These 
solutions are obtained by varying the aspiration levels for both goals. This is achieved by a random generation from 
the sets of intervals in constraints (18) and (19) below. On the one hand, the first set of intervals guarantees that the 
target levels for makespan 1( )tg  are increasing in order. On the other hand, the construction of the second set of intervals 
ensures obtaining values in a decreasing order for the aspiration levels of TEC 2( )tg . 

)max max

1
max maxmin ( 1)*length ,min *length , 1,2 ,t C Cg C t C t t n∈ + − + ∀ = 

(18)

[ )2
TEC TECmax TEC *length ,max TEC ( 1)*length , 1,2 ,tg t t t n∈ − − − ∀ = 

(19)

where min Cmax is the minimum (ideal) value of the makespan, which is calculated from Model 1 above. Max TEC is the 
maximum (worst) value of the second objective, and it is computed from Model 2. Moreover, the 

max
lengthC  (lengthTEC)

is the difference between the maximum and minimum values of makespan (TEC) divided by the number of intervals (n). 
This number is determined by the decision-maker, and it is equal to the number of aspiration levels used for Model 3 
below.

Model 3. The GGP model for the GPFSP
Achievement function (14) 

Subject to:
Goal constraints

1
max 1 1 , 1, 2, ,tC n p g t n+ − = ∀ = … (20)

2
2 2TEC , 1,2, ,tn p g t n+ − = ∀ = … (21)

System constraints (3)-(13) and (17).
The aspiration levels for the first (second) goal are 21( )t tg g . In addition, they are computed from the set of intervals 

in constraints (18) and (19) above. Consequently, constraints (20) and (21) imply that Model 3 is run n times to obtain a 
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set of n GP solutions. Since there is no guarantee about the efficiency of these solutions, the next step involves applying 
the HYPssp algorithm [17] to select a subset of size l of these solutions. This subset involves efficient solutions that 
maximize the hypervolume performance indicator.

The next section illustrates the data settings of the GPFSP and the computational results of the proposed GGP 
technique.

4. Data settings and computational results 
The literature on the flowshop scheduling problem includes several benchmarks to validate the exact and meta-

heuristic algorithms. The benchmark of Tailard [30] is the most commonly used. Nevertheless, this study adopts the 
PFSP benchmark instances of Vallada et al. [31] to assess the performance of the proposed GGP methodology. The 
reason for this choice is based on the variety of small datasets available in this benchmark, which is consistent with 
the exactness of the suggested technique. The authors generated 240 large instances and the same number for small- to 
medium-sized instances. A combination of N jobs and M machines is used to construct their proposed set of benchmark 
instances. In addition, the number of jobs is between 10 and 60, while the number of machines ranges from five to 20, 
i.e., N = {10, 20, 30, 40, 50, 60}, and M = {5, 10, 15, 20}. 10 instances are created for each combination of the elements 
of the two sets. The processing times of jobs are calculated using a uniform distribution. This study considers applying 
the suggested GGP method to the first five instances of the first combination, i.e., the combination of 10 jobs and five 
machines. 

Table 2 below shows the minimum and maximum values calculated for each objective in each instance. On the 
one hand, the minimum (ideal) value for each objective is computed from Model 1 above. On the other hand, maximum 
values are obtained by adopting the idea of goal redundancy in LGP, as illustrated in Model 2. 

Table 2. Minimum and maximum values of the makespan and total energy consumption

Instance
Cmax TEC

min max min max

10 × 5-01 579.1667 868.75 1073.8975 2365.4875

10 × 5-02 581.6667 872.5 1119.09 2933.9333

10 × 5-03 606.6667 910 1186.08 2862.3858

10 × 5-04 580.8333 871.25 1154.265 3185.9826

10 × 5-05 594.1667 891.25 1212.705 3428.4615

Table 3 below illustrates the parameters used for the GPFSP. The regular parameters of the PFSP are adopted from 
the study of Vallada et al. [31]. They include the number of jobs (N), the number of machines (M), and the data for 
processing time. The study of Mansouri et al. [25] is used as a reference for setting energy parameters.

The uniform and normal distributions are used to generate the aspiration levels for each objective, i.e., 1
tg  and 

2 ( 1, 2, , )tg t n∀ =  1, 2, …, n) for makespan and TEC, respectively. These distributions are used in this study for the purpose 
of comparison. On the one hand, the parameters of the uniform distribution are the lower and upper bounds of each 
interval computed from the set of intervals in constraints (18) and (19). On the other hand, the location parameter of the 
normal distribution is the average of the lower and upper bounds. The standard deviation is computed as the length of 
the interval divided by six. The computations of these parameters are based on the study of Moghaddam [32]. 
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Table 3. Summary of the parameters of the GPFSP 

Parameter Level

Number of jobs (N) 10

Number of machines (M) 5

Processing time ( pim) Uniform (1, 99)

Machines power (πm) 60 kilowatts

Processing speed (vs) {1.2, 1, 0.8}

Processing conversion factor (γs) {1.5, 1, 0.6}

Idle time energy consumption (φm) 0.05

For each of the five instances, Model 3 is used to obtain two sets of GP solutions. This is achieved using normally 
and uniformly distributed aspiration levels. Due to obtaining inefficient GP solutions under each instance, the HYPssp 
algorithm [17] is utilized to obtain subsets of non-dominated solutions that give the maximum value of the hypervolume 
indicator. Columns 3 and 4 of Table 4 below illustrate the normalized hypervolume values calculated from each subset 
of efficient solutions using both distributions. Observing these values across the five instances concludes that applying 
the GGP methodology using normally distributed aspiration levels generates subsets of non-dominated solutions that 
have a relatively larger volume in the objective space. This means that these solutions are more diverse and well-
distributed than those generated by a uniform distribution. In addition, the initial size (n) of the set of GP solutions and 
the size (l) of the subsets of Pareto optimal solutions are provided in columns 1 and 2, respectively. The sizes of the sets 
of GP solutions are arbitrarily chosen, and the sizes of the corresponding subsets are selected as n / 2.

Tables A1 and A2 in the appendix show detailed computations for the first instance, i.e., the instance 10 × 5-01. 
Columns 1 and 2 of Table A1 contain the aspiration levels obtained from the uniform distribution and the corresponding 
GP solutions, respectively. In addition, column 3 involves the aspiration levels generated from the normal distribution, 
and column 4 presents the corresponding GP solutions. The subsets of efficient solutions are shown in columns 1 and 
2 of Table A2. These efficient solutions are produced using the HYPssp algorithm [17]. Due to space limitations, the 
tables for the rest of the instances are omitted. However, they are available upon request.

Table 4. Results of the hypervolume performance metric 

Instance
Hypervolume values

Initial size (n)
(1)

Subset size (l)
(2)

Uniform random goals
(3)

Normal random goals
(4)

10 × 5-01 80 40 0.5187 0.5226

10 × 5-02 60 30 0.5015 0.5087

10 × 5-03 50 25 0.5132 0.5111

10 × 5-04 56 28 0.5139 0.5148

10 × 5-05 48 24 0.5040 0.5576
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It is worth noting that the mathematical programming models introduced in this study are implemented using the 
GAMS software version 24.1.1, and CPLEX is used as the solver. The Java code, written by Bringmann et al. [17], is 
used to run the HYPssp algorithm. The test instances were run on a laptop with a 1.8 GHz Intel Core i5 8th-generation 
processor and 8 GB of RAM.

5. Conclusion 
This paper presents a new GP approach to improving the quality of decision-making processes. The proposed 

GGP method aims to overcome the efficiency issue of GP solutions while preserving the preferences of the decision-
maker. Furthermore, this study introduces an enhancement to the mathematical framework of GP by generating a 
set of solutions rather than just one solution. This set reflects trade-offs between competing objectives and provides 
the decision-maker with a complete picture of the feasible space of solutions. In addition, the study highlights the 
importance of dealing with the efficiency problem of GP solutions. This is achieved by integrating the concept of the 
HYPssp with the proposed technique. This results in obtaining a set of Pareto optimal solutions that are more diverse 
and representative of the objective space. To validate the performance of the suggested technique, it has been applied to 
the GPFSP. This application has practical importance in the field of industrial engineering. Concerning future work, the 
paper recommends the following points for future research: Firstly, apply the GGP technique to different applications in 
other fields of study to benefit from its advantages. Secondly, conduct the proposed method using other versions of GP, 
such as the weighted variant. Finally, study the effect of including uncertain parameters on the mathematical structure of 
the GGP methodology.
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Appendix: Detailed computational results of the GPFSP application

Table A1. GP solutions generated from uniformly and normally distributed aspiration levels for 10 × 5-01 instance 

Instance
solutions (10 × 5-01)

Uniform aspiration levels 
(1)

Uniform GP solutions
(2)

Normal aspiration levels
(3)

Normal GP solutions 
(4)

Cmax TEC Cmax TEC Cmax TEC Cmax TEC

1 581.782 2352.871 581.667 2337.757 580.922 2352.784 580.167 2351.27

2 584.665 2348.455 584.583 2345.964 584.949 2343.975 584.083 2342.406

3 588.5 2318.966 588.167 2316.725 588.321 2322.896 588.083 2320.267

4 590.548 2308.49 590 2293.979 591.564 2307.002 590.667 2304.126

5 594.814 2285.833 594 2283.973 596.345 2293.496 595.667 2292.925

6 598.977 2273.655 598.333 2272.936 599.582 2278.117 599.167 2263.819

7 602.264 2261.72 601.417 2257.908 602.703 2259.74 601.583 2257.968

8 606.695 2248.856 606.25 2240.398 605.487 2238.941 602.5 2233.174

9 610.035 2225.11 608 2224.807 609.848 2225.007 605.667 2191.312

10 613.926 2220.018 613.75 2214.288 613.28 2207.142 612.333 2205.168

11 618.165 2199.708 616.333 2182.056 616.319 2193.904 615 2193.473

12 619.53 2187.212 619.53 2185.706 619.864 2181.169 614.167 2163.751

13 622.871 2162.076 621.167 2158.59 625.092 2161.816 621.167 2144.588

14 628.443 2144.22 626.667 2140.028 627.251 2151.296 624.417 2149.572

15 632.105 2133.324 631.25 2130.735 631.42 2131.776 630.833 2114.663

16 635.183 2122.68 634.333 2120.552 634.607 2119.866 634.333 2119.189

17 638.464 2096.152 638.083 2082.2 638.82 2102.293 635.5 2101.674

18 643.638 2083.641 643.333 2064.347 641.619 2080.873 638.167 2080.447

19 647.551 2060.434 646.917 2059.492 646.382 2065.899 646.167 2063.802

20 649.618 2043.267 648.833 2031.986 650.035 2052.213 649.083 2052.027

21 653.889 2033.307 653.889 2012.923 653.931 2039.149 653.5 2031.022

22 657.43 2025.125 656.25 2014.264 655.417 2020.606 655.25 2002.763

23 661.99 1998.175 661.083 1996.712 661.65 2005.555 661.583 2003.967

24 662.569 1981.883 661.667 1971.992 663.752 1983.707 661.167 1969.342

25 666.074 1972.467 664.583 1969.725 667.498 1968.976 666.583 1959.988

26 671.958 1950.157 671.833 1946.888 671.416 1956.192 668.75 1949.93

27 674.495 1937.142 674.25 1936.677 676.181 1936.271 673.167 1863.321

28 679.064 1925.187 674.333 1852.836 678.06 1919.35 677.917 1915.793

29 681.149 1901.161 680.833 1877.01 682.467 1906.459 680.5 1905.658

30 684.571 1893.64 683.833 1892.356 686.517 1886.039 684.917 1884.743

31 689.613 1879.202 685.083 1859.09 690.777 1870.748 690.777 1862.624

32 692.106 1857.183 689.417 1829.119 692.932 1855.798 692.932 1851.662

33 697.139 1842.628 697.139 1841.586 696.815 1842.29 695.583 1825.692
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Table A1. (cont.)

Instance
solutions (10 × 5-01)

Uniform aspiration levels 
(1)

Uniform GP solutions
(2)

Normal aspiration levels
(3)

Normal GP solutions 
(4)

Cmax TEC Cmax TEC Cmax TEC Cmax TEC

34 699.73 1823.042 697.417 1820.612 701.164 1827.272 701.083 1820.505

35 703.107 1801.864 702.083 1800.716 703.644 1807.311 703 1804.956

36 706.76 1800.062 705.333 1781.726 708.512 1796.795 704.75 1793.08

37 709.576 1781.543 709.576 1766.458 710.979 1777.518 708.333 1773.323

38 716.557 1753.629 715.333 1746.901 716.374 1758.509 713.667 1751.023

39 720.021 1738.561 719.583 1706.348 719.047 1741.731 714.083 1737.306

40 721.901 1728.968 713.75 1720.129 722.151 1724.301 716.167 1716.599

41 727.307 1706.468 726 1689.114 726.411 1713.787 725.75 1702.132

42 728.886 1702.436 725 1677.246 729.241 1694.849 724.75 1674.927

43 732.655 1675.102 732.333 1673.731 733.103 1680.838 731.917 1605.853

44 735.976 1670.687 734.583 1665.375 735.696 1665.551 732.5 1621.257

45 740.686 1640.042 736.083 1635.937 740.813 1650.3 720.833 1645.116

46 743.28 1630.154 742.083 1595.976 743.531 1628.247 740.5 1615.389

47 746.636 1608.82 740.167 1578.843 746.71 1612.632 743.667 1605.504

48 750.766 1591.682 750.766 1590.832 751.043 1593.784 751.043 1583.585

49 753.775 1583.4 753.667 1581.126 755.036 1581.598 747.5 1546.087

50 757.634 1568.084 757.083 1556.573 759.417 1566.303 754.917 1500.537

51 763.092 1548.43 763.083 1535.604 761.65 1551.065 761.5 1547.629

52 765.655 1534.234 755.917 1506.284 764.139 1531.458 763.333 1519.93

53 769.557 1509.853 766.833 1469.96 769.54 1512.405 769.083 1511.261

54 771.487 1496.002 763 1460.167 773.744 1502.306 770.583 1499.887

55 777.834 1478.422 770.833 1478.063 776.393 1481.643 770.5 1467.05

56 779.77 1470.942 776.75 1451.273 780.115 1469.635 775.25 1449.611

57 781.99 1446.273 781.583 1402.936 782.448 1456.237 778.083 1455.235

58 787.34 1431.715 780.25 1425.734 786.466 1434.546 786.25 1427.717

59 789.724 1416.094 789.724 1385.376 791.355 1422.603 784.833 1419.083

60 794.482 1400.869 786.333 1400.576 794.957 1402.755 788.583 1384.405

61 797.659 1389.428 796 1349.137 797.808 1388.777 797.5 1387.814

62 800.743 1367.874 794.167 1318.292 802.523 1371.344 802.523 1336.183

63 805.327 1362.385 805.083 1349.6 805.466 1356.91 795.5 1347.641

64 807.561 1346.325 803 1344.65 808.519 1337.9 806 1298.544

65 812.477 1319.023 811.25 1301.197 812.692 1327.018 812.167 1325.358

66 814.742 1300.599 809.417 1296.532 815.809 1311.081 814 1304.421

67 819.046 1291.175 819 1290.684 820.155 1284.252 819.167 1265.101

68 824.963 1274.623 816.667 1253.672 823.181 1280.95 818.667 1275.158
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Table A1. (cont.)

Instance
solutions (10 × 5-01)

Uniform aspiration levels 
(1)

Uniform GP solutions
(2)

Normal aspiration levels
(3)

Normal GP solutions 
(4)

Cmax TEC Cmax TEC Cmax TEC Cmax TEC

69 826.621 1256.347 824.333 1252.907 826.1 1260.811 797.75 1253.203

70 830.817 1242.081 830.75 1226.81 831.206 1245.665 823.917 1228.776

71 834.83 1220.787 831 1218.352 834.453 1225.088 819.083 1218.105

72 837.631 1212.25 829.333 1183.772 838.276 1209.249 822.5 1185.952

73 841.732 1189.96 838.917 1173.131 842.312 1200.928 834.5 1192.603

74 843.719 1184.866 833.833 1183.671 845.215 1180.837 843.25 1164.97

75 847.982 1155.511 834 1145.617 848.781 1165.509 844.833 1165.358

76 853.651 1140.661 852.417 1140.058 852.888 1149.427 852 1148.865

77 854.924 1128.301 842 1113.319 855.142 1127.533 853 1124.275

78 859.736 1111.008 857.5 1110.49 860.185 1113.761 850.25 1113.47

79 862.849 1095.782 857.5 1095.048 863.443 1100.719 863 1098.116

80 865.546 1075.608 864 1082.828 866.169 1081.318 864 1082.827

Table A2. Subsets of efficient GP solutions computed from the previous table for 10 × 5-01 instance

Instance
solutions (10 × 5-01)

Uniform GP solutions
(1)

Uniform GP solutions
(2)

Cmax TEC Cmax TEC

1 864 1082.828 864 1082.827

2 857.5 1095.048 850.25 1113.47

3 842 1113.319 843.25 1164.97

4 834 1145.617 822.5 1185.952

5 829.333 1183.772 819.083 1218.105

6 816.667 1253.672 797.75 1253.203

7 809.417 1296.532 795.5 1347.641

8 794.167 1318.292 788.583 1384.405

9 789.724 1385.376 784.833 1419.083

10 781.583 1402.936 775.25 1449.611

11 780.25 1425.734 770.5 1467.05

12 763 1460.167 754.917 1500.537

13 755.917 1506.284 747.5 1546.087

14 740.167 1578.843 731.917 1605.853

15 736.083 1635.937 720.833 1645.116

16 725 1677.246 716.167 1716.599

17 719.583 1706.348 714.083 1737.306
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Table A2. (cont.)

Instance
solutions (10 × 5-01)

Uniform GP solutions
(1)

Uniform GP solutions
(2)

Cmax TEC Cmax TEC

18 713.75 1720.129 708.333 1773.323

19 709.576 1766.458 704.75 1793.08

20 705.333 1781.726 703 1804.956

21 702.083 1800.716 695.583 1825.692

22 697.417 1820.612 673.167 1863.321

23 689.417 1829.119 668.75 1949.93

24 674.333 1852.836 661.167 1969.342

25 671.833 1946.888 655.25 2002.763

26 661.667 1971.992 653.5 2031.022

27 653.889 2012.923 649.083 2052.027

28 648.833 2031.986 646.167 2063.802

29 643.333 2064.347 638.167 2080.447

30 638.083 2082.2 630.833 2114.663

31 634.333 2120.552 621.167 2144.588

32 626.667 2140.028 614.167 2163.751

33 621.167 2158.59 605.667 2191.312

34 616.333 2182.056 602.5 2233.174

35 608 2224.807 599.167 2263.819

36 601.417 2257.908 595.667 2292.925

37 594 2283.973 590.667 2304.126

38 590 2293.979 588.083 2320.267

39 588.167 2316.725 584.083 2342.406

40 581.667 2337.757 580.167 2351.257


